Ruslan Bukin cec8009ca1 Allow operation with UTMI+ phy.
Submitted by:	kan
Sponsored by:	DARPA, AFRL
2016-11-17 15:08:30 +00:00

4999 lines
115 KiB
C

/* $FreeBSD$ */
/*-
* Copyright (c) 2015 Daisuke Aoyama. All rights reserved.
* Copyright (c) 2012-2015 Hans Petter Selasky. All rights reserved.
* Copyright (c) 2010-2011 Aleksandr Rybalko. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* This file contains the driver for the DesignWare series USB 2.0 OTG
* Controller.
*/
/*
* LIMITATION: Drivers must be bound to all OUT endpoints in the
* active configuration for this driver to work properly. Blocking any
* OUT endpoint will block all OUT endpoints including the control
* endpoint. Usually this is not a problem.
*/
/*
* NOTE: Writing to non-existing registers appears to cause an
* internal reset.
*/
#ifdef USB_GLOBAL_INCLUDE_FILE
#include USB_GLOBAL_INCLUDE_FILE
#else
#include <sys/stdint.h>
#include <sys/stddef.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/unistd.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/priv.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#define USB_DEBUG_VAR dwc_otg_debug
#include <dev/usb/usb_core.h>
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_busdma.h>
#include <dev/usb/usb_process.h>
#include <dev/usb/usb_transfer.h>
#include <dev/usb/usb_device.h>
#include <dev/usb/usb_hub.h>
#include <dev/usb/usb_util.h>
#include <dev/usb/usb_controller.h>
#include <dev/usb/usb_bus.h>
#endif /* USB_GLOBAL_INCLUDE_FILE */
#include <dev/usb/controller/dwc_otg.h>
#include <dev/usb/controller/dwc_otgreg.h>
#define DWC_OTG_BUS2SC(bus) \
((struct dwc_otg_softc *)(((uint8_t *)(bus)) - \
((uint8_t *)&(((struct dwc_otg_softc *)0)->sc_bus))))
#define DWC_OTG_PC2UDEV(pc) \
(USB_DMATAG_TO_XROOT((pc)->tag_parent)->udev)
#define DWC_OTG_MSK_GINT_THREAD_IRQ \
(GINTSTS_USBRST | GINTSTS_ENUMDONE | GINTSTS_PRTINT | \
GINTSTS_WKUPINT | GINTSTS_USBSUSP | GINTMSK_OTGINTMSK | \
GINTSTS_SESSREQINT)
#ifndef DWC_OTG_PHY_DEFAULT
#define DWC_OTG_PHY_DEFAULT DWC_OTG_PHY_ULPI
#endif
static int dwc_otg_phy_type = DWC_OTG_PHY_DEFAULT;
static SYSCTL_NODE(_hw_usb, OID_AUTO, dwc_otg, CTLFLAG_RW, 0, "USB DWC OTG");
SYSCTL_INT(_hw_usb_dwc_otg, OID_AUTO, phy_type, CTLFLAG_RDTUN,
&dwc_otg_phy_type, 0, "DWC OTG PHY TYPE - 0/1/2/3 - ULPI/HSIC/INTERNAL/UTMI+");
#ifdef USB_DEBUG
static int dwc_otg_debug = 0;
SYSCTL_INT(_hw_usb_dwc_otg, OID_AUTO, debug, CTLFLAG_RWTUN,
&dwc_otg_debug, 0, "DWC OTG debug level");
#endif
#define DWC_OTG_INTR_ENDPT 1
/* prototypes */
static const struct usb_bus_methods dwc_otg_bus_methods;
static const struct usb_pipe_methods dwc_otg_device_non_isoc_methods;
static const struct usb_pipe_methods dwc_otg_device_isoc_methods;
static dwc_otg_cmd_t dwc_otg_setup_rx;
static dwc_otg_cmd_t dwc_otg_data_rx;
static dwc_otg_cmd_t dwc_otg_data_tx;
static dwc_otg_cmd_t dwc_otg_data_tx_sync;
static dwc_otg_cmd_t dwc_otg_host_setup_tx;
static dwc_otg_cmd_t dwc_otg_host_data_tx;
static dwc_otg_cmd_t dwc_otg_host_data_rx;
static void dwc_otg_device_done(struct usb_xfer *, usb_error_t);
static void dwc_otg_do_poll(struct usb_bus *);
static void dwc_otg_standard_done(struct usb_xfer *);
static void dwc_otg_root_intr(struct dwc_otg_softc *);
static void dwc_otg_interrupt_poll_locked(struct dwc_otg_softc *);
/*
* Here is a configuration that the chip supports.
*/
static const struct usb_hw_ep_profile dwc_otg_ep_profile[1] = {
[0] = {
.max_in_frame_size = 64,/* fixed */
.max_out_frame_size = 64, /* fixed */
.is_simplex = 1,
.support_control = 1,
}
};
static void
dwc_otg_get_hw_ep_profile(struct usb_device *udev,
const struct usb_hw_ep_profile **ppf, uint8_t ep_addr)
{
struct dwc_otg_softc *sc;
sc = DWC_OTG_BUS2SC(udev->bus);
if (ep_addr < sc->sc_dev_ep_max)
*ppf = &sc->sc_hw_ep_profile[ep_addr].usb;
else
*ppf = NULL;
}
static void
dwc_otg_write_fifo(struct dwc_otg_softc *sc, struct usb_page_cache *pc,
uint32_t offset, uint32_t fifo, uint32_t count)
{
uint32_t temp;
/* round down length to nearest 4-bytes */
temp = count & ~3;
/* check if we can write the data directly */
if (temp != 0 && usb_pc_buffer_is_aligned(pc, offset, temp, 3)) {
struct usb_page_search buf_res;
/* pre-subtract length */
count -= temp;
/* iterate buffer list */
do {
/* get current buffer pointer */
usbd_get_page(pc, offset, &buf_res);
if (buf_res.length > temp)
buf_res.length = temp;
/* transfer data into FIFO */
bus_space_write_region_4(sc->sc_io_tag, sc->sc_io_hdl,
fifo, buf_res.buffer, buf_res.length / 4);
offset += buf_res.length;
fifo += buf_res.length;
temp -= buf_res.length;
} while (temp != 0);
}
/* check for remainder */
if (count != 0) {
/* clear topmost word before copy */
sc->sc_bounce_buffer[(count - 1) / 4] = 0;
/* copy out data */
usbd_copy_out(pc, offset,
sc->sc_bounce_buffer, count);
/* transfer data into FIFO */
bus_space_write_region_4(sc->sc_io_tag,
sc->sc_io_hdl, fifo, sc->sc_bounce_buffer,
(count + 3) / 4);
}
}
static void
dwc_otg_read_fifo(struct dwc_otg_softc *sc, struct usb_page_cache *pc,
uint32_t offset, uint32_t count)
{
uint32_t temp;
/* round down length to nearest 4-bytes */
temp = count & ~3;
/* check if we can read the data directly */
if (temp != 0 && usb_pc_buffer_is_aligned(pc, offset, temp, 3)) {
struct usb_page_search buf_res;
/* pre-subtract length */
count -= temp;
/* iterate buffer list */
do {
/* get current buffer pointer */
usbd_get_page(pc, offset, &buf_res);
if (buf_res.length > temp)
buf_res.length = temp;
/* transfer data from FIFO */
bus_space_read_region_4(sc->sc_io_tag, sc->sc_io_hdl,
sc->sc_current_rx_fifo, buf_res.buffer, buf_res.length / 4);
offset += buf_res.length;
sc->sc_current_rx_fifo += buf_res.length;
sc->sc_current_rx_bytes -= buf_res.length;
temp -= buf_res.length;
} while (temp != 0);
}
/* check for remainder */
if (count != 0) {
/* read data into bounce buffer */
bus_space_read_region_4(sc->sc_io_tag, sc->sc_io_hdl,
sc->sc_current_rx_fifo,
sc->sc_bounce_buffer, (count + 3) / 4);
/* store data into proper buffer */
usbd_copy_in(pc, offset, sc->sc_bounce_buffer, count);
/* round length up to nearest 4 bytes */
count = (count + 3) & ~3;
/* update counters */
sc->sc_current_rx_bytes -= count;
sc->sc_current_rx_fifo += count;
}
}
static void
dwc_otg_tx_fifo_reset(struct dwc_otg_softc *sc, uint32_t value)
{
uint32_t temp;
/* reset FIFO */
DWC_OTG_WRITE_4(sc, DOTG_GRSTCTL, value);
/* wait for reset to complete */
for (temp = 0; temp != 16; temp++) {
value = DWC_OTG_READ_4(sc, DOTG_GRSTCTL);
if (!(value & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)))
break;
}
}
static int
dwc_otg_init_fifo(struct dwc_otg_softc *sc, uint8_t mode)
{
struct dwc_otg_profile *pf;
uint32_t fifo_size;
uint32_t fifo_regs;
uint32_t tx_start;
uint8_t x;
fifo_size = sc->sc_fifo_size;
/*
* NOTE: Reserved fixed size area at end of RAM, which must
* not be allocated to the FIFOs:
*/
fifo_regs = 4 * 16;
if (fifo_size < fifo_regs) {
DPRINTF("Too little FIFO\n");
return (EINVAL);
}
/* subtract FIFO regs from total once */
fifo_size -= fifo_regs;
/* split equally for IN and OUT */
fifo_size /= 2;
/* Align to 4 bytes boundary (refer to PGM) */
fifo_size &= ~3;
/* set global receive FIFO size */
DWC_OTG_WRITE_4(sc, DOTG_GRXFSIZ, fifo_size / 4);
tx_start = fifo_size;
if (fifo_size < 64) {
DPRINTFN(-1, "Not enough data space for EP0 FIFO.\n");
return (EINVAL);
}
if (mode == DWC_MODE_HOST) {
/* reset active endpoints */
sc->sc_active_rx_ep = 0;
/* split equally for periodic and non-periodic */
fifo_size /= 2;
DPRINTF("PTX/NPTX FIFO=%u\n", fifo_size);
/* align to 4 bytes boundary */
fifo_size &= ~3;
DWC_OTG_WRITE_4(sc, DOTG_GNPTXFSIZ,
((fifo_size / 4) << 16) |
(tx_start / 4));
tx_start += fifo_size;
for (x = 0; x != sc->sc_host_ch_max; x++) {
/* enable all host interrupts */
DWC_OTG_WRITE_4(sc, DOTG_HCINTMSK(x),
HCINT_DEFAULT_MASK);
}
DWC_OTG_WRITE_4(sc, DOTG_HPTXFSIZ,
((fifo_size / 4) << 16) |
(tx_start / 4));
/* reset host channel state */
memset(sc->sc_chan_state, 0, sizeof(sc->sc_chan_state));
/* enable all host channel interrupts */
DWC_OTG_WRITE_4(sc, DOTG_HAINTMSK,
(1U << sc->sc_host_ch_max) - 1U);
/* enable proper host channel interrupts */
sc->sc_irq_mask |= GINTMSK_HCHINTMSK;
sc->sc_irq_mask &= ~GINTMSK_IEPINTMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
}
if (mode == DWC_MODE_DEVICE) {
DWC_OTG_WRITE_4(sc, DOTG_GNPTXFSIZ,
(0x10 << 16) | (tx_start / 4));
fifo_size -= 0x40;
tx_start += 0x40;
/* setup control endpoint profile */
sc->sc_hw_ep_profile[0].usb = dwc_otg_ep_profile[0];
/* reset active endpoints */
sc->sc_active_rx_ep = 1;
for (x = 1; x != sc->sc_dev_ep_max; x++) {
pf = sc->sc_hw_ep_profile + x;
pf->usb.max_out_frame_size = 1024 * 3;
pf->usb.is_simplex = 0; /* assume duplex */
pf->usb.support_bulk = 1;
pf->usb.support_interrupt = 1;
pf->usb.support_isochronous = 1;
pf->usb.support_out = 1;
if (x < sc->sc_dev_in_ep_max) {
uint32_t limit;
limit = (x == 1) ? MIN(DWC_OTG_TX_MAX_FIFO_SIZE,
DWC_OTG_MAX_TXN) : MIN(DWC_OTG_MAX_TXN / 2,
DWC_OTG_TX_MAX_FIFO_SIZE);
/* see if there is enough FIFO space */
if (limit <= fifo_size) {
pf->max_buffer = limit;
pf->usb.support_in = 1;
} else {
limit = MIN(DWC_OTG_TX_MAX_FIFO_SIZE, 0x40);
if (limit <= fifo_size) {
pf->usb.support_in = 1;
} else {
pf->usb.is_simplex = 1;
limit = 0;
}
}
/* set FIFO size */
DWC_OTG_WRITE_4(sc, DOTG_DIEPTXF(x),
((limit / 4) << 16) | (tx_start / 4));
tx_start += limit;
fifo_size -= limit;
pf->usb.max_in_frame_size = limit;
} else {
pf->usb.is_simplex = 1;
}
DPRINTF("FIFO%d = IN:%d / OUT:%d\n", x,
pf->usb.max_in_frame_size,
pf->usb.max_out_frame_size);
}
/* enable proper device channel interrupts */
sc->sc_irq_mask &= ~GINTMSK_HCHINTMSK;
sc->sc_irq_mask |= GINTMSK_IEPINTMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
}
/* reset RX FIFO */
dwc_otg_tx_fifo_reset(sc, GRSTCTL_RXFFLSH);
if (mode != DWC_MODE_OTG) {
/* reset all TX FIFOs */
dwc_otg_tx_fifo_reset(sc,
GRSTCTL_TXFIFO(0x10) |
GRSTCTL_TXFFLSH);
} else {
/* reset active endpoints */
sc->sc_active_rx_ep = 0;
/* reset host channel state */
memset(sc->sc_chan_state, 0, sizeof(sc->sc_chan_state));
}
return (0);
}
static uint8_t
dwc_otg_uses_split(struct usb_device *udev)
{
/*
* When a LOW or FULL speed device is connected directly to
* the USB port we don't use split transactions:
*/
return (udev->speed != USB_SPEED_HIGH &&
udev->parent_hs_hub != NULL &&
udev->parent_hs_hub->parent_hub != NULL);
}
static void
dwc_otg_update_host_frame_interval(struct dwc_otg_softc *sc)
{
/*
* Disabled until further. Assuming that the register is already
* programmed correctly by the boot loader.
*/
#if 0
uint32_t temp;
/* setup HOST frame interval register, based on existing value */
temp = DWC_OTG_READ_4(sc, DOTG_HFIR) & HFIR_FRINT_MASK;
if (temp >= 10000)
temp /= 1000;
else
temp /= 125;
/* figure out nearest X-tal value */
if (temp >= 54)
temp = 60; /* MHz */
else if (temp >= 39)
temp = 48; /* MHz */
else
temp = 30; /* MHz */
if (sc->sc_flags.status_high_speed)
temp *= 125;
else
temp *= 1000;
DPRINTF("HFIR=0x%08x\n", temp);
DWC_OTG_WRITE_4(sc, DOTG_HFIR, temp);
#endif
}
static void
dwc_otg_clocks_on(struct dwc_otg_softc *sc)
{
if (sc->sc_flags.clocks_off &&
sc->sc_flags.port_powered) {
DPRINTFN(5, "\n");
/* TODO - platform specific */
sc->sc_flags.clocks_off = 0;
}
}
static void
dwc_otg_clocks_off(struct dwc_otg_softc *sc)
{
if (!sc->sc_flags.clocks_off) {
DPRINTFN(5, "\n");
/* TODO - platform specific */
sc->sc_flags.clocks_off = 1;
}
}
static void
dwc_otg_pull_up(struct dwc_otg_softc *sc)
{
uint32_t temp;
/* pullup D+, if possible */
if (!sc->sc_flags.d_pulled_up &&
sc->sc_flags.port_powered) {
sc->sc_flags.d_pulled_up = 1;
temp = DWC_OTG_READ_4(sc, DOTG_DCTL);
temp &= ~DCTL_SFTDISCON;
DWC_OTG_WRITE_4(sc, DOTG_DCTL, temp);
}
}
static void
dwc_otg_pull_down(struct dwc_otg_softc *sc)
{
uint32_t temp;
/* pulldown D+, if possible */
if (sc->sc_flags.d_pulled_up) {
sc->sc_flags.d_pulled_up = 0;
temp = DWC_OTG_READ_4(sc, DOTG_DCTL);
temp |= DCTL_SFTDISCON;
DWC_OTG_WRITE_4(sc, DOTG_DCTL, temp);
}
}
static void
dwc_otg_enable_sof_irq(struct dwc_otg_softc *sc)
{
/* In device mode we don't use the SOF interrupt */
if (sc->sc_flags.status_device_mode != 0)
return;
/* Ensure the SOF interrupt is not disabled */
sc->sc_needsof = 1;
/* Check if the SOF interrupt is already enabled */
if ((sc->sc_irq_mask & GINTMSK_SOFMSK) != 0)
return;
sc->sc_irq_mask |= GINTMSK_SOFMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
}
static void
dwc_otg_resume_irq(struct dwc_otg_softc *sc)
{
if (sc->sc_flags.status_suspend) {
/* update status bits */
sc->sc_flags.status_suspend = 0;
sc->sc_flags.change_suspend = 1;
if (sc->sc_flags.status_device_mode) {
/*
* Disable resume interrupt and enable suspend
* interrupt:
*/
sc->sc_irq_mask &= ~GINTMSK_WKUPINTMSK;
sc->sc_irq_mask |= GINTMSK_USBSUSPMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
}
/* complete root HUB interrupt endpoint */
dwc_otg_root_intr(sc);
}
}
static void
dwc_otg_suspend_irq(struct dwc_otg_softc *sc)
{
if (!sc->sc_flags.status_suspend) {
/* update status bits */
sc->sc_flags.status_suspend = 1;
sc->sc_flags.change_suspend = 1;
if (sc->sc_flags.status_device_mode) {
/*
* Disable suspend interrupt and enable resume
* interrupt:
*/
sc->sc_irq_mask &= ~GINTMSK_USBSUSPMSK;
sc->sc_irq_mask |= GINTMSK_WKUPINTMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
}
/* complete root HUB interrupt endpoint */
dwc_otg_root_intr(sc);
}
}
static void
dwc_otg_wakeup_peer(struct dwc_otg_softc *sc)
{
if (!sc->sc_flags.status_suspend)
return;
DPRINTFN(5, "Remote wakeup\n");
if (sc->sc_flags.status_device_mode) {
uint32_t temp;
/* enable remote wakeup signalling */
temp = DWC_OTG_READ_4(sc, DOTG_DCTL);
temp |= DCTL_RMTWKUPSIG;
DWC_OTG_WRITE_4(sc, DOTG_DCTL, temp);
/* Wait 8ms for remote wakeup to complete. */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 125);
temp &= ~DCTL_RMTWKUPSIG;
DWC_OTG_WRITE_4(sc, DOTG_DCTL, temp);
} else {
/* enable USB port */
DWC_OTG_WRITE_4(sc, DOTG_PCGCCTL, 0);
/* wait 10ms */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 100);
/* resume port */
sc->sc_hprt_val |= HPRT_PRTRES;
DWC_OTG_WRITE_4(sc, DOTG_HPRT, sc->sc_hprt_val);
/* Wait 100ms for resume signalling to complete. */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 10);
/* clear suspend and resume */
sc->sc_hprt_val &= ~(HPRT_PRTSUSP | HPRT_PRTRES);
DWC_OTG_WRITE_4(sc, DOTG_HPRT, sc->sc_hprt_val);
/* Wait 4ms */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 250);
}
/* need to fake resume IRQ */
dwc_otg_resume_irq(sc);
}
static void
dwc_otg_set_address(struct dwc_otg_softc *sc, uint8_t addr)
{
uint32_t temp;
DPRINTFN(5, "addr=%d\n", addr);
temp = DWC_OTG_READ_4(sc, DOTG_DCFG);
temp &= ~DCFG_DEVADDR_SET(0x7F);
temp |= DCFG_DEVADDR_SET(addr);
DWC_OTG_WRITE_4(sc, DOTG_DCFG, temp);
}
static void
dwc_otg_common_rx_ack(struct dwc_otg_softc *sc)
{
DPRINTFN(5, "RX status clear\n");
/* enable RX FIFO level interrupt */
sc->sc_irq_mask |= GINTMSK_RXFLVLMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
if (sc->sc_current_rx_bytes != 0) {
/* need to dump remaining data */
bus_space_read_region_4(sc->sc_io_tag, sc->sc_io_hdl,
sc->sc_current_rx_fifo, sc->sc_bounce_buffer,
sc->sc_current_rx_bytes / 4);
/* clear number of active bytes to receive */
sc->sc_current_rx_bytes = 0;
}
/* clear cached status */
sc->sc_last_rx_status = 0;
}
static void
dwc_otg_clear_hcint(struct dwc_otg_softc *sc, uint8_t x)
{
uint32_t hcint;
/* clear all pending interrupts */
hcint = DWC_OTG_READ_4(sc, DOTG_HCINT(x));
DWC_OTG_WRITE_4(sc, DOTG_HCINT(x), hcint);
/* clear buffered interrupts */
sc->sc_chan_state[x].hcint = 0;
}
static uint8_t
dwc_otg_host_check_tx_fifo_empty(struct dwc_otg_softc *sc, struct dwc_otg_td *td)
{
uint32_t temp;
temp = DWC_OTG_READ_4(sc, DOTG_GINTSTS);
if (td->ep_type == UE_ISOCHRONOUS) {
/*
* NOTE: USB INTERRUPT transactions are executed like
* USB CONTROL transactions! See the setup standard
* chain function for more information.
*/
if (!(temp & GINTSTS_PTXFEMP)) {
DPRINTF("Periodic TX FIFO is not empty\n");
if (!(sc->sc_irq_mask & GINTMSK_PTXFEMPMSK)) {
sc->sc_irq_mask |= GINTMSK_PTXFEMPMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
}
return (1); /* busy */
}
} else {
if (!(temp & GINTSTS_NPTXFEMP)) {
DPRINTF("Non-periodic TX FIFO is not empty\n");
if (!(sc->sc_irq_mask & GINTMSK_NPTXFEMPMSK)) {
sc->sc_irq_mask |= GINTMSK_NPTXFEMPMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
}
return (1); /* busy */
}
}
return (0); /* ready for transmit */
}
static uint8_t
dwc_otg_host_channel_alloc(struct dwc_otg_softc *sc,
struct dwc_otg_td *td, uint8_t is_out)
{
uint8_t x;
uint8_t y;
uint8_t z;
if (td->channel[0] < DWC_OTG_MAX_CHANNELS)
return (0); /* already allocated */
/* check if device is suspended */
if (DWC_OTG_PC2UDEV(td->pc)->flags.self_suspended != 0)
return (1); /* busy - cannot transfer data */
/* compute needed TX FIFO size */
if (is_out != 0) {
if (dwc_otg_host_check_tx_fifo_empty(sc, td) != 0)
return (1); /* busy - cannot transfer data */
}
z = td->max_packet_count;
for (x = y = 0; x != sc->sc_host_ch_max; x++) {
/* check if channel is allocated */
if (sc->sc_chan_state[x].allocated != 0)
continue;
/* check if channel is still enabled */
if (sc->sc_chan_state[x].wait_halted != 0)
continue;
/* store channel number */
td->channel[y++] = x;
/* check if we got all channels */
if (y == z)
break;
}
if (y != z) {
/* reset channel variable */
td->channel[0] = DWC_OTG_MAX_CHANNELS;
td->channel[1] = DWC_OTG_MAX_CHANNELS;
td->channel[2] = DWC_OTG_MAX_CHANNELS;
/* wait a bit */
dwc_otg_enable_sof_irq(sc);
return (1); /* busy - not enough channels */
}
for (y = 0; y != z; y++) {
x = td->channel[y];
/* set allocated */
sc->sc_chan_state[x].allocated = 1;
/* set wait halted */
sc->sc_chan_state[x].wait_halted = 1;
/* clear interrupts */
dwc_otg_clear_hcint(sc, x);
DPRINTF("CH=%d HCCHAR=0x%08x "
"HCSPLT=0x%08x\n", x, td->hcchar, td->hcsplt);
/* set active channel */
sc->sc_active_rx_ep |= (1 << x);
}
return (0); /* allocated */
}
static void
dwc_otg_host_channel_free_sub(struct dwc_otg_softc *sc, struct dwc_otg_td *td, uint8_t index)
{
uint32_t hcchar;
uint8_t x;
if (td->channel[index] >= DWC_OTG_MAX_CHANNELS)
return; /* already freed */
/* free channel */
x = td->channel[index];
td->channel[index] = DWC_OTG_MAX_CHANNELS;
DPRINTF("CH=%d\n", x);
/*
* We need to let programmed host channels run till complete
* else the host channel will stop functioning.
*/
sc->sc_chan_state[x].allocated = 0;
/* ack any pending messages */
if (sc->sc_last_rx_status != 0 &&
GRXSTSRD_CHNUM_GET(sc->sc_last_rx_status) == x) {
dwc_otg_common_rx_ack(sc);
}
/* clear active channel */
sc->sc_active_rx_ep &= ~(1 << x);
/* check if already halted */
if (sc->sc_chan_state[x].wait_halted == 0)
return;
/* disable host channel */
hcchar = DWC_OTG_READ_4(sc, DOTG_HCCHAR(x));
if (hcchar & HCCHAR_CHENA) {
DPRINTF("Halting channel %d\n", x);
DWC_OTG_WRITE_4(sc, DOTG_HCCHAR(x),
hcchar | HCCHAR_CHDIS);
/* don't write HCCHAR until the channel is halted */
} else {
sc->sc_chan_state[x].wait_halted = 0;
}
}
static void
dwc_otg_host_channel_free(struct dwc_otg_softc *sc, struct dwc_otg_td *td)
{
uint8_t x;
for (x = 0; x != td->max_packet_count; x++)
dwc_otg_host_channel_free_sub(sc, td, x);
}
static void
dwc_otg_host_dump_rx(struct dwc_otg_softc *sc, struct dwc_otg_td *td)
{
uint8_t x;
/* dump any pending messages */
if (sc->sc_last_rx_status == 0)
return;
for (x = 0; x != td->max_packet_count; x++) {
if (td->channel[x] >= DWC_OTG_MAX_CHANNELS ||
td->channel[x] != GRXSTSRD_CHNUM_GET(sc->sc_last_rx_status))
continue;
dwc_otg_common_rx_ack(sc);
break;
}
}
static uint8_t
dwc_otg_host_setup_tx(struct dwc_otg_softc *sc, struct dwc_otg_td *td)
{
struct usb_device_request req __aligned(4);
uint32_t hcint;
uint32_t hcchar;
uint8_t delta;
dwc_otg_host_dump_rx(sc, td);
if (td->channel[0] < DWC_OTG_MAX_CHANNELS) {
hcint = sc->sc_chan_state[td->channel[0]].hcint;
DPRINTF("CH=%d ST=%d HCINT=0x%08x HCCHAR=0x%08x HCTSIZ=0x%08x\n",
td->channel[0], td->state, hcint,
DWC_OTG_READ_4(sc, DOTG_HCCHAR(td->channel[0])),
DWC_OTG_READ_4(sc, DOTG_HCTSIZ(td->channel[0])));
} else {
hcint = 0;
goto check_state;
}
if (hcint & (HCINT_RETRY |
HCINT_ACK | HCINT_NYET)) {
/* give success bits priority over failure bits */
} else if (hcint & HCINT_STALL) {
DPRINTF("CH=%d STALL\n", td->channel[0]);
td->error_stall = 1;
td->error_any = 1;
goto complete;
} else if (hcint & HCINT_ERRORS) {
DPRINTF("CH=%d ERROR\n", td->channel[0]);
td->errcnt++;
if (td->hcsplt != 0 || td->errcnt >= 3) {
td->error_any = 1;
goto complete;
}
}
if (hcint & (HCINT_ERRORS | HCINT_RETRY |
HCINT_ACK | HCINT_NYET)) {
if (!(hcint & HCINT_ERRORS))
td->errcnt = 0;
}
check_state:
switch (td->state) {
case DWC_CHAN_ST_START:
goto send_pkt;
case DWC_CHAN_ST_WAIT_ANE:
if (hcint & (HCINT_RETRY | HCINT_ERRORS)) {
td->did_nak = 1;
td->tt_scheduled = 0;
goto send_pkt;
} else if (hcint & (HCINT_ACK | HCINT_NYET)) {
td->offset += td->tx_bytes;
td->remainder -= td->tx_bytes;
td->toggle = 1;
td->tt_scheduled = 0;
goto complete;
}
break;
case DWC_CHAN_ST_WAIT_S_ANE:
if (hcint & (HCINT_RETRY | HCINT_ERRORS)) {
td->did_nak = 1;
td->tt_scheduled = 0;
goto send_pkt;
} else if (hcint & (HCINT_ACK | HCINT_NYET)) {
goto send_cpkt;
}
break;
case DWC_CHAN_ST_WAIT_C_ANE:
if (hcint & HCINT_NYET) {
goto send_cpkt;
} else if (hcint & (HCINT_RETRY | HCINT_ERRORS)) {
td->did_nak = 1;
td->tt_scheduled = 0;
goto send_pkt;
} else if (hcint & HCINT_ACK) {
td->offset += td->tx_bytes;
td->remainder -= td->tx_bytes;
td->toggle = 1;
goto complete;
}
break;
case DWC_CHAN_ST_WAIT_C_PKT:
goto send_cpkt;
default:
break;
}
goto busy;
send_pkt:
/* free existing channel, if any */
dwc_otg_host_channel_free(sc, td);
if (sizeof(req) != td->remainder) {
td->error_any = 1;
goto complete;
}
if (td->hcsplt != 0) {
delta = td->tt_start_slot - sc->sc_last_frame_num - 1;
if (td->tt_scheduled == 0 || delta < DWC_OTG_TT_SLOT_MAX) {
td->state = DWC_CHAN_ST_START;
goto busy;
}
delta = sc->sc_last_frame_num - td->tt_start_slot;
if (delta > 5) {
/* missed it */
td->tt_scheduled = 0;
td->state = DWC_CHAN_ST_START;
goto busy;
}
}
/* allocate a new channel */
if (dwc_otg_host_channel_alloc(sc, td, 1)) {
td->state = DWC_CHAN_ST_START;
goto busy;
}
if (td->hcsplt != 0) {
td->hcsplt &= ~HCSPLT_COMPSPLT;
td->state = DWC_CHAN_ST_WAIT_S_ANE;
} else {
td->state = DWC_CHAN_ST_WAIT_ANE;
}
/* copy out control request */
usbd_copy_out(td->pc, 0, &req, sizeof(req));
DWC_OTG_WRITE_4(sc, DOTG_HCTSIZ(td->channel[0]),
(sizeof(req) << HCTSIZ_XFERSIZE_SHIFT) |
(1 << HCTSIZ_PKTCNT_SHIFT) |
(HCTSIZ_PID_SETUP << HCTSIZ_PID_SHIFT));
DWC_OTG_WRITE_4(sc, DOTG_HCSPLT(td->channel[0]), td->hcsplt);
hcchar = td->hcchar;
hcchar &= ~(HCCHAR_EPDIR_IN | HCCHAR_EPTYPE_MASK);
hcchar |= UE_CONTROL << HCCHAR_EPTYPE_SHIFT;
/* must enable channel before writing data to FIFO */
DWC_OTG_WRITE_4(sc, DOTG_HCCHAR(td->channel[0]), hcchar);
/* transfer data into FIFO */
bus_space_write_region_4(sc->sc_io_tag, sc->sc_io_hdl,
DOTG_DFIFO(td->channel[0]), (uint32_t *)&req, sizeof(req) / 4);
/* wait until next slot before trying complete split */
td->tt_complete_slot = sc->sc_last_frame_num + 1;
/* store number of bytes transmitted */
td->tx_bytes = sizeof(req);
goto busy;
send_cpkt:
/* free existing channel, if any */
dwc_otg_host_channel_free(sc, td);
delta = td->tt_complete_slot - sc->sc_last_frame_num - 1;
if (td->tt_scheduled == 0 || delta < DWC_OTG_TT_SLOT_MAX) {
td->state = DWC_CHAN_ST_WAIT_C_PKT;
goto busy;
}
delta = sc->sc_last_frame_num - td->tt_start_slot;
if (delta > DWC_OTG_TT_SLOT_MAX) {
/* we missed the service interval */
if (td->ep_type != UE_ISOCHRONOUS)
td->error_any = 1;
goto complete;
}
/* allocate a new channel */
if (dwc_otg_host_channel_alloc(sc, td, 0)) {
td->state = DWC_CHAN_ST_WAIT_C_PKT;
goto busy;
}
/* wait until next slot before trying complete split */
td->tt_complete_slot = sc->sc_last_frame_num + 1;
td->hcsplt |= HCSPLT_COMPSPLT;
td->state = DWC_CHAN_ST_WAIT_C_ANE;
DWC_OTG_WRITE_4(sc, DOTG_HCTSIZ(td->channel[0]),
(HCTSIZ_PID_SETUP << HCTSIZ_PID_SHIFT));
DWC_OTG_WRITE_4(sc, DOTG_HCSPLT(td->channel[0]), td->hcsplt);
hcchar = td->hcchar;
hcchar &= ~(HCCHAR_EPDIR_IN | HCCHAR_EPTYPE_MASK);
hcchar |= UE_CONTROL << HCCHAR_EPTYPE_SHIFT;
/* must enable channel before writing data to FIFO */
DWC_OTG_WRITE_4(sc, DOTG_HCCHAR(td->channel[0]), hcchar);
busy:
return (1); /* busy */
complete:
dwc_otg_host_channel_free(sc, td);
return (0); /* complete */
}
static uint8_t
dwc_otg_setup_rx(struct dwc_otg_softc *sc, struct dwc_otg_td *td)
{
struct usb_device_request req __aligned(4);
uint32_t temp;
uint16_t count;
/* check endpoint status */
if (sc->sc_last_rx_status == 0)
goto not_complete;
if (GRXSTSRD_CHNUM_GET(sc->sc_last_rx_status) != 0)
goto not_complete;
if ((sc->sc_last_rx_status & GRXSTSRD_PKTSTS_MASK) !=
GRXSTSRD_STP_DATA) {
if ((sc->sc_last_rx_status & GRXSTSRD_PKTSTS_MASK) !=
GRXSTSRD_STP_COMPLETE || td->remainder != 0) {
/* release FIFO */
dwc_otg_common_rx_ack(sc);
goto not_complete;
}
/* release FIFO */
dwc_otg_common_rx_ack(sc);
return (0); /* complete */
}
if ((sc->sc_last_rx_status & GRXSTSRD_DPID_MASK) !=
GRXSTSRD_DPID_DATA0) {
/* release FIFO */
dwc_otg_common_rx_ack(sc);
goto not_complete;
}
DPRINTFN(5, "GRXSTSR=0x%08x\n", sc->sc_last_rx_status);
/* clear did stall */
td->did_stall = 0;
/* get the packet byte count */
count = GRXSTSRD_BCNT_GET(sc->sc_last_rx_status);
if (count != sizeof(req)) {
DPRINTFN(0, "Unsupported SETUP packet "
"length, %d bytes\n", count);
/* release FIFO */
dwc_otg_common_rx_ack(sc);
goto not_complete;
}
/* read FIFO */
dwc_otg_read_fifo(sc, td->pc, 0, sizeof(req));
/* copy out control request */
usbd_copy_out(td->pc, 0, &req, sizeof(req));
td->offset = sizeof(req);
td->remainder = 0;
/* sneak peek the set address */
if ((req.bmRequestType == UT_WRITE_DEVICE) &&
(req.bRequest == UR_SET_ADDRESS)) {
/* must write address before ZLP */
dwc_otg_set_address(sc, req.wValue[0] & 0x7F);
}
/* don't send any data by default */
DWC_OTG_WRITE_4(sc, DOTG_DIEPTSIZ(0), DIEPCTL_EPDIS);
DWC_OTG_WRITE_4(sc, DOTG_DOEPTSIZ(0), DOEPCTL_EPDIS);
/* reset IN endpoint buffer */
dwc_otg_tx_fifo_reset(sc,
GRSTCTL_TXFIFO(0) |
GRSTCTL_TXFFLSH);
/* acknowledge RX status */
dwc_otg_common_rx_ack(sc);
td->did_stall = 1;
not_complete:
/* abort any ongoing transfer, before enabling again */
if (!td->did_stall) {
td->did_stall = 1;
DPRINTFN(5, "stalling IN and OUT direction\n");
temp = sc->sc_out_ctl[0];
/* set stall after enabling endpoint */
DWC_OTG_WRITE_4(sc, DOTG_DOEPCTL(0),
temp | DOEPCTL_STALL);
temp = sc->sc_in_ctl[0];
/* set stall assuming endpoint is enabled */
DWC_OTG_WRITE_4(sc, DOTG_DIEPCTL(0),
temp | DIEPCTL_STALL);
}
return (1); /* not complete */
}
static uint8_t
dwc_otg_host_rate_check_interrupt(struct dwc_otg_softc *sc, struct dwc_otg_td *td)
{
uint8_t delta;
delta = sc->sc_tmr_val - td->tmr_val;
if (delta >= 128)
return (1); /* busy */
td->tmr_val = sc->sc_tmr_val + td->tmr_res;
/* set toggle, if any */
if (td->set_toggle) {
td->set_toggle = 0;
td->toggle = 1;
}
return (0);
}
static uint8_t
dwc_otg_host_rate_check(struct dwc_otg_softc *sc, struct dwc_otg_td *td)
{
uint8_t frame_num = (uint8_t)sc->sc_last_frame_num;
if (td->ep_type == UE_ISOCHRONOUS) {
/* non TT isochronous traffic */
if (frame_num & (td->tmr_res - 1))
goto busy;
if ((frame_num ^ td->tmr_val) & td->tmr_res)
goto busy;
td->tmr_val = td->tmr_res + sc->sc_last_frame_num;
td->toggle = 0;
return (0);
} else if (td->ep_type == UE_INTERRUPT) {
if (!td->tt_scheduled)
goto busy;
td->tt_scheduled = 0;
return (0);
} else if (td->did_nak != 0) {
/* check if we should pause sending queries for 125us */
if (td->tmr_res == frame_num) {
/* wait a bit */
dwc_otg_enable_sof_irq(sc);
goto busy;
}
} else if (td->set_toggle) {
td->set_toggle = 0;
td->toggle = 1;
}
/* query for data one more time */
td->tmr_res = frame_num;
td->did_nak = 0;
return (0);
busy:
return (1);
}
static uint8_t
dwc_otg_host_data_rx_sub(struct dwc_otg_softc *sc, struct dwc_otg_td *td,
uint8_t channel)
{
uint32_t count;
/* check endpoint status */
if (sc->sc_last_rx_status == 0)
goto busy;
if (channel >= DWC_OTG_MAX_CHANNELS)
goto busy;
if (GRXSTSRD_CHNUM_GET(sc->sc_last_rx_status) != channel)
goto busy;
switch (sc->sc_last_rx_status & GRXSTSRD_PKTSTS_MASK) {
case GRXSTSRH_IN_DATA:
DPRINTF("DATA ST=%d STATUS=0x%08x\n",
(int)td->state, (int)sc->sc_last_rx_status);
if (sc->sc_chan_state[channel].hcint & HCINT_SOFTWARE_ONLY) {
/*
* When using SPLIT transactions on interrupt
* endpoints, sometimes data occurs twice.
*/
DPRINTF("Data already received\n");
break;
}
/* get the packet byte count */
count = GRXSTSRD_BCNT_GET(sc->sc_last_rx_status);
/* check for ISOCHRONOUS endpoint */
if (td->ep_type == UE_ISOCHRONOUS) {
if ((sc->sc_last_rx_status & GRXSTSRD_DPID_MASK) !=
GRXSTSRD_DPID_DATA0) {
/* more data to be received */
td->tt_xactpos = HCSPLT_XACTPOS_MIDDLE;
} else {
/* all data received */
td->tt_xactpos = HCSPLT_XACTPOS_BEGIN;
/* verify the packet byte count */
if (count != td->remainder) {
/* we have a short packet */
td->short_pkt = 1;
td->got_short = 1;
}
}
} else {
/* verify the packet byte count */
if (count != td->max_packet_size) {
if (count < td->max_packet_size) {
/* we have a short packet */
td->short_pkt = 1;
td->got_short = 1;
} else {
/* invalid USB packet */
td->error_any = 1;
/* release FIFO */
dwc_otg_common_rx_ack(sc);
goto complete;
}
}
td->toggle ^= 1;
td->tt_scheduled = 0;
}
/* verify the packet byte count */
if (count > td->remainder) {
/* invalid USB packet */
td->error_any = 1;
/* release FIFO */
dwc_otg_common_rx_ack(sc);
goto complete;
}
/* read data from FIFO */
dwc_otg_read_fifo(sc, td->pc, td->offset, count);
td->remainder -= count;
td->offset += count;
sc->sc_chan_state[channel].hcint |= HCINT_SOFTWARE_ONLY;
break;
default:
break;
}
/* release FIFO */
dwc_otg_common_rx_ack(sc);
busy:
return (0);
complete:
return (1);
}
static uint8_t
dwc_otg_host_data_rx(struct dwc_otg_softc *sc, struct dwc_otg_td *td)
{
uint32_t hcint = 0;
uint32_t hcchar;
uint8_t delta;
uint8_t channel;
uint8_t x;
for (x = 0; x != td->max_packet_count; x++) {
channel = td->channel[x];
if (channel >= DWC_OTG_MAX_CHANNELS)
continue;
hcint |= sc->sc_chan_state[channel].hcint;
DPRINTF("CH=%d ST=%d HCINT=0x%08x HCCHAR=0x%08x HCTSIZ=0x%08x\n",
channel, td->state, hcint,
DWC_OTG_READ_4(sc, DOTG_HCCHAR(channel)),
DWC_OTG_READ_4(sc, DOTG_HCTSIZ(channel)));
/* check interrupt bits */
if (hcint & (HCINT_RETRY |
HCINT_ACK | HCINT_NYET)) {
/* give success bits priority over failure bits */
} else if (hcint & HCINT_STALL) {
DPRINTF("CH=%d STALL\n", channel);
td->error_stall = 1;
td->error_any = 1;
goto complete;
} else if (hcint & HCINT_ERRORS) {
DPRINTF("CH=%d ERROR\n", channel);
td->errcnt++;
if (td->hcsplt != 0 || td->errcnt >= 3) {
if (td->ep_type != UE_ISOCHRONOUS) {
td->error_any = 1;
goto complete;
}
}
}
/* check channels for data, if any */
if (dwc_otg_host_data_rx_sub(sc, td, channel))
goto complete;
/* refresh interrupt status */
hcint |= sc->sc_chan_state[channel].hcint;
if (hcint & (HCINT_ERRORS | HCINT_RETRY |
HCINT_ACK | HCINT_NYET)) {
if (!(hcint & HCINT_ERRORS))
td->errcnt = 0;
}
}
switch (td->state) {
case DWC_CHAN_ST_START:
if (td->hcsplt != 0)
goto receive_spkt;
else
goto receive_pkt;
case DWC_CHAN_ST_WAIT_ANE:
if (hcint & (HCINT_RETRY | HCINT_ERRORS)) {
if (td->ep_type == UE_INTERRUPT) {
/*
* The USB specification does not
* mandate a particular data toggle
* value for USB INTERRUPT
* transfers. Switch the data toggle
* value to receive the packet
* correctly:
*/
if (hcint & HCINT_DATATGLERR) {
DPRINTF("Retrying packet due to "
"data toggle error\n");
td->toggle ^= 1;
goto receive_pkt;
}
} else if (td->ep_type == UE_ISOCHRONOUS) {
goto complete;
}
td->did_nak = 1;
td->tt_scheduled = 0;
if (td->hcsplt != 0)
goto receive_spkt;
else
goto receive_pkt;
} else if (hcint & HCINT_NYET) {
if (td->hcsplt != 0) {
/* try again */
goto receive_pkt;
} else {
/* not a valid token for IN endpoints */
td->error_any = 1;
goto complete;
}
} else if (hcint & HCINT_ACK) {
/* wait for data - ACK arrived first */
if (!(hcint & HCINT_SOFTWARE_ONLY))
goto busy;
if (td->ep_type == UE_ISOCHRONOUS) {
/* check if we are complete */
if (td->tt_xactpos == HCSPLT_XACTPOS_BEGIN) {
goto complete;
} else {
/* get more packets */
goto busy;
}
} else {
/* check if we are complete */
if ((td->remainder == 0) || (td->got_short != 0)) {
if (td->short_pkt)
goto complete;
/*
* Else need to receive a zero length
* packet.
*/
}
td->tt_scheduled = 0;
td->did_nak = 0;
if (td->hcsplt != 0)
goto receive_spkt;
else
goto receive_pkt;
}
}
break;
case DWC_CHAN_ST_WAIT_S_ANE:
/*
* NOTE: The DWC OTG hardware provides a fake ACK in
* case of interrupt and isochronous transfers:
*/
if (hcint & (HCINT_RETRY | HCINT_ERRORS)) {
td->did_nak = 1;
td->tt_scheduled = 0;
goto receive_spkt;
} else if (hcint & HCINT_NYET) {
td->tt_scheduled = 0;
goto receive_spkt;
} else if (hcint & HCINT_ACK) {
td->did_nak = 0;
goto receive_pkt;
}
break;
case DWC_CHAN_ST_WAIT_C_PKT:
goto receive_pkt;
default:
break;
}
goto busy;
receive_pkt:
/* free existing channel, if any */
dwc_otg_host_channel_free(sc, td);
if (td->hcsplt != 0) {
delta = td->tt_complete_slot - sc->sc_last_frame_num - 1;
if (td->tt_scheduled == 0 || delta < DWC_OTG_TT_SLOT_MAX) {
td->state = DWC_CHAN_ST_WAIT_C_PKT;
goto busy;
}
delta = sc->sc_last_frame_num - td->tt_start_slot;
if (delta > DWC_OTG_TT_SLOT_MAX) {
if (td->ep_type != UE_ISOCHRONOUS) {
/* we missed the service interval */
td->error_any = 1;
}
goto complete;
}
/* complete split */
td->hcsplt |= HCSPLT_COMPSPLT;
} else if (dwc_otg_host_rate_check(sc, td)) {
td->state = DWC_CHAN_ST_WAIT_C_PKT;
goto busy;
}
/* allocate a new channel */
if (dwc_otg_host_channel_alloc(sc, td, 0)) {
td->state = DWC_CHAN_ST_WAIT_C_PKT;
goto busy;
}
/* set toggle, if any */
if (td->set_toggle) {
td->set_toggle = 0;
td->toggle = 1;
}
td->state = DWC_CHAN_ST_WAIT_ANE;
for (x = 0; x != td->max_packet_count; x++) {
channel = td->channel[x];
/* receive one packet */
DWC_OTG_WRITE_4(sc, DOTG_HCTSIZ(channel),
(td->max_packet_size << HCTSIZ_XFERSIZE_SHIFT) |
(1 << HCTSIZ_PKTCNT_SHIFT) |
(td->toggle ? (HCTSIZ_PID_DATA1 << HCTSIZ_PID_SHIFT) :
(HCTSIZ_PID_DATA0 << HCTSIZ_PID_SHIFT)));
DWC_OTG_WRITE_4(sc, DOTG_HCSPLT(channel), td->hcsplt);
hcchar = td->hcchar;
hcchar |= HCCHAR_EPDIR_IN;
/* receive complete split ASAP */
if ((sc->sc_last_frame_num & 1) != 0 &&
td->ep_type == UE_ISOCHRONOUS)
hcchar |= HCCHAR_ODDFRM;
else
hcchar &= ~HCCHAR_ODDFRM;
/* must enable channel before data can be received */
DWC_OTG_WRITE_4(sc, DOTG_HCCHAR(channel), hcchar);
}
/* wait until next slot before trying complete split */
td->tt_complete_slot = sc->sc_last_frame_num + 1;
goto busy;
receive_spkt:
/* free existing channel(s), if any */
dwc_otg_host_channel_free(sc, td);
delta = td->tt_start_slot - sc->sc_last_frame_num - 1;
if (td->tt_scheduled == 0 || delta < DWC_OTG_TT_SLOT_MAX) {
td->state = DWC_CHAN_ST_START;
goto busy;
}
delta = sc->sc_last_frame_num - td->tt_start_slot;
if (delta > 5) {
/* missed it */
td->tt_scheduled = 0;
td->state = DWC_CHAN_ST_START;
goto busy;
}
/* allocate a new channel */
if (dwc_otg_host_channel_alloc(sc, td, 0)) {
td->state = DWC_CHAN_ST_START;
goto busy;
}
channel = td->channel[0];
td->hcsplt &= ~HCSPLT_COMPSPLT;
td->state = DWC_CHAN_ST_WAIT_S_ANE;
/* receive one packet */
DWC_OTG_WRITE_4(sc, DOTG_HCTSIZ(channel),
(HCTSIZ_PID_DATA0 << HCTSIZ_PID_SHIFT));
DWC_OTG_WRITE_4(sc, DOTG_HCSPLT(channel), td->hcsplt);
/* send after next SOF event */
if ((sc->sc_last_frame_num & 1) == 0 &&
td->ep_type == UE_ISOCHRONOUS)
td->hcchar |= HCCHAR_ODDFRM;
else
td->hcchar &= ~HCCHAR_ODDFRM;
hcchar = td->hcchar;
hcchar |= HCCHAR_EPDIR_IN;
/* wait until next slot before trying complete split */
td->tt_complete_slot = sc->sc_last_frame_num + 1;
/* must enable channel before data can be received */
DWC_OTG_WRITE_4(sc, DOTG_HCCHAR(channel), hcchar);
busy:
return (1); /* busy */
complete:
dwc_otg_host_channel_free(sc, td);
return (0); /* complete */
}
static uint8_t
dwc_otg_data_rx(struct dwc_otg_softc *sc, struct dwc_otg_td *td)
{
uint32_t temp;
uint16_t count;
uint8_t got_short;
got_short = 0;
/* check endpoint status */
if (sc->sc_last_rx_status == 0)
goto not_complete;
if (GRXSTSRD_CHNUM_GET(sc->sc_last_rx_status) != td->ep_no)
goto not_complete;
/* check for SETUP packet */
if ((sc->sc_last_rx_status & GRXSTSRD_PKTSTS_MASK) ==
GRXSTSRD_STP_DATA ||
(sc->sc_last_rx_status & GRXSTSRD_PKTSTS_MASK) ==
GRXSTSRD_STP_COMPLETE) {
if (td->remainder == 0) {
/*
* We are actually complete and have
* received the next SETUP
*/
DPRINTFN(5, "faking complete\n");
return (0); /* complete */
}
/*
* USB Host Aborted the transfer.
*/
td->error_any = 1;
return (0); /* complete */
}
if ((sc->sc_last_rx_status & GRXSTSRD_PKTSTS_MASK) !=
GRXSTSRD_OUT_DATA) {
/* release FIFO */
dwc_otg_common_rx_ack(sc);
goto not_complete;
}
/* get the packet byte count */
count = GRXSTSRD_BCNT_GET(sc->sc_last_rx_status);
/* verify the packet byte count */
if (count != td->max_packet_size) {
if (count < td->max_packet_size) {
/* we have a short packet */
td->short_pkt = 1;
got_short = 1;
} else {
/* invalid USB packet */
td->error_any = 1;
/* release FIFO */
dwc_otg_common_rx_ack(sc);
return (0); /* we are complete */
}
}
/* verify the packet byte count */
if (count > td->remainder) {
/* invalid USB packet */
td->error_any = 1;
/* release FIFO */
dwc_otg_common_rx_ack(sc);
return (0); /* we are complete */
}
/* read data from FIFO */
dwc_otg_read_fifo(sc, td->pc, td->offset, count);
td->remainder -= count;
td->offset += count;
/* release FIFO */
dwc_otg_common_rx_ack(sc);
temp = sc->sc_out_ctl[td->ep_no];
/* check for isochronous mode */
if ((temp & DIEPCTL_EPTYPE_MASK) ==
(DIEPCTL_EPTYPE_ISOC << DIEPCTL_EPTYPE_SHIFT)) {
/* toggle odd or even frame bit */
if (temp & DIEPCTL_SETD1PID) {
temp &= ~DIEPCTL_SETD1PID;
temp |= DIEPCTL_SETD0PID;
} else {
temp &= ~DIEPCTL_SETD0PID;
temp |= DIEPCTL_SETD1PID;
}
sc->sc_out_ctl[td->ep_no] = temp;
}
/* check if we are complete */
if ((td->remainder == 0) || got_short) {
if (td->short_pkt) {
/* we are complete */
return (0);
}
/* else need to receive a zero length packet */
}
not_complete:
/* enable SETUP and transfer complete interrupt */
if (td->ep_no == 0) {
DWC_OTG_WRITE_4(sc, DOTG_DOEPTSIZ(0),
DXEPTSIZ_SET_MULTI(3) |
DXEPTSIZ_SET_NPKT(1) |
DXEPTSIZ_SET_NBYTES(td->max_packet_size));
} else {
/* allow reception of multiple packets */
DWC_OTG_WRITE_4(sc, DOTG_DOEPTSIZ(td->ep_no),
DXEPTSIZ_SET_MULTI(1) |
DXEPTSIZ_SET_NPKT(4) |
DXEPTSIZ_SET_NBYTES(4 *
((td->max_packet_size + 3) & ~3)));
}
temp = sc->sc_out_ctl[td->ep_no];
DWC_OTG_WRITE_4(sc, DOTG_DOEPCTL(td->ep_no), temp |
DOEPCTL_EPENA | DOEPCTL_CNAK);
return (1); /* not complete */
}
static uint8_t
dwc_otg_host_data_tx(struct dwc_otg_softc *sc, struct dwc_otg_td *td)
{
uint32_t count;
uint32_t hcint;
uint32_t hcchar;
uint8_t delta;
uint8_t channel;
uint8_t x;
dwc_otg_host_dump_rx(sc, td);
/* check that last channel is complete */
channel = td->channel[td->npkt];
if (channel < DWC_OTG_MAX_CHANNELS) {
hcint = sc->sc_chan_state[channel].hcint;
DPRINTF("CH=%d ST=%d HCINT=0x%08x HCCHAR=0x%08x HCTSIZ=0x%08x\n",
channel, td->state, hcint,
DWC_OTG_READ_4(sc, DOTG_HCCHAR(channel)),
DWC_OTG_READ_4(sc, DOTG_HCTSIZ(channel)));
if (hcint & (HCINT_RETRY |
HCINT_ACK | HCINT_NYET)) {
/* give success bits priority over failure bits */
} else if (hcint & HCINT_STALL) {
DPRINTF("CH=%d STALL\n", channel);
td->error_stall = 1;
td->error_any = 1;
goto complete;
} else if (hcint & HCINT_ERRORS) {
DPRINTF("CH=%d ERROR\n", channel);
td->errcnt++;
if (td->hcsplt != 0 || td->errcnt >= 3) {
td->error_any = 1;
goto complete;
}
}
if (hcint & (HCINT_ERRORS | HCINT_RETRY |
HCINT_ACK | HCINT_NYET)) {
if (!(hcint & HCINT_ERRORS))
td->errcnt = 0;
}
} else {
hcint = 0;
}
switch (td->state) {
case DWC_CHAN_ST_START:
goto send_pkt;
case DWC_CHAN_ST_WAIT_ANE:
if (hcint & (HCINT_RETRY | HCINT_ERRORS)) {
td->did_nak = 1;
td->tt_scheduled = 0;
goto send_pkt;
} else if (hcint & (HCINT_ACK | HCINT_NYET)) {
td->offset += td->tx_bytes;
td->remainder -= td->tx_bytes;
td->toggle ^= 1;
/* check if next response will be a NAK */
if (hcint & HCINT_NYET)
td->did_nak = 1;
else
td->did_nak = 0;
td->tt_scheduled = 0;
/* check remainder */
if (td->remainder == 0) {
if (td->short_pkt)
goto complete;
/*
* Else we need to transmit a short
* packet:
*/
}
goto send_pkt;
}
break;
case DWC_CHAN_ST_WAIT_S_ANE:
if (hcint & (HCINT_RETRY | HCINT_ERRORS)) {
td->did_nak = 1;
td->tt_scheduled = 0;
goto send_pkt;
} else if (hcint & (HCINT_ACK | HCINT_NYET)) {
td->did_nak = 0;
goto send_cpkt;
}
break;
case DWC_CHAN_ST_WAIT_C_ANE:
if (hcint & HCINT_NYET) {
goto send_cpkt;
} else if (hcint & (HCINT_RETRY | HCINT_ERRORS)) {
td->did_nak = 1;
td->tt_scheduled = 0;
goto send_pkt;
} else if (hcint & HCINT_ACK) {
td->offset += td->tx_bytes;
td->remainder -= td->tx_bytes;
td->toggle ^= 1;
td->did_nak = 0;
td->tt_scheduled = 0;
/* check remainder */
if (td->remainder == 0) {
if (td->short_pkt)
goto complete;
/* else we need to transmit a short packet */
}
goto send_pkt;
}
break;
case DWC_CHAN_ST_WAIT_C_PKT:
goto send_cpkt;
case DWC_CHAN_ST_TX_WAIT_ISOC:
/* Check if ISOCHRONOUS OUT traffic is complete */
if ((hcint & HCINT_HCH_DONE_MASK) == 0)
break;
td->offset += td->tx_bytes;
td->remainder -= td->tx_bytes;
goto complete;
default:
break;
}
goto busy;
send_pkt:
/* free existing channel(s), if any */
dwc_otg_host_channel_free(sc, td);
if (td->hcsplt != 0) {
delta = td->tt_start_slot - sc->sc_last_frame_num - 1;
if (td->tt_scheduled == 0 || delta < DWC_OTG_TT_SLOT_MAX) {
td->state = DWC_CHAN_ST_START;
goto busy;
}
delta = sc->sc_last_frame_num - td->tt_start_slot;
if (delta > 5) {
/* missed it */
td->tt_scheduled = 0;
td->state = DWC_CHAN_ST_START;
goto busy;
}
} else if (dwc_otg_host_rate_check(sc, td)) {
td->state = DWC_CHAN_ST_START;
goto busy;
}
/* allocate a new channel */
if (dwc_otg_host_channel_alloc(sc, td, 1)) {
td->state = DWC_CHAN_ST_START;
goto busy;
}
/* set toggle, if any */
if (td->set_toggle) {
td->set_toggle = 0;
td->toggle = 1;
}
if (td->ep_type == UE_ISOCHRONOUS) {
/* ISOCHRONOUS OUT transfers don't have any ACKs */
td->state = DWC_CHAN_ST_TX_WAIT_ISOC;
td->hcsplt &= ~HCSPLT_COMPSPLT;
if (td->hcsplt != 0) {
/* get maximum transfer length */
count = td->remainder;
if (count > HCSPLT_XACTLEN_BURST) {
DPRINTF("TT overflow\n");
td->error_any = 1;
goto complete;
}
/* Update transaction position */
td->hcsplt &= ~HCSPLT_XACTPOS_MASK;
td->hcsplt |= (HCSPLT_XACTPOS_ALL << HCSPLT_XACTPOS_SHIFT);
}
} else if (td->hcsplt != 0) {
td->hcsplt &= ~HCSPLT_COMPSPLT;
/* Wait for ACK/NAK/ERR from TT */
td->state = DWC_CHAN_ST_WAIT_S_ANE;
} else {
/* Wait for ACK/NAK/STALL from device */
td->state = DWC_CHAN_ST_WAIT_ANE;
}
td->tx_bytes = 0;
for (x = 0; x != td->max_packet_count; x++) {
uint32_t rem_bytes;
channel = td->channel[x];
/* send one packet at a time */
count = td->max_packet_size;
rem_bytes = td->remainder - td->tx_bytes;
if (rem_bytes < count) {
/* we have a short packet */
td->short_pkt = 1;
count = rem_bytes;
}
if (count == rem_bytes) {
/* last packet */
switch (x) {
case 0:
DWC_OTG_WRITE_4(sc, DOTG_HCTSIZ(channel),
(count << HCTSIZ_XFERSIZE_SHIFT) |
(1 << HCTSIZ_PKTCNT_SHIFT) |
(td->toggle ? (HCTSIZ_PID_DATA1 << HCTSIZ_PID_SHIFT) :
(HCTSIZ_PID_DATA0 << HCTSIZ_PID_SHIFT)));
break;
case 1:
DWC_OTG_WRITE_4(sc, DOTG_HCTSIZ(channel),
(count << HCTSIZ_XFERSIZE_SHIFT) |
(1 << HCTSIZ_PKTCNT_SHIFT) |
(HCTSIZ_PID_DATA1 << HCTSIZ_PID_SHIFT));
break;
default:
DWC_OTG_WRITE_4(sc, DOTG_HCTSIZ(channel),
(count << HCTSIZ_XFERSIZE_SHIFT) |
(1 << HCTSIZ_PKTCNT_SHIFT) |
(HCTSIZ_PID_DATA2 << HCTSIZ_PID_SHIFT));
break;
}
} else if (td->ep_type == UE_ISOCHRONOUS &&
td->max_packet_count > 1) {
/* ISOCHRONOUS multi packet */
DWC_OTG_WRITE_4(sc, DOTG_HCTSIZ(channel),
(count << HCTSIZ_XFERSIZE_SHIFT) |
(1 << HCTSIZ_PKTCNT_SHIFT) |
(HCTSIZ_PID_MDATA << HCTSIZ_PID_SHIFT));
} else {
/* TODO: HCTSIZ_DOPNG */
/* standard BULK/INTERRUPT/CONTROL packet */
DWC_OTG_WRITE_4(sc, DOTG_HCTSIZ(channel),
(count << HCTSIZ_XFERSIZE_SHIFT) |
(1 << HCTSIZ_PKTCNT_SHIFT) |
(td->toggle ? (HCTSIZ_PID_DATA1 << HCTSIZ_PID_SHIFT) :
(HCTSIZ_PID_DATA0 << HCTSIZ_PID_SHIFT)));
}
DWC_OTG_WRITE_4(sc, DOTG_HCSPLT(channel), td->hcsplt);
hcchar = td->hcchar;
hcchar &= ~HCCHAR_EPDIR_IN;
/* send after next SOF event */
if ((sc->sc_last_frame_num & 1) == 0 &&
td->ep_type == UE_ISOCHRONOUS)
hcchar |= HCCHAR_ODDFRM;
else
hcchar &= ~HCCHAR_ODDFRM;
/* must enable before writing data to FIFO */
DWC_OTG_WRITE_4(sc, DOTG_HCCHAR(channel), hcchar);
if (count != 0) {
/* write data into FIFO */
dwc_otg_write_fifo(sc, td->pc, td->offset +
td->tx_bytes, DOTG_DFIFO(channel), count);
}
/* store number of bytes transmitted */
td->tx_bytes += count;
/* store last packet index */
td->npkt = x;
/* check for last packet */
if (count == rem_bytes)
break;
}
goto busy;
send_cpkt:
/* free existing channel, if any */
dwc_otg_host_channel_free(sc, td);
delta = td->tt_complete_slot - sc->sc_last_frame_num - 1;
if (td->tt_scheduled == 0 || delta < DWC_OTG_TT_SLOT_MAX) {
td->state = DWC_CHAN_ST_WAIT_C_PKT;
goto busy;
}
delta = sc->sc_last_frame_num - td->tt_start_slot;
if (delta > DWC_OTG_TT_SLOT_MAX) {
/* we missed the service interval */
if (td->ep_type != UE_ISOCHRONOUS)
td->error_any = 1;
goto complete;
}
/* allocate a new channel */
if (dwc_otg_host_channel_alloc(sc, td, 0)) {
td->state = DWC_CHAN_ST_WAIT_C_PKT;
goto busy;
}
channel = td->channel[0];
td->hcsplt |= HCSPLT_COMPSPLT;
td->state = DWC_CHAN_ST_WAIT_C_ANE;
DWC_OTG_WRITE_4(sc, DOTG_HCTSIZ(channel),
(HCTSIZ_PID_DATA0 << HCTSIZ_PID_SHIFT));
DWC_OTG_WRITE_4(sc, DOTG_HCSPLT(channel), td->hcsplt);
hcchar = td->hcchar;
hcchar &= ~HCCHAR_EPDIR_IN;
/* receive complete split ASAP */
if ((sc->sc_last_frame_num & 1) != 0 &&
td->ep_type == UE_ISOCHRONOUS)
hcchar |= HCCHAR_ODDFRM;
else
hcchar &= ~HCCHAR_ODDFRM;
/* must enable channel before data can be received */
DWC_OTG_WRITE_4(sc, DOTG_HCCHAR(channel), hcchar);
/* wait until next slot before trying complete split */
td->tt_complete_slot = sc->sc_last_frame_num + 1;
busy:
return (1); /* busy */
complete:
dwc_otg_host_channel_free(sc, td);
return (0); /* complete */
}
static uint8_t
dwc_otg_data_tx(struct dwc_otg_softc *sc, struct dwc_otg_td *td)
{
uint32_t max_buffer;
uint32_t count;
uint32_t fifo_left;
uint32_t mpkt;
uint32_t temp;
uint8_t to;
to = 3; /* don't loop forever! */
max_buffer = sc->sc_hw_ep_profile[td->ep_no].max_buffer;
repeat:
/* check for for endpoint 0 data */
temp = sc->sc_last_rx_status;
if ((td->ep_no == 0) && (temp != 0) &&
(GRXSTSRD_CHNUM_GET(temp) == 0)) {
if ((temp & GRXSTSRD_PKTSTS_MASK) !=
GRXSTSRD_STP_DATA &&
(temp & GRXSTSRD_PKTSTS_MASK) !=
GRXSTSRD_STP_COMPLETE) {
/* dump data - wrong direction */
dwc_otg_common_rx_ack(sc);
} else {
/*
* The current transfer was cancelled
* by the USB Host:
*/
td->error_any = 1;
return (0); /* complete */
}
}
/* fill in more TX data, if possible */
if (td->tx_bytes != 0) {
uint16_t cpkt;
/* check if packets have been transferred */
temp = DWC_OTG_READ_4(sc, DOTG_DIEPTSIZ(td->ep_no));
/* get current packet number */
cpkt = DXEPTSIZ_GET_NPKT(temp);
if (cpkt >= td->npkt) {
fifo_left = 0;
} else {
if (max_buffer != 0) {
fifo_left = (td->npkt - cpkt) *
td->max_packet_size;
if (fifo_left > max_buffer)
fifo_left = max_buffer;
} else {
fifo_left = td->max_packet_size;
}
}
count = td->tx_bytes;
if (count > fifo_left)
count = fifo_left;
if (count != 0) {
/* write data into FIFO */
dwc_otg_write_fifo(sc, td->pc, td->offset,
DOTG_DFIFO(td->ep_no), count);
td->tx_bytes -= count;
td->remainder -= count;
td->offset += count;
td->npkt = cpkt;
}
if (td->tx_bytes != 0)
goto not_complete;
/* check remainder */
if (td->remainder == 0) {
if (td->short_pkt)
return (0); /* complete */
/* else we need to transmit a short packet */
}
}
if (!to--)
goto not_complete;
/* check if not all packets have been transferred */
temp = DWC_OTG_READ_4(sc, DOTG_DIEPTSIZ(td->ep_no));
if (DXEPTSIZ_GET_NPKT(temp) != 0) {
DPRINTFN(5, "busy ep=%d npkt=%d DIEPTSIZ=0x%08x "
"DIEPCTL=0x%08x\n", td->ep_no,
DXEPTSIZ_GET_NPKT(temp),
temp, DWC_OTG_READ_4(sc, DOTG_DIEPCTL(td->ep_no)));
goto not_complete;
}
DPRINTFN(5, "rem=%u ep=%d\n", td->remainder, td->ep_no);
/* try to optimise by sending more data */
if ((max_buffer != 0) && ((td->max_packet_size & 3) == 0)) {
/* send multiple packets at the same time */
mpkt = max_buffer / td->max_packet_size;
if (mpkt > 0x3FE)
mpkt = 0x3FE;
count = td->remainder;
if (count > 0x7FFFFF)
count = 0x7FFFFF - (0x7FFFFF % td->max_packet_size);
td->npkt = count / td->max_packet_size;
/*
* NOTE: We could use 0x3FE instead of "mpkt" in the
* check below to get more throughput, but then we
* have a dependency towards non-generic chip features
* to disable the TX-FIFO-EMPTY interrupts on a per
* endpoint basis. Increase the maximum buffer size of
* the IN endpoint to increase the performance.
*/
if (td->npkt > mpkt) {
td->npkt = mpkt;
count = td->max_packet_size * mpkt;
} else if ((count == 0) || (count % td->max_packet_size)) {
/* we are transmitting a short packet */
td->npkt++;
td->short_pkt = 1;
}
} else {
/* send one packet at a time */
mpkt = 1;
count = td->max_packet_size;
if (td->remainder < count) {
/* we have a short packet */
td->short_pkt = 1;
count = td->remainder;
}
td->npkt = 1;
}
DWC_OTG_WRITE_4(sc, DOTG_DIEPTSIZ(td->ep_no),
DXEPTSIZ_SET_MULTI(1) |
DXEPTSIZ_SET_NPKT(td->npkt) |
DXEPTSIZ_SET_NBYTES(count));
/* make room for buffering */
td->npkt += mpkt;
temp = sc->sc_in_ctl[td->ep_no];
/* check for isochronous mode */
if ((temp & DIEPCTL_EPTYPE_MASK) ==
(DIEPCTL_EPTYPE_ISOC << DIEPCTL_EPTYPE_SHIFT)) {
/* toggle odd or even frame bit */
if (temp & DIEPCTL_SETD1PID) {
temp &= ~DIEPCTL_SETD1PID;
temp |= DIEPCTL_SETD0PID;
} else {
temp &= ~DIEPCTL_SETD0PID;
temp |= DIEPCTL_SETD1PID;
}
sc->sc_in_ctl[td->ep_no] = temp;
}
/* must enable before writing data to FIFO */
DWC_OTG_WRITE_4(sc, DOTG_DIEPCTL(td->ep_no), temp |
DIEPCTL_EPENA | DIEPCTL_CNAK);
td->tx_bytes = count;
/* check remainder */
if (td->tx_bytes == 0 &&
td->remainder == 0) {
if (td->short_pkt)
return (0); /* complete */
/* else we need to transmit a short packet */
}
goto repeat;
not_complete:
return (1); /* not complete */
}
static uint8_t
dwc_otg_data_tx_sync(struct dwc_otg_softc *sc, struct dwc_otg_td *td)
{
uint32_t temp;
/*
* If all packets are transferred we are complete:
*/
temp = DWC_OTG_READ_4(sc, DOTG_DIEPTSIZ(td->ep_no));
/* check that all packets have been transferred */
if (DXEPTSIZ_GET_NPKT(temp) != 0) {
DPRINTFN(5, "busy ep=%d\n", td->ep_no);
goto not_complete;
}
return (0);
not_complete:
/* we only want to know if there is a SETUP packet or free IN packet */
temp = sc->sc_last_rx_status;
if ((td->ep_no == 0) && (temp != 0) &&
(GRXSTSRD_CHNUM_GET(temp) == 0)) {
if ((temp & GRXSTSRD_PKTSTS_MASK) ==
GRXSTSRD_STP_DATA ||
(temp & GRXSTSRD_PKTSTS_MASK) ==
GRXSTSRD_STP_COMPLETE) {
DPRINTFN(5, "faking complete\n");
/*
* Race condition: We are complete!
*/
return (0);
} else {
/* dump data - wrong direction */
dwc_otg_common_rx_ack(sc);
}
}
return (1); /* not complete */
}
static void
dwc_otg_xfer_do_fifo(struct dwc_otg_softc *sc, struct usb_xfer *xfer)
{
struct dwc_otg_td *td;
uint8_t toggle;
uint8_t tmr_val;
uint8_t tmr_res;
DPRINTFN(9, "\n");
td = xfer->td_transfer_cache;
if (td == NULL)
return;
while (1) {
if ((td->func) (sc, td)) {
/* operation in progress */
break;
}
if (((void *)td) == xfer->td_transfer_last) {
goto done;
}
if (td->error_any) {
goto done;
} else if (td->remainder > 0) {
/*
* We had a short transfer. If there is no alternate
* next, stop processing !
*/
if (!td->alt_next)
goto done;
}
/*
* Fetch the next transfer descriptor and transfer
* some flags to the next transfer descriptor
*/
tmr_res = td->tmr_res;
tmr_val = td->tmr_val;
toggle = td->toggle;
td = td->obj_next;
xfer->td_transfer_cache = td;
td->toggle = toggle; /* transfer toggle */
td->tmr_res = tmr_res;
td->tmr_val = tmr_val;
}
return;
done:
xfer->td_transfer_cache = NULL;
sc->sc_xfer_complete = 1;
}
static uint8_t
dwc_otg_xfer_do_complete_locked(struct dwc_otg_softc *sc, struct usb_xfer *xfer)
{
struct dwc_otg_td *td;
DPRINTFN(9, "\n");
td = xfer->td_transfer_cache;
if (td == NULL) {
/* compute all actual lengths */
dwc_otg_standard_done(xfer);
return (1);
}
return (0);
}
static void
dwc_otg_timer(void *_sc)
{
struct dwc_otg_softc *sc = _sc;
USB_BUS_LOCK_ASSERT(&sc->sc_bus, MA_OWNED);
DPRINTF("\n");
USB_BUS_SPIN_LOCK(&sc->sc_bus);
/* increment timer value */
sc->sc_tmr_val++;
/* enable SOF interrupt, which will poll jobs */
dwc_otg_enable_sof_irq(sc);
USB_BUS_SPIN_UNLOCK(&sc->sc_bus);
if (sc->sc_timer_active) {
/* restart timer */
usb_callout_reset(&sc->sc_timer,
hz / (1000 / DWC_OTG_HOST_TIMER_RATE),
&dwc_otg_timer, sc);
}
}
static void
dwc_otg_timer_start(struct dwc_otg_softc *sc)
{
if (sc->sc_timer_active != 0)
return;
sc->sc_timer_active = 1;
/* restart timer */
usb_callout_reset(&sc->sc_timer,
hz / (1000 / DWC_OTG_HOST_TIMER_RATE),
&dwc_otg_timer, sc);
}
static void
dwc_otg_timer_stop(struct dwc_otg_softc *sc)
{
if (sc->sc_timer_active == 0)
return;
sc->sc_timer_active = 0;
/* stop timer */
usb_callout_stop(&sc->sc_timer);
}
static uint16_t
dwc_otg_compute_isoc_rx_tt_slot(struct dwc_otg_tt_info *pinfo)
{
if (pinfo->slot_index < DWC_OTG_TT_SLOT_MAX)
pinfo->slot_index++;
return (pinfo->slot_index);
}
static uint8_t
dwc_otg_update_host_transfer_schedule_locked(struct dwc_otg_softc *sc)
{
TAILQ_HEAD(, usb_xfer) head;
struct usb_xfer *xfer;
struct usb_xfer *xfer_next;
struct dwc_otg_td *td;
uint16_t temp;
uint16_t slot;
temp = DWC_OTG_READ_4(sc, DOTG_HFNUM) & DWC_OTG_FRAME_MASK;
if (sc->sc_last_frame_num == temp)
return (0);
sc->sc_last_frame_num = temp;
TAILQ_INIT(&head);
if ((temp & 7) == 0) {
/* reset the schedule */
memset(sc->sc_tt_info, 0, sizeof(sc->sc_tt_info));
TAILQ_FOREACH_SAFE(xfer, &sc->sc_bus.intr_q.head, wait_entry, xfer_next) {
td = xfer->td_transfer_cache;
if (td == NULL || td->ep_type != UE_ISOCHRONOUS)
continue;
/* check for IN direction */
if ((td->hcchar & HCCHAR_EPDIR_IN) != 0)
continue;
sc->sc_needsof = 1;
if (td->hcsplt == 0 || td->tt_scheduled != 0)
continue;
/* compute slot */
slot = dwc_otg_compute_isoc_rx_tt_slot(
sc->sc_tt_info + td->tt_index);
if (slot > 3) {
/*
* Not enough time to get complete
* split executed.
*/
continue;
}
/* Delayed start */
td->tt_start_slot = temp + slot;
td->tt_scheduled = 1;
TAILQ_REMOVE(&sc->sc_bus.intr_q.head, xfer, wait_entry);
TAILQ_INSERT_TAIL(&head, xfer, wait_entry);
}
TAILQ_FOREACH_SAFE(xfer, &sc->sc_bus.intr_q.head, wait_entry, xfer_next) {
td = xfer->td_transfer_cache;
if (td == NULL || td->ep_type != UE_ISOCHRONOUS)
continue;
/* check for OUT direction */
if ((td->hcchar & HCCHAR_EPDIR_IN) == 0)
continue;
sc->sc_needsof = 1;
if (td->hcsplt == 0 || td->tt_scheduled != 0)
continue;
/* Start ASAP */
td->tt_start_slot = temp;
td->tt_scheduled = 1;
TAILQ_REMOVE(&sc->sc_bus.intr_q.head, xfer, wait_entry);
TAILQ_INSERT_TAIL(&head, xfer, wait_entry);
}
TAILQ_FOREACH_SAFE(xfer, &sc->sc_bus.intr_q.head, wait_entry, xfer_next) {
td = xfer->td_transfer_cache;
if (td == NULL || td->ep_type != UE_INTERRUPT)
continue;
if (td->tt_scheduled != 0) {
sc->sc_needsof = 1;
continue;
}
if (dwc_otg_host_rate_check_interrupt(sc, td))
continue;
if (td->hcsplt == 0) {
sc->sc_needsof = 1;
td->tt_scheduled = 1;
continue;
}
/* start ASAP */
td->tt_start_slot = temp;
sc->sc_needsof = 1;
td->tt_scheduled = 1;
TAILQ_REMOVE(&sc->sc_bus.intr_q.head, xfer, wait_entry);
TAILQ_INSERT_TAIL(&head, xfer, wait_entry);
}
TAILQ_FOREACH_SAFE(xfer, &sc->sc_bus.intr_q.head, wait_entry, xfer_next) {
td = xfer->td_transfer_cache;
if (td == NULL ||
td->ep_type != UE_CONTROL) {
continue;
}
sc->sc_needsof = 1;
if (td->hcsplt == 0 || td->tt_scheduled != 0)
continue;
/* start ASAP */
td->tt_start_slot = temp;
td->tt_scheduled = 1;
TAILQ_REMOVE(&sc->sc_bus.intr_q.head, xfer, wait_entry);
TAILQ_INSERT_TAIL(&head, xfer, wait_entry);
}
}
if ((temp & 7) < 6) {
TAILQ_FOREACH_SAFE(xfer, &sc->sc_bus.intr_q.head, wait_entry, xfer_next) {
td = xfer->td_transfer_cache;
if (td == NULL ||
td->ep_type != UE_BULK) {
continue;
}
sc->sc_needsof = 1;
if (td->hcsplt == 0 || td->tt_scheduled != 0)
continue;
/* start ASAP */
td->tt_start_slot = temp;
td->tt_scheduled = 1;
TAILQ_REMOVE(&sc->sc_bus.intr_q.head, xfer, wait_entry);
TAILQ_INSERT_TAIL(&head, xfer, wait_entry);
}
}
/* Put TT transfers in execution order at the end */
TAILQ_CONCAT(&sc->sc_bus.intr_q.head, &head, wait_entry);
/* move all TT transfers in front, keeping the current order */
TAILQ_FOREACH_SAFE(xfer, &sc->sc_bus.intr_q.head, wait_entry, xfer_next) {
td = xfer->td_transfer_cache;
if (td == NULL || td->hcsplt == 0)
continue;
TAILQ_REMOVE(&sc->sc_bus.intr_q.head, xfer, wait_entry);
TAILQ_INSERT_TAIL(&head, xfer, wait_entry);
}
TAILQ_CONCAT(&head, &sc->sc_bus.intr_q.head, wait_entry);
TAILQ_CONCAT(&sc->sc_bus.intr_q.head, &head, wait_entry);
/* put non-TT non-ISOCHRONOUS transfers last */
TAILQ_FOREACH_SAFE(xfer, &sc->sc_bus.intr_q.head, wait_entry, xfer_next) {
td = xfer->td_transfer_cache;
if (td == NULL || td->hcsplt != 0 || td->ep_type == UE_ISOCHRONOUS)
continue;
TAILQ_REMOVE(&sc->sc_bus.intr_q.head, xfer, wait_entry);
TAILQ_INSERT_TAIL(&head, xfer, wait_entry);
}
TAILQ_CONCAT(&sc->sc_bus.intr_q.head, &head, wait_entry);
if ((temp & 7) == 0) {
DPRINTFN(12, "SOF interrupt #%d, needsof=%d\n",
(int)temp, (int)sc->sc_needsof);
/* update SOF IRQ mask */
if (sc->sc_irq_mask & GINTMSK_SOFMSK) {
if (sc->sc_needsof == 0) {
sc->sc_irq_mask &= ~GINTMSK_SOFMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
}
} else {
if (sc->sc_needsof != 0) {
sc->sc_irq_mask |= GINTMSK_SOFMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
}
}
/* clear need SOF flag */
sc->sc_needsof = 0;
}
return (1);
}
static void
dwc_otg_interrupt_poll_locked(struct dwc_otg_softc *sc)
{
struct usb_xfer *xfer;
uint32_t count;
uint32_t temp;
uint32_t haint;
uint8_t got_rx_status;
uint8_t x;
if (sc->sc_flags.status_device_mode == 0) {
/*
* Update host transfer schedule, so that new
* transfers can be issued:
*/
dwc_otg_update_host_transfer_schedule_locked(sc);
}
count = 0;
repeat:
if (++count == 16) {
/* give other interrupts a chance */
DPRINTF("Yield\n");
return;
}
/* get all host channel interrupts */
haint = DWC_OTG_READ_4(sc, DOTG_HAINT);
while (1) {
x = ffs(haint) - 1;
if (x >= sc->sc_host_ch_max)
break;
temp = DWC_OTG_READ_4(sc, DOTG_HCINT(x));
DWC_OTG_WRITE_4(sc, DOTG_HCINT(x), temp);
temp &= ~HCINT_SOFTWARE_ONLY;
sc->sc_chan_state[x].hcint |= temp;
haint &= ~(1U << x);
}
if (sc->sc_last_rx_status == 0) {
temp = DWC_OTG_READ_4(sc, DOTG_GINTSTS);
if (temp & GINTSTS_RXFLVL) {
/* pop current status */
sc->sc_last_rx_status =
DWC_OTG_READ_4(sc, DOTG_GRXSTSPD);
}
if (sc->sc_last_rx_status != 0) {
uint8_t ep_no;
temp = sc->sc_last_rx_status &
GRXSTSRD_PKTSTS_MASK;
/* non-data messages we simply skip */
if (temp != GRXSTSRD_STP_DATA &&
temp != GRXSTSRD_STP_COMPLETE &&
temp != GRXSTSRD_OUT_DATA) {
/* check for halted channel */
if (temp == GRXSTSRH_HALTED) {
ep_no = GRXSTSRD_CHNUM_GET(sc->sc_last_rx_status);
sc->sc_chan_state[ep_no].wait_halted = 0;
DPRINTFN(5, "channel halt complete ch=%u\n", ep_no);
}
/* store bytes and FIFO offset */
sc->sc_current_rx_bytes = 0;
sc->sc_current_rx_fifo = 0;
/* acknowledge status */
dwc_otg_common_rx_ack(sc);
goto repeat;
}
temp = GRXSTSRD_BCNT_GET(
sc->sc_last_rx_status);
ep_no = GRXSTSRD_CHNUM_GET(
sc->sc_last_rx_status);
/* store bytes and FIFO offset */
sc->sc_current_rx_bytes = (temp + 3) & ~3;
sc->sc_current_rx_fifo = DOTG_DFIFO(ep_no);
DPRINTF("Reading %d bytes from ep %d\n", temp, ep_no);
/* check if we should dump the data */
if (!(sc->sc_active_rx_ep & (1U << ep_no))) {
dwc_otg_common_rx_ack(sc);
goto repeat;
}
got_rx_status = 1;
DPRINTFN(5, "RX status = 0x%08x: ch=%d pid=%d bytes=%d sts=%d\n",
sc->sc_last_rx_status, ep_no,
(sc->sc_last_rx_status >> 15) & 3,
GRXSTSRD_BCNT_GET(sc->sc_last_rx_status),
(sc->sc_last_rx_status >> 17) & 15);
} else {
got_rx_status = 0;
}
} else {
uint8_t ep_no;
ep_no = GRXSTSRD_CHNUM_GET(
sc->sc_last_rx_status);
/* check if we should dump the data */
if (!(sc->sc_active_rx_ep & (1U << ep_no))) {
dwc_otg_common_rx_ack(sc);
goto repeat;
}
got_rx_status = 1;
}
/* execute FIFOs */
TAILQ_FOREACH(xfer, &sc->sc_bus.intr_q.head, wait_entry)
dwc_otg_xfer_do_fifo(sc, xfer);
if (got_rx_status) {
/* check if data was consumed */
if (sc->sc_last_rx_status == 0)
goto repeat;
/* disable RX FIFO level interrupt */
sc->sc_irq_mask &= ~GINTMSK_RXFLVLMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
}
}
static void
dwc_otg_interrupt_complete_locked(struct dwc_otg_softc *sc)
{
struct usb_xfer *xfer;
repeat:
/* scan for completion events */
TAILQ_FOREACH(xfer, &sc->sc_bus.intr_q.head, wait_entry) {
if (dwc_otg_xfer_do_complete_locked(sc, xfer))
goto repeat;
}
}
static void
dwc_otg_vbus_interrupt(struct dwc_otg_softc *sc, uint8_t is_on)
{
DPRINTFN(5, "vbus = %u\n", is_on);
/*
* If the USB host mode is forced, then assume VBUS is always
* present else rely on the input to this function:
*/
if ((is_on != 0) || (sc->sc_mode == DWC_MODE_HOST)) {
if (!sc->sc_flags.status_vbus) {
sc->sc_flags.status_vbus = 1;
/* complete root HUB interrupt endpoint */
dwc_otg_root_intr(sc);
}
} else {
if (sc->sc_flags.status_vbus) {
sc->sc_flags.status_vbus = 0;
sc->sc_flags.status_bus_reset = 0;
sc->sc_flags.status_suspend = 0;
sc->sc_flags.change_suspend = 0;
sc->sc_flags.change_connect = 1;
/* complete root HUB interrupt endpoint */
dwc_otg_root_intr(sc);
}
}
}
int
dwc_otg_filter_interrupt(void *arg)
{
struct dwc_otg_softc *sc = arg;
int retval = FILTER_HANDLED;
uint32_t status;
USB_BUS_SPIN_LOCK(&sc->sc_bus);
/* read and clear interrupt status */
status = DWC_OTG_READ_4(sc, DOTG_GINTSTS);
/* clear interrupts we are handling here */
DWC_OTG_WRITE_4(sc, DOTG_GINTSTS, status & ~DWC_OTG_MSK_GINT_THREAD_IRQ);
/* check for USB state change interrupts */
if ((status & DWC_OTG_MSK_GINT_THREAD_IRQ) != 0)
retval = FILTER_SCHEDULE_THREAD;
/* clear FIFO empty interrupts */
if (status & sc->sc_irq_mask &
(GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP)) {
sc->sc_irq_mask &= ~(GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP);
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
}
/* clear all IN endpoint interrupts */
if (status & GINTSTS_IEPINT) {
uint32_t temp;
uint8_t x;
for (x = 0; x != sc->sc_dev_in_ep_max; x++) {
temp = DWC_OTG_READ_4(sc, DOTG_DIEPINT(x));
/*
* NOTE: Need to clear all interrupt bits,
* because some appears to be unmaskable and
* can cause an interrupt loop:
*/
if (temp != 0)
DWC_OTG_WRITE_4(sc, DOTG_DIEPINT(x), temp);
}
}
/* poll FIFOs, if any */
dwc_otg_interrupt_poll_locked(sc);
if (sc->sc_xfer_complete != 0)
retval = FILTER_SCHEDULE_THREAD;
USB_BUS_SPIN_UNLOCK(&sc->sc_bus);
return (retval);
}
void
dwc_otg_interrupt(void *arg)
{
struct dwc_otg_softc *sc = arg;
uint32_t status;
USB_BUS_LOCK(&sc->sc_bus);
USB_BUS_SPIN_LOCK(&sc->sc_bus);
/* read and clear interrupt status */
status = DWC_OTG_READ_4(sc, DOTG_GINTSTS);
/* clear interrupts we are handling here */
DWC_OTG_WRITE_4(sc, DOTG_GINTSTS, status & DWC_OTG_MSK_GINT_THREAD_IRQ);
DPRINTFN(14, "GINTSTS=0x%08x HAINT=0x%08x HFNUM=0x%08x\n",
status, DWC_OTG_READ_4(sc, DOTG_HAINT),
DWC_OTG_READ_4(sc, DOTG_HFNUM));
if (status & GINTSTS_USBRST) {
/* set correct state */
sc->sc_flags.status_device_mode = 1;
sc->sc_flags.status_bus_reset = 0;
sc->sc_flags.status_suspend = 0;
sc->sc_flags.change_suspend = 0;
sc->sc_flags.change_connect = 1;
/* Disable SOF interrupt */
sc->sc_irq_mask &= ~GINTMSK_SOFMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
/* complete root HUB interrupt endpoint */
dwc_otg_root_intr(sc);
}
/* check for any bus state change interrupts */
if (status & GINTSTS_ENUMDONE) {
uint32_t temp;
DPRINTFN(5, "end of reset\n");
/* set correct state */
sc->sc_flags.status_device_mode = 1;
sc->sc_flags.status_bus_reset = 1;
sc->sc_flags.status_suspend = 0;
sc->sc_flags.change_suspend = 0;
sc->sc_flags.change_connect = 1;
sc->sc_flags.status_low_speed = 0;
sc->sc_flags.port_enabled = 1;
/* reset FIFOs */
(void) dwc_otg_init_fifo(sc, DWC_MODE_DEVICE);
/* reset function address */
dwc_otg_set_address(sc, 0);
/* figure out enumeration speed */
temp = DWC_OTG_READ_4(sc, DOTG_DSTS);
if (DSTS_ENUMSPD_GET(temp) == DSTS_ENUMSPD_HI)
sc->sc_flags.status_high_speed = 1;
else
sc->sc_flags.status_high_speed = 0;
/*
* Disable resume and SOF interrupt, and enable
* suspend and RX frame interrupt:
*/
sc->sc_irq_mask &= ~(GINTMSK_WKUPINTMSK | GINTMSK_SOFMSK);
sc->sc_irq_mask |= GINTMSK_USBSUSPMSK;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
/* complete root HUB interrupt endpoint */
dwc_otg_root_intr(sc);
}
if (status & GINTSTS_PRTINT) {
uint32_t hprt;
hprt = DWC_OTG_READ_4(sc, DOTG_HPRT);
/* clear change bits */
DWC_OTG_WRITE_4(sc, DOTG_HPRT, (hprt & (
HPRT_PRTPWR | HPRT_PRTENCHNG |
HPRT_PRTCONNDET | HPRT_PRTOVRCURRCHNG)) |
sc->sc_hprt_val);
DPRINTFN(12, "GINTSTS=0x%08x, HPRT=0x%08x\n", status, hprt);
sc->sc_flags.status_device_mode = 0;
if (hprt & HPRT_PRTCONNSTS)
sc->sc_flags.status_bus_reset = 1;
else
sc->sc_flags.status_bus_reset = 0;
if ((hprt & HPRT_PRTENCHNG) &&
(hprt & HPRT_PRTENA) == 0)
sc->sc_flags.change_enabled = 1;
if (hprt & HPRT_PRTENA)
sc->sc_flags.port_enabled = 1;
else
sc->sc_flags.port_enabled = 0;
if (hprt & HPRT_PRTOVRCURRCHNG)
sc->sc_flags.change_over_current = 1;
if (hprt & HPRT_PRTOVRCURRACT)
sc->sc_flags.port_over_current = 1;
else
sc->sc_flags.port_over_current = 0;
if (hprt & HPRT_PRTPWR)
sc->sc_flags.port_powered = 1;
else
sc->sc_flags.port_powered = 0;
if (((hprt & HPRT_PRTSPD_MASK)
>> HPRT_PRTSPD_SHIFT) == HPRT_PRTSPD_LOW)
sc->sc_flags.status_low_speed = 1;
else
sc->sc_flags.status_low_speed = 0;
if (((hprt & HPRT_PRTSPD_MASK)
>> HPRT_PRTSPD_SHIFT) == HPRT_PRTSPD_HIGH)
sc->sc_flags.status_high_speed = 1;
else
sc->sc_flags.status_high_speed = 0;
if (hprt & HPRT_PRTCONNDET)
sc->sc_flags.change_connect = 1;
if (hprt & HPRT_PRTSUSP)
dwc_otg_suspend_irq(sc);
else
dwc_otg_resume_irq(sc);
/* complete root HUB interrupt endpoint */
dwc_otg_root_intr(sc);
/* update host frame interval */
dwc_otg_update_host_frame_interval(sc);
}
/*
* If resume and suspend is set at the same time we interpret
* that like RESUME. Resume is set when there is at least 3
* milliseconds of inactivity on the USB BUS.
*/
if (status & GINTSTS_WKUPINT) {
DPRINTFN(5, "resume interrupt\n");
dwc_otg_resume_irq(sc);
} else if (status & GINTSTS_USBSUSP) {
DPRINTFN(5, "suspend interrupt\n");
dwc_otg_suspend_irq(sc);
}
/* check VBUS */
if (status & (GINTSTS_USBSUSP |
GINTSTS_USBRST |
GINTMSK_OTGINTMSK |
GINTSTS_SESSREQINT)) {
uint32_t temp;
temp = DWC_OTG_READ_4(sc, DOTG_GOTGCTL);
DPRINTFN(5, "GOTGCTL=0x%08x\n", temp);
dwc_otg_vbus_interrupt(sc,
(temp & (GOTGCTL_ASESVLD | GOTGCTL_BSESVLD)) ? 1 : 0);
}
if (sc->sc_xfer_complete != 0) {
sc->sc_xfer_complete = 0;
/* complete FIFOs, if any */
dwc_otg_interrupt_complete_locked(sc);
}
USB_BUS_SPIN_UNLOCK(&sc->sc_bus);
USB_BUS_UNLOCK(&sc->sc_bus);
}
static void
dwc_otg_setup_standard_chain_sub(struct dwc_otg_std_temp *temp)
{
struct dwc_otg_td *td;
/* get current Transfer Descriptor */
td = temp->td_next;
temp->td = td;
/* prepare for next TD */
temp->td_next = td->obj_next;
/* fill out the Transfer Descriptor */
td->func = temp->func;
td->pc = temp->pc;
td->offset = temp->offset;
td->remainder = temp->len;
td->tx_bytes = 0;
td->error_any = 0;
td->error_stall = 0;
td->npkt = 0;
td->did_stall = temp->did_stall;
td->short_pkt = temp->short_pkt;
td->alt_next = temp->setup_alt_next;
td->set_toggle = 0;
td->got_short = 0;
td->did_nak = 0;
td->channel[0] = DWC_OTG_MAX_CHANNELS;
td->channel[1] = DWC_OTG_MAX_CHANNELS;
td->channel[2] = DWC_OTG_MAX_CHANNELS;
td->state = 0;
td->errcnt = 0;
td->tt_scheduled = 0;
td->tt_xactpos = HCSPLT_XACTPOS_BEGIN;
}
static void
dwc_otg_setup_standard_chain(struct usb_xfer *xfer)
{
struct dwc_otg_std_temp temp;
struct dwc_otg_td *td;
uint32_t x;
uint8_t need_sync;
uint8_t is_host;
DPRINTFN(9, "addr=%d endpt=%d sumlen=%d speed=%d\n",
xfer->address, UE_GET_ADDR(xfer->endpointno),
xfer->sumlen, usbd_get_speed(xfer->xroot->udev));
temp.max_frame_size = xfer->max_frame_size;
td = xfer->td_start[0];
xfer->td_transfer_first = td;
xfer->td_transfer_cache = td;
/* setup temp */
temp.pc = NULL;
temp.td = NULL;
temp.td_next = xfer->td_start[0];
temp.offset = 0;
temp.setup_alt_next = xfer->flags_int.short_frames_ok ||
xfer->flags_int.isochronous_xfr;
temp.did_stall = !xfer->flags_int.control_stall;
is_host = (xfer->xroot->udev->flags.usb_mode == USB_MODE_HOST);
/* check if we should prepend a setup message */
if (xfer->flags_int.control_xfr) {
if (xfer->flags_int.control_hdr) {
if (is_host)
temp.func = &dwc_otg_host_setup_tx;
else
temp.func = &dwc_otg_setup_rx;
temp.len = xfer->frlengths[0];
temp.pc = xfer->frbuffers + 0;
temp.short_pkt = temp.len ? 1 : 0;
/* check for last frame */
if (xfer->nframes == 1) {
/* no STATUS stage yet, SETUP is last */
if (xfer->flags_int.control_act)
temp.setup_alt_next = 0;
}
dwc_otg_setup_standard_chain_sub(&temp);
}
x = 1;
} else {
x = 0;
}
if (x != xfer->nframes) {
if (xfer->endpointno & UE_DIR_IN) {
if (is_host) {
temp.func = &dwc_otg_host_data_rx;
need_sync = 0;
} else {
temp.func = &dwc_otg_data_tx;
need_sync = 1;
}
} else {
if (is_host) {
temp.func = &dwc_otg_host_data_tx;
need_sync = 0;
} else {
temp.func = &dwc_otg_data_rx;
need_sync = 0;
}
}
/* setup "pc" pointer */
temp.pc = xfer->frbuffers + x;
} else {
need_sync = 0;
}
while (x != xfer->nframes) {
/* DATA0 / DATA1 message */
temp.len = xfer->frlengths[x];
x++;
if (x == xfer->nframes) {
if (xfer->flags_int.control_xfr) {
if (xfer->flags_int.control_act) {
temp.setup_alt_next = 0;
}
} else {
temp.setup_alt_next = 0;
}
}
if (temp.len == 0) {
/* make sure that we send an USB packet */
temp.short_pkt = 0;
} else {
/* regular data transfer */
temp.short_pkt = (xfer->flags.force_short_xfer ? 0 : 1);
}
dwc_otg_setup_standard_chain_sub(&temp);
if (xfer->flags_int.isochronous_xfr) {
temp.offset += temp.len;
} else {
/* get next Page Cache pointer */
temp.pc = xfer->frbuffers + x;
}
}
if (xfer->flags_int.control_xfr) {
/* always setup a valid "pc" pointer for status and sync */
temp.pc = xfer->frbuffers + 0;
temp.len = 0;
temp.short_pkt = 0;
temp.setup_alt_next = 0;
/* check if we need to sync */
if (need_sync) {
/* we need a SYNC point after TX */
temp.func = &dwc_otg_data_tx_sync;
dwc_otg_setup_standard_chain_sub(&temp);
}
/* check if we should append a status stage */
if (!xfer->flags_int.control_act) {
/*
* Send a DATA1 message and invert the current
* endpoint direction.
*/
if (xfer->endpointno & UE_DIR_IN) {
if (is_host) {
temp.func = &dwc_otg_host_data_tx;
need_sync = 0;
} else {
temp.func = &dwc_otg_data_rx;
need_sync = 0;
}
} else {
if (is_host) {
temp.func = &dwc_otg_host_data_rx;
need_sync = 0;
} else {
temp.func = &dwc_otg_data_tx;
need_sync = 1;
}
}
dwc_otg_setup_standard_chain_sub(&temp);
/* data toggle should be DATA1 */
td = temp.td;
td->set_toggle = 1;
if (need_sync) {
/* we need a SYNC point after TX */
temp.func = &dwc_otg_data_tx_sync;
dwc_otg_setup_standard_chain_sub(&temp);
}
}
} else {
/* check if we need to sync */
if (need_sync) {
temp.pc = xfer->frbuffers + 0;
temp.len = 0;
temp.short_pkt = 0;
temp.setup_alt_next = 0;
/* we need a SYNC point after TX */
temp.func = &dwc_otg_data_tx_sync;
dwc_otg_setup_standard_chain_sub(&temp);
}
}
/* must have at least one frame! */
td = temp.td;
xfer->td_transfer_last = td;
if (is_host) {
struct dwc_otg_softc *sc;
uint32_t hcchar;
uint32_t hcsplt;
sc = DWC_OTG_BUS2SC(xfer->xroot->bus);
/* get first again */
td = xfer->td_transfer_first;
td->toggle = (xfer->endpoint->toggle_next ? 1 : 0);
hcchar =
(xfer->address << HCCHAR_DEVADDR_SHIFT) |
((xfer->endpointno & UE_ADDR) << HCCHAR_EPNUM_SHIFT) |
(xfer->max_packet_size << HCCHAR_MPS_SHIFT) |
HCCHAR_CHENA;
/*
* We are not always able to meet the timing
* requirements of the USB interrupt endpoint's
* complete split token, when doing transfers going
* via a transaction translator. Use the CONTROL
* transfer type instead of the INTERRUPT transfer
* type in general, as a means to workaround
* that. This trick should work for both FULL and LOW
* speed USB traffic going through a TT. For non-TT
* traffic it works as well. The reason for using
* CONTROL type instead of BULK is that some TTs might
* reject LOW speed BULK traffic.
*/
if (td->ep_type == UE_INTERRUPT)
hcchar |= (UE_CONTROL << HCCHAR_EPTYPE_SHIFT);
else
hcchar |= (td->ep_type << HCCHAR_EPTYPE_SHIFT);
if (UE_GET_DIR(xfer->endpointno) == UE_DIR_IN)
hcchar |= HCCHAR_EPDIR_IN;
switch (xfer->xroot->udev->speed) {
case USB_SPEED_LOW:
hcchar |= HCCHAR_LSPDDEV;
/* FALLTHROUGH */
case USB_SPEED_FULL:
/* check if root HUB port is running High Speed */
if (dwc_otg_uses_split(xfer->xroot->udev)) {
hcsplt = HCSPLT_SPLTENA |
(xfer->xroot->udev->hs_port_no <<
HCSPLT_PRTADDR_SHIFT) |
(xfer->xroot->udev->hs_hub_addr <<
HCSPLT_HUBADDR_SHIFT);
} else {
hcsplt = 0;
}
if (td->ep_type == UE_INTERRUPT) {
uint32_t ival;
ival = xfer->interval / DWC_OTG_HOST_TIMER_RATE;
if (ival == 0)
ival = 1;
else if (ival > 127)
ival = 127;
td->tmr_val = sc->sc_tmr_val + ival;
td->tmr_res = ival;
} else if (td->ep_type == UE_ISOCHRONOUS) {
td->tmr_res = 1;
td->tmr_val = sc->sc_last_frame_num;
if (td->hcchar & HCCHAR_EPDIR_IN)
td->tmr_val++;
} else {
td->tmr_val = 0;
td->tmr_res = (uint8_t)sc->sc_last_frame_num;
}
break;
case USB_SPEED_HIGH:
hcsplt = 0;
if (td->ep_type == UE_INTERRUPT) {
uint32_t ival;
hcchar |= ((xfer->max_packet_count & 3)
<< HCCHAR_MC_SHIFT);
ival = xfer->interval / DWC_OTG_HOST_TIMER_RATE;
if (ival == 0)
ival = 1;
else if (ival > 127)
ival = 127;
td->tmr_val = sc->sc_tmr_val + ival;
td->tmr_res = ival;
} else if (td->ep_type == UE_ISOCHRONOUS) {
hcchar |= ((xfer->max_packet_count & 3)
<< HCCHAR_MC_SHIFT);
td->tmr_res = 1 << usbd_xfer_get_fps_shift(xfer);
td->tmr_val = sc->sc_last_frame_num;
if (td->hcchar & HCCHAR_EPDIR_IN)
td->tmr_val += td->tmr_res;
} else {
td->tmr_val = 0;
td->tmr_res = (uint8_t)sc->sc_last_frame_num;
}
break;
default:
hcsplt = 0;
td->tmr_val = 0;
td->tmr_res = 0;
break;
}
/* store configuration in all TD's */
while (1) {
td->hcchar = hcchar;
td->hcsplt = hcsplt;
if (((void *)td) == xfer->td_transfer_last)
break;
td = td->obj_next;
}
}
}
static void
dwc_otg_timeout(void *arg)
{
struct usb_xfer *xfer = arg;
DPRINTF("xfer=%p\n", xfer);
USB_BUS_LOCK_ASSERT(xfer->xroot->bus, MA_OWNED);
/* transfer is transferred */
dwc_otg_device_done(xfer, USB_ERR_TIMEOUT);
}
static void
dwc_otg_start_standard_chain(struct usb_xfer *xfer)
{
struct dwc_otg_softc *sc = DWC_OTG_BUS2SC(xfer->xroot->bus);
DPRINTFN(9, "\n");
/*
* Poll one time in device mode, which will turn on the
* endpoint interrupts. Else wait for SOF interrupt in host
* mode.
*/
USB_BUS_SPIN_LOCK(&sc->sc_bus);
if (sc->sc_flags.status_device_mode != 0) {
dwc_otg_xfer_do_fifo(sc, xfer);
if (dwc_otg_xfer_do_complete_locked(sc, xfer))
goto done;
} else {
struct dwc_otg_td *td = xfer->td_transfer_cache;
if (td->ep_type == UE_ISOCHRONOUS &&
(td->hcchar & HCCHAR_EPDIR_IN) == 0) {
/*
* Need to start ISOCHRONOUS OUT transfer ASAP
* because execution is delayed by one 125us
* microframe:
*/
dwc_otg_xfer_do_fifo(sc, xfer);
if (dwc_otg_xfer_do_complete_locked(sc, xfer))
goto done;
}
}
/* put transfer on interrupt queue */
usbd_transfer_enqueue(&xfer->xroot->bus->intr_q, xfer);
/* start timeout, if any */
if (xfer->timeout != 0) {
usbd_transfer_timeout_ms(xfer,
&dwc_otg_timeout, xfer->timeout);
}
if (sc->sc_flags.status_device_mode != 0)
goto done;
/* enable SOF interrupt, if any */
dwc_otg_enable_sof_irq(sc);
done:
USB_BUS_SPIN_UNLOCK(&sc->sc_bus);
}
static void
dwc_otg_root_intr(struct dwc_otg_softc *sc)
{
DPRINTFN(9, "\n");
USB_BUS_LOCK_ASSERT(&sc->sc_bus, MA_OWNED);
/* set port bit */
sc->sc_hub_idata[0] = 0x02; /* we only have one port */
uhub_root_intr(&sc->sc_bus, sc->sc_hub_idata,
sizeof(sc->sc_hub_idata));
}
static usb_error_t
dwc_otg_standard_done_sub(struct usb_xfer *xfer)
{
struct dwc_otg_td *td;
uint32_t len;
usb_error_t error;
DPRINTFN(9, "\n");
td = xfer->td_transfer_cache;
do {
len = td->remainder;
/* store last data toggle */
xfer->endpoint->toggle_next = td->toggle;
if (xfer->aframes != xfer->nframes) {
/*
* Verify the length and subtract
* the remainder from "frlengths[]":
*/
if (len > xfer->frlengths[xfer->aframes]) {
td->error_any = 1;
} else {
xfer->frlengths[xfer->aframes] -= len;
}
}
/* Check for transfer error */
if (td->error_any) {
/* the transfer is finished */
error = (td->error_stall ?
USB_ERR_STALLED : USB_ERR_IOERROR);
td = NULL;
break;
}
/* Check for short transfer */
if (len > 0) {
if (xfer->flags_int.short_frames_ok ||
xfer->flags_int.isochronous_xfr) {
/* follow alt next */
if (td->alt_next) {
td = td->obj_next;
} else {
td = NULL;
}
} else {
/* the transfer is finished */
td = NULL;
}
error = 0;
break;
}
td = td->obj_next;
/* this USB frame is complete */
error = 0;
break;
} while (0);
/* update transfer cache */
xfer->td_transfer_cache = td;
return (error);
}
static void
dwc_otg_standard_done(struct usb_xfer *xfer)
{
usb_error_t err = 0;
DPRINTFN(13, "xfer=%p endpoint=%p transfer done\n",
xfer, xfer->endpoint);
/* reset scanner */
xfer->td_transfer_cache = xfer->td_transfer_first;
if (xfer->flags_int.control_xfr) {
if (xfer->flags_int.control_hdr) {
err = dwc_otg_standard_done_sub(xfer);
}
xfer->aframes = 1;
if (xfer->td_transfer_cache == NULL) {
goto done;
}
}
while (xfer->aframes != xfer->nframes) {
err = dwc_otg_standard_done_sub(xfer);
xfer->aframes++;
if (xfer->td_transfer_cache == NULL) {
goto done;
}
}
if (xfer->flags_int.control_xfr &&
!xfer->flags_int.control_act) {
err = dwc_otg_standard_done_sub(xfer);
}
done:
dwc_otg_device_done(xfer, err);
}
/*------------------------------------------------------------------------*
* dwc_otg_device_done
*
* NOTE: this function can be called more than one time on the
* same USB transfer!
*------------------------------------------------------------------------*/
static void
dwc_otg_device_done(struct usb_xfer *xfer, usb_error_t error)
{
struct dwc_otg_softc *sc = DWC_OTG_BUS2SC(xfer->xroot->bus);
DPRINTFN(9, "xfer=%p, endpoint=%p, error=%d\n",
xfer, xfer->endpoint, error);
USB_BUS_SPIN_LOCK(&sc->sc_bus);
if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) {
/* Interrupts are cleared by the interrupt handler */
} else {
struct dwc_otg_td *td;
td = xfer->td_transfer_cache;
if (td != NULL)
dwc_otg_host_channel_free(sc, td);
}
/* dequeue transfer and start next transfer */
usbd_transfer_done(xfer, error);
USB_BUS_SPIN_UNLOCK(&sc->sc_bus);
}
static void
dwc_otg_xfer_stall(struct usb_xfer *xfer)
{
dwc_otg_device_done(xfer, USB_ERR_STALLED);
}
static void
dwc_otg_set_stall(struct usb_device *udev,
struct usb_endpoint *ep, uint8_t *did_stall)
{
struct dwc_otg_softc *sc;
uint32_t temp;
uint32_t reg;
uint8_t ep_no;
USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED);
/* check mode */
if (udev->flags.usb_mode != USB_MODE_DEVICE) {
/* not supported */
return;
}
sc = DWC_OTG_BUS2SC(udev->bus);
USB_BUS_SPIN_LOCK(&sc->sc_bus);
/* get endpoint address */
ep_no = ep->edesc->bEndpointAddress;
DPRINTFN(5, "endpoint=0x%x\n", ep_no);
if (ep_no & UE_DIR_IN) {
reg = DOTG_DIEPCTL(ep_no & UE_ADDR);
temp = sc->sc_in_ctl[ep_no & UE_ADDR];
} else {
reg = DOTG_DOEPCTL(ep_no & UE_ADDR);
temp = sc->sc_out_ctl[ep_no & UE_ADDR];
}
/* disable and stall endpoint */
DWC_OTG_WRITE_4(sc, reg, temp | DOEPCTL_EPDIS);
DWC_OTG_WRITE_4(sc, reg, temp | DOEPCTL_STALL);
/* clear active OUT ep */
if (!(ep_no & UE_DIR_IN)) {
sc->sc_active_rx_ep &= ~(1U << (ep_no & UE_ADDR));
if (sc->sc_last_rx_status != 0 &&
(ep_no & UE_ADDR) == GRXSTSRD_CHNUM_GET(
sc->sc_last_rx_status)) {
/* dump data */
dwc_otg_common_rx_ack(sc);
/* poll interrupt */
dwc_otg_interrupt_poll_locked(sc);
dwc_otg_interrupt_complete_locked(sc);
}
}
USB_BUS_SPIN_UNLOCK(&sc->sc_bus);
}
static void
dwc_otg_clear_stall_sub_locked(struct dwc_otg_softc *sc, uint32_t mps,
uint8_t ep_no, uint8_t ep_type, uint8_t ep_dir)
{
uint32_t reg;
uint32_t temp;
if (ep_type == UE_CONTROL) {
/* clearing stall is not needed */
return;
}
if (ep_dir) {
reg = DOTG_DIEPCTL(ep_no);
} else {
reg = DOTG_DOEPCTL(ep_no);
sc->sc_active_rx_ep |= (1U << ep_no);
}
/* round up and mask away the multiplier count */
mps = (mps + 3) & 0x7FC;
if (ep_type == UE_BULK) {
temp = DIEPCTL_EPTYPE_SET(
DIEPCTL_EPTYPE_BULK) |
DIEPCTL_USBACTEP;
} else if (ep_type == UE_INTERRUPT) {
temp = DIEPCTL_EPTYPE_SET(
DIEPCTL_EPTYPE_INTERRUPT) |
DIEPCTL_USBACTEP;
} else {
temp = DIEPCTL_EPTYPE_SET(
DIEPCTL_EPTYPE_ISOC) |
DIEPCTL_USBACTEP;
}
temp |= DIEPCTL_MPS_SET(mps);
temp |= DIEPCTL_TXFNUM_SET(ep_no);
if (ep_dir)
sc->sc_in_ctl[ep_no] = temp;
else
sc->sc_out_ctl[ep_no] = temp;
DWC_OTG_WRITE_4(sc, reg, temp | DOEPCTL_EPDIS);
DWC_OTG_WRITE_4(sc, reg, temp | DOEPCTL_SETD0PID);
DWC_OTG_WRITE_4(sc, reg, temp | DIEPCTL_SNAK);
/* we only reset the transmit FIFO */
if (ep_dir) {
dwc_otg_tx_fifo_reset(sc,
GRSTCTL_TXFIFO(ep_no) |
GRSTCTL_TXFFLSH);
DWC_OTG_WRITE_4(sc,
DOTG_DIEPTSIZ(ep_no), 0);
}
/* poll interrupt */
dwc_otg_interrupt_poll_locked(sc);
dwc_otg_interrupt_complete_locked(sc);
}
static void
dwc_otg_clear_stall(struct usb_device *udev, struct usb_endpoint *ep)
{
struct dwc_otg_softc *sc;
struct usb_endpoint_descriptor *ed;
DPRINTFN(5, "endpoint=%p\n", ep);
USB_BUS_LOCK_ASSERT(udev->bus, MA_OWNED);
/* check mode */
if (udev->flags.usb_mode != USB_MODE_DEVICE) {
/* not supported */
return;
}
/* get softc */
sc = DWC_OTG_BUS2SC(udev->bus);
USB_BUS_SPIN_LOCK(&sc->sc_bus);
/* get endpoint descriptor */
ed = ep->edesc;
/* reset endpoint */
dwc_otg_clear_stall_sub_locked(sc,
UGETW(ed->wMaxPacketSize),
(ed->bEndpointAddress & UE_ADDR),
(ed->bmAttributes & UE_XFERTYPE),
(ed->bEndpointAddress & (UE_DIR_IN | UE_DIR_OUT)));
USB_BUS_SPIN_UNLOCK(&sc->sc_bus);
}
static void
dwc_otg_device_state_change(struct usb_device *udev)
{
struct dwc_otg_softc *sc;
uint8_t x;
/* check mode */
if (udev->flags.usb_mode != USB_MODE_DEVICE) {
/* not supported */
return;
}
/* get softc */
sc = DWC_OTG_BUS2SC(udev->bus);
/* deactivate all other endpoint but the control endpoint */
if (udev->state == USB_STATE_CONFIGURED ||
udev->state == USB_STATE_ADDRESSED) {
USB_BUS_LOCK(&sc->sc_bus);
for (x = 1; x != sc->sc_dev_ep_max; x++) {
if (x < sc->sc_dev_in_ep_max) {
DWC_OTG_WRITE_4(sc, DOTG_DIEPCTL(x),
DIEPCTL_EPDIS);
DWC_OTG_WRITE_4(sc, DOTG_DIEPCTL(x), 0);
}
DWC_OTG_WRITE_4(sc, DOTG_DOEPCTL(x),
DOEPCTL_EPDIS);
DWC_OTG_WRITE_4(sc, DOTG_DOEPCTL(x), 0);
}
USB_BUS_UNLOCK(&sc->sc_bus);
}
}
int
dwc_otg_init(struct dwc_otg_softc *sc)
{
uint32_t temp;
DPRINTF("start\n");
/* set up the bus structure */
sc->sc_bus.usbrev = USB_REV_2_0;
sc->sc_bus.methods = &dwc_otg_bus_methods;
usb_callout_init_mtx(&sc->sc_timer,
&sc->sc_bus.bus_mtx, 0);
USB_BUS_LOCK(&sc->sc_bus);
/* turn on clocks */
dwc_otg_clocks_on(sc);
temp = DWC_OTG_READ_4(sc, DOTG_GSNPSID);
DPRINTF("Version = 0x%08x\n", temp);
/* disconnect */
DWC_OTG_WRITE_4(sc, DOTG_DCTL,
DCTL_SFTDISCON);
/* wait for host to detect disconnect */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 32);
DWC_OTG_WRITE_4(sc, DOTG_GRSTCTL,
GRSTCTL_CSFTRST);
/* wait a little bit for block to reset */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 128);
switch (sc->sc_mode) {
case DWC_MODE_DEVICE:
temp = GUSBCFG_FORCEDEVMODE;
break;
case DWC_MODE_HOST:
temp = GUSBCFG_FORCEHOSTMODE;
break;
default:
temp = 0;
break;
}
if (sc->sc_phy_type == 0)
sc->sc_phy_type = dwc_otg_phy_type + 1;
if (sc->sc_phy_bits == 0)
sc->sc_phy_bits = 16;
/* select HSIC, ULPI, UTMI+ or internal PHY mode */
switch (sc->sc_phy_type) {
case DWC_OTG_PHY_HSIC:
DWC_OTG_WRITE_4(sc, DOTG_GUSBCFG,
GUSBCFG_PHYIF |
GUSBCFG_TRD_TIM_SET(5) | temp);
DWC_OTG_WRITE_4(sc, DOTG_GOTGCTL,
0x000000EC);
temp = DWC_OTG_READ_4(sc, DOTG_GLPMCFG);
DWC_OTG_WRITE_4(sc, DOTG_GLPMCFG,
temp & ~GLPMCFG_HSIC_CONN);
DWC_OTG_WRITE_4(sc, DOTG_GLPMCFG,
temp | GLPMCFG_HSIC_CONN);
break;
case DWC_OTG_PHY_ULPI:
DWC_OTG_WRITE_4(sc, DOTG_GUSBCFG,
GUSBCFG_ULPI_UTMI_SEL |
GUSBCFG_TRD_TIM_SET(5) | temp);
DWC_OTG_WRITE_4(sc, DOTG_GOTGCTL, 0);
temp = DWC_OTG_READ_4(sc, DOTG_GLPMCFG);
DWC_OTG_WRITE_4(sc, DOTG_GLPMCFG,
temp & ~GLPMCFG_HSIC_CONN);
break;
case DWC_OTG_PHY_UTMI:
DWC_OTG_WRITE_4(sc, DOTG_GUSBCFG,
(sc->sc_phy_bits == 16 ? GUSBCFG_PHYIF : 0) |
GUSBCFG_TRD_TIM_SET(5) | temp);
DWC_OTG_WRITE_4(sc, DOTG_GOTGCTL, 0);
temp = DWC_OTG_READ_4(sc, DOTG_GLPMCFG);
DWC_OTG_WRITE_4(sc, DOTG_GLPMCFG,
temp & ~GLPMCFG_HSIC_CONN);
break;
case DWC_OTG_PHY_INTERNAL:
DWC_OTG_WRITE_4(sc, DOTG_GUSBCFG,
GUSBCFG_PHYSEL |
GUSBCFG_TRD_TIM_SET(5) | temp);
DWC_OTG_WRITE_4(sc, DOTG_GOTGCTL, 0);
temp = DWC_OTG_READ_4(sc, DOTG_GLPMCFG);
DWC_OTG_WRITE_4(sc, DOTG_GLPMCFG,
temp & ~GLPMCFG_HSIC_CONN);
temp = DWC_OTG_READ_4(sc, DOTG_GGPIO);
temp &= ~(DOTG_GGPIO_NOVBUSSENS | DOTG_GGPIO_I2CPADEN);
temp |= (DOTG_GGPIO_VBUSASEN | DOTG_GGPIO_VBUSBSEN |
DOTG_GGPIO_PWRDWN);
DWC_OTG_WRITE_4(sc, DOTG_GGPIO, temp);
break;
default:
break;
}
/* clear global nak */
DWC_OTG_WRITE_4(sc, DOTG_DCTL,
DCTL_CGOUTNAK |
DCTL_CGNPINNAK);
/* disable USB port */
DWC_OTG_WRITE_4(sc, DOTG_PCGCCTL, 0xFFFFFFFF);
/* wait 10ms */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 100);
/* enable USB port */
DWC_OTG_WRITE_4(sc, DOTG_PCGCCTL, 0);
/* wait 10ms */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 100);
temp = DWC_OTG_READ_4(sc, DOTG_GHWCFG3);
sc->sc_fifo_size = 4 * GHWCFG3_DFIFODEPTH_GET(temp);
temp = DWC_OTG_READ_4(sc, DOTG_GHWCFG2);
sc->sc_dev_ep_max = GHWCFG2_NUMDEVEPS_GET(temp);
if (sc->sc_dev_ep_max > DWC_OTG_MAX_ENDPOINTS)
sc->sc_dev_ep_max = DWC_OTG_MAX_ENDPOINTS;
sc->sc_host_ch_max = GHWCFG2_NUMHSTCHNL_GET(temp);
if (sc->sc_host_ch_max > DWC_OTG_MAX_CHANNELS)
sc->sc_host_ch_max = DWC_OTG_MAX_CHANNELS;
temp = DWC_OTG_READ_4(sc, DOTG_GHWCFG4);
sc->sc_dev_in_ep_max = GHWCFG4_NUM_IN_EP_GET(temp);
DPRINTF("Total FIFO size = %d bytes, Device EPs = %d/%d Host CHs = %d\n",
sc->sc_fifo_size, sc->sc_dev_ep_max, sc->sc_dev_in_ep_max,
sc->sc_host_ch_max);
/* setup FIFO */
if (dwc_otg_init_fifo(sc, sc->sc_mode)) {
USB_BUS_UNLOCK(&sc->sc_bus);
return (EINVAL);
}
/* enable interrupts */
sc->sc_irq_mask |= DWC_OTG_MSK_GINT_THREAD_IRQ;
DWC_OTG_WRITE_4(sc, DOTG_GINTMSK, sc->sc_irq_mask);
if (sc->sc_mode == DWC_MODE_OTG || sc->sc_mode == DWC_MODE_DEVICE) {
/* enable all endpoint interrupts */
temp = DWC_OTG_READ_4(sc, DOTG_GHWCFG2);
if (temp & GHWCFG2_MPI) {
uint8_t x;
DPRINTF("Disable Multi Process Interrupts\n");
for (x = 0; x != sc->sc_dev_in_ep_max; x++) {
DWC_OTG_WRITE_4(sc, DOTG_DIEPEACHINTMSK(x), 0);
DWC_OTG_WRITE_4(sc, DOTG_DOEPEACHINTMSK(x), 0);
}
DWC_OTG_WRITE_4(sc, DOTG_DEACHINTMSK, 0);
}
DWC_OTG_WRITE_4(sc, DOTG_DIEPMSK,
DIEPMSK_XFERCOMPLMSK);
DWC_OTG_WRITE_4(sc, DOTG_DOEPMSK, 0);
DWC_OTG_WRITE_4(sc, DOTG_DAINTMSK, 0xFFFF);
}
if (sc->sc_mode == DWC_MODE_OTG || sc->sc_mode == DWC_MODE_HOST) {
/* setup clocks */
temp = DWC_OTG_READ_4(sc, DOTG_HCFG);
temp &= ~(HCFG_FSLSSUPP | HCFG_FSLSPCLKSEL_MASK);
temp |= (1 << HCFG_FSLSPCLKSEL_SHIFT);
DWC_OTG_WRITE_4(sc, DOTG_HCFG, temp);
}
/* only enable global IRQ */
DWC_OTG_WRITE_4(sc, DOTG_GAHBCFG,
GAHBCFG_GLBLINTRMSK);
/* turn off clocks */
dwc_otg_clocks_off(sc);
/* read initial VBUS state */
temp = DWC_OTG_READ_4(sc, DOTG_GOTGCTL);
DPRINTFN(5, "GOTCTL=0x%08x\n", temp);
dwc_otg_vbus_interrupt(sc,
(temp & (GOTGCTL_ASESVLD | GOTGCTL_BSESVLD)) ? 1 : 0);
USB_BUS_UNLOCK(&sc->sc_bus);
/* catch any lost interrupts */
dwc_otg_do_poll(&sc->sc_bus);
return (0); /* success */
}
void
dwc_otg_uninit(struct dwc_otg_softc *sc)
{
USB_BUS_LOCK(&sc->sc_bus);
/* stop host timer */
dwc_otg_timer_stop(sc);
/* set disconnect */
DWC_OTG_WRITE_4(sc, DOTG_DCTL,
DCTL_SFTDISCON);
/* turn off global IRQ */
DWC_OTG_WRITE_4(sc, DOTG_GAHBCFG, 0);
sc->sc_flags.port_enabled = 0;
sc->sc_flags.port_powered = 0;
sc->sc_flags.status_vbus = 0;
sc->sc_flags.status_bus_reset = 0;
sc->sc_flags.status_suspend = 0;
sc->sc_flags.change_suspend = 0;
sc->sc_flags.change_connect = 1;
dwc_otg_pull_down(sc);
dwc_otg_clocks_off(sc);
USB_BUS_UNLOCK(&sc->sc_bus);
usb_callout_drain(&sc->sc_timer);
}
static void
dwc_otg_suspend(struct dwc_otg_softc *sc)
{
return;
}
static void
dwc_otg_resume(struct dwc_otg_softc *sc)
{
return;
}
static void
dwc_otg_do_poll(struct usb_bus *bus)
{
struct dwc_otg_softc *sc = DWC_OTG_BUS2SC(bus);
USB_BUS_LOCK(&sc->sc_bus);
USB_BUS_SPIN_LOCK(&sc->sc_bus);
dwc_otg_interrupt_poll_locked(sc);
dwc_otg_interrupt_complete_locked(sc);
USB_BUS_SPIN_UNLOCK(&sc->sc_bus);
USB_BUS_UNLOCK(&sc->sc_bus);
}
/*------------------------------------------------------------------------*
* DWC OTG bulk support
* DWC OTG control support
* DWC OTG interrupt support
*------------------------------------------------------------------------*/
static void
dwc_otg_device_non_isoc_open(struct usb_xfer *xfer)
{
}
static void
dwc_otg_device_non_isoc_close(struct usb_xfer *xfer)
{
dwc_otg_device_done(xfer, USB_ERR_CANCELLED);
}
static void
dwc_otg_device_non_isoc_enter(struct usb_xfer *xfer)
{
}
static void
dwc_otg_device_non_isoc_start(struct usb_xfer *xfer)
{
/* setup TDs */
dwc_otg_setup_standard_chain(xfer);
dwc_otg_start_standard_chain(xfer);
}
static const struct usb_pipe_methods dwc_otg_device_non_isoc_methods =
{
.open = dwc_otg_device_non_isoc_open,
.close = dwc_otg_device_non_isoc_close,
.enter = dwc_otg_device_non_isoc_enter,
.start = dwc_otg_device_non_isoc_start,
};
/*------------------------------------------------------------------------*
* DWC OTG full speed isochronous support
*------------------------------------------------------------------------*/
static void
dwc_otg_device_isoc_open(struct usb_xfer *xfer)
{
}
static void
dwc_otg_device_isoc_close(struct usb_xfer *xfer)
{
dwc_otg_device_done(xfer, USB_ERR_CANCELLED);
}
static void
dwc_otg_device_isoc_enter(struct usb_xfer *xfer)
{
}
static void
dwc_otg_device_isoc_start(struct usb_xfer *xfer)
{
struct dwc_otg_softc *sc = DWC_OTG_BUS2SC(xfer->xroot->bus);
uint32_t temp;
uint32_t msframes;
uint32_t framenum;
uint8_t shift = usbd_xfer_get_fps_shift(xfer);
DPRINTFN(6, "xfer=%p next=%d nframes=%d\n",
xfer, xfer->endpoint->isoc_next, xfer->nframes);
if (xfer->xroot->udev->flags.usb_mode == USB_MODE_HOST) {
temp = DWC_OTG_READ_4(sc, DOTG_HFNUM);
/* get the current frame index */
framenum = (temp & HFNUM_FRNUM_MASK);
} else {
temp = DWC_OTG_READ_4(sc, DOTG_DSTS);
/* get the current frame index */
framenum = DSTS_SOFFN_GET(temp);
}
/*
* Check if port is doing 8000 or 1000 frames per second:
*/
if (sc->sc_flags.status_high_speed)
framenum /= 8;
framenum &= DWC_OTG_FRAME_MASK;
/*
* Compute number of milliseconds worth of data traffic for
* this USB transfer:
*/
if (xfer->xroot->udev->speed == USB_SPEED_HIGH)
msframes = ((xfer->nframes << shift) + 7) / 8;
else
msframes = xfer->nframes;
/*
* check if the frame index is within the window where the frames
* will be inserted
*/
temp = (framenum - xfer->endpoint->isoc_next) & DWC_OTG_FRAME_MASK;
if ((xfer->endpoint->is_synced == 0) || (temp < msframes)) {
/*
* If there is data underflow or the pipe queue is
* empty we schedule the transfer a few frames ahead
* of the current frame position. Else two isochronous
* transfers might overlap.
*/
xfer->endpoint->isoc_next = (framenum + 3) & DWC_OTG_FRAME_MASK;
xfer->endpoint->is_synced = 1;
DPRINTFN(3, "start next=%d\n", xfer->endpoint->isoc_next);
}
/*
* compute how many milliseconds the insertion is ahead of the
* current frame position:
*/
temp = (xfer->endpoint->isoc_next - framenum) & DWC_OTG_FRAME_MASK;
/*
* pre-compute when the isochronous transfer will be finished:
*/
xfer->isoc_time_complete =
usb_isoc_time_expand(&sc->sc_bus, framenum) + temp + msframes;
/* setup TDs */
dwc_otg_setup_standard_chain(xfer);
/* compute frame number for next insertion */
xfer->endpoint->isoc_next += msframes;
/* start TD chain */
dwc_otg_start_standard_chain(xfer);
}
static const struct usb_pipe_methods dwc_otg_device_isoc_methods =
{
.open = dwc_otg_device_isoc_open,
.close = dwc_otg_device_isoc_close,
.enter = dwc_otg_device_isoc_enter,
.start = dwc_otg_device_isoc_start,
};
/*------------------------------------------------------------------------*
* DWC OTG root control support
*------------------------------------------------------------------------*
* Simulate a hardware HUB by handling all the necessary requests.
*------------------------------------------------------------------------*/
static const struct usb_device_descriptor dwc_otg_devd = {
.bLength = sizeof(struct usb_device_descriptor),
.bDescriptorType = UDESC_DEVICE,
.bcdUSB = {0x00, 0x02},
.bDeviceClass = UDCLASS_HUB,
.bDeviceSubClass = UDSUBCLASS_HUB,
.bDeviceProtocol = UDPROTO_HSHUBSTT,
.bMaxPacketSize = 64,
.bcdDevice = {0x00, 0x01},
.iManufacturer = 1,
.iProduct = 2,
.bNumConfigurations = 1,
};
static const struct dwc_otg_config_desc dwc_otg_confd = {
.confd = {
.bLength = sizeof(struct usb_config_descriptor),
.bDescriptorType = UDESC_CONFIG,
.wTotalLength[0] = sizeof(dwc_otg_confd),
.bNumInterface = 1,
.bConfigurationValue = 1,
.iConfiguration = 0,
.bmAttributes = UC_SELF_POWERED,
.bMaxPower = 0,
},
.ifcd = {
.bLength = sizeof(struct usb_interface_descriptor),
.bDescriptorType = UDESC_INTERFACE,
.bNumEndpoints = 1,
.bInterfaceClass = UICLASS_HUB,
.bInterfaceSubClass = UISUBCLASS_HUB,
.bInterfaceProtocol = 0,
},
.endpd = {
.bLength = sizeof(struct usb_endpoint_descriptor),
.bDescriptorType = UDESC_ENDPOINT,
.bEndpointAddress = (UE_DIR_IN | DWC_OTG_INTR_ENDPT),
.bmAttributes = UE_INTERRUPT,
.wMaxPacketSize[0] = 8,
.bInterval = 255,
},
};
#define HSETW(ptr, val) ptr = { (uint8_t)(val), (uint8_t)((val) >> 8) }
static const struct usb_hub_descriptor_min dwc_otg_hubd = {
.bDescLength = sizeof(dwc_otg_hubd),
.bDescriptorType = UDESC_HUB,
.bNbrPorts = 1,
HSETW(.wHubCharacteristics, (UHD_PWR_NO_SWITCH | UHD_OC_INDIVIDUAL)),
.bPwrOn2PwrGood = 50,
.bHubContrCurrent = 0,
.DeviceRemovable = {0}, /* port is removable */
};
#define STRING_VENDOR \
"D\0W\0C\0O\0T\0G"
#define STRING_PRODUCT \
"O\0T\0G\0 \0R\0o\0o\0t\0 \0H\0U\0B"
USB_MAKE_STRING_DESC(STRING_VENDOR, dwc_otg_vendor);
USB_MAKE_STRING_DESC(STRING_PRODUCT, dwc_otg_product);
static usb_error_t
dwc_otg_roothub_exec(struct usb_device *udev,
struct usb_device_request *req, const void **pptr, uint16_t *plength)
{
struct dwc_otg_softc *sc = DWC_OTG_BUS2SC(udev->bus);
const void *ptr;
uint16_t len;
uint16_t value;
uint16_t index;
usb_error_t err;
USB_BUS_LOCK_ASSERT(&sc->sc_bus, MA_OWNED);
/* buffer reset */
ptr = (const void *)&sc->sc_hub_temp;
len = 0;
err = 0;
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
/* demultiplex the control request */
switch (req->bmRequestType) {
case UT_READ_DEVICE:
switch (req->bRequest) {
case UR_GET_DESCRIPTOR:
goto tr_handle_get_descriptor;
case UR_GET_CONFIG:
goto tr_handle_get_config;
case UR_GET_STATUS:
goto tr_handle_get_status;
default:
goto tr_stalled;
}
break;
case UT_WRITE_DEVICE:
switch (req->bRequest) {
case UR_SET_ADDRESS:
goto tr_handle_set_address;
case UR_SET_CONFIG:
goto tr_handle_set_config;
case UR_CLEAR_FEATURE:
goto tr_valid; /* nop */
case UR_SET_DESCRIPTOR:
goto tr_valid; /* nop */
case UR_SET_FEATURE:
default:
goto tr_stalled;
}
break;
case UT_WRITE_ENDPOINT:
switch (req->bRequest) {
case UR_CLEAR_FEATURE:
switch (UGETW(req->wValue)) {
case UF_ENDPOINT_HALT:
goto tr_handle_clear_halt;
case UF_DEVICE_REMOTE_WAKEUP:
goto tr_handle_clear_wakeup;
default:
goto tr_stalled;
}
break;
case UR_SET_FEATURE:
switch (UGETW(req->wValue)) {
case UF_ENDPOINT_HALT:
goto tr_handle_set_halt;
case UF_DEVICE_REMOTE_WAKEUP:
goto tr_handle_set_wakeup;
default:
goto tr_stalled;
}
break;
case UR_SYNCH_FRAME:
goto tr_valid; /* nop */
default:
goto tr_stalled;
}
break;
case UT_READ_ENDPOINT:
switch (req->bRequest) {
case UR_GET_STATUS:
goto tr_handle_get_ep_status;
default:
goto tr_stalled;
}
break;
case UT_WRITE_INTERFACE:
switch (req->bRequest) {
case UR_SET_INTERFACE:
goto tr_handle_set_interface;
case UR_CLEAR_FEATURE:
goto tr_valid; /* nop */
case UR_SET_FEATURE:
default:
goto tr_stalled;
}
break;
case UT_READ_INTERFACE:
switch (req->bRequest) {
case UR_GET_INTERFACE:
goto tr_handle_get_interface;
case UR_GET_STATUS:
goto tr_handle_get_iface_status;
default:
goto tr_stalled;
}
break;
case UT_WRITE_CLASS_INTERFACE:
case UT_WRITE_VENDOR_INTERFACE:
/* XXX forward */
break;
case UT_READ_CLASS_INTERFACE:
case UT_READ_VENDOR_INTERFACE:
/* XXX forward */
break;
case UT_WRITE_CLASS_DEVICE:
switch (req->bRequest) {
case UR_CLEAR_FEATURE:
goto tr_valid;
case UR_SET_DESCRIPTOR:
case UR_SET_FEATURE:
break;
default:
goto tr_stalled;
}
break;
case UT_WRITE_CLASS_OTHER:
switch (req->bRequest) {
case UR_CLEAR_FEATURE:
goto tr_handle_clear_port_feature;
case UR_SET_FEATURE:
goto tr_handle_set_port_feature;
case UR_CLEAR_TT_BUFFER:
case UR_RESET_TT:
case UR_STOP_TT:
goto tr_valid;
default:
goto tr_stalled;
}
break;
case UT_READ_CLASS_OTHER:
switch (req->bRequest) {
case UR_GET_TT_STATE:
goto tr_handle_get_tt_state;
case UR_GET_STATUS:
goto tr_handle_get_port_status;
default:
goto tr_stalled;
}
break;
case UT_READ_CLASS_DEVICE:
switch (req->bRequest) {
case UR_GET_DESCRIPTOR:
goto tr_handle_get_class_descriptor;
case UR_GET_STATUS:
goto tr_handle_get_class_status;
default:
goto tr_stalled;
}
break;
default:
goto tr_stalled;
}
goto tr_valid;
tr_handle_get_descriptor:
switch (value >> 8) {
case UDESC_DEVICE:
if (value & 0xff) {
goto tr_stalled;
}
len = sizeof(dwc_otg_devd);
ptr = (const void *)&dwc_otg_devd;
goto tr_valid;
case UDESC_CONFIG:
if (value & 0xff) {
goto tr_stalled;
}
len = sizeof(dwc_otg_confd);
ptr = (const void *)&dwc_otg_confd;
goto tr_valid;
case UDESC_STRING:
switch (value & 0xff) {
case 0: /* Language table */
len = sizeof(usb_string_lang_en);
ptr = (const void *)&usb_string_lang_en;
goto tr_valid;
case 1: /* Vendor */
len = sizeof(dwc_otg_vendor);
ptr = (const void *)&dwc_otg_vendor;
goto tr_valid;
case 2: /* Product */
len = sizeof(dwc_otg_product);
ptr = (const void *)&dwc_otg_product;
goto tr_valid;
default:
break;
}
break;
default:
goto tr_stalled;
}
goto tr_stalled;
tr_handle_get_config:
len = 1;
sc->sc_hub_temp.wValue[0] = sc->sc_conf;
goto tr_valid;
tr_handle_get_status:
len = 2;
USETW(sc->sc_hub_temp.wValue, UDS_SELF_POWERED);
goto tr_valid;
tr_handle_set_address:
if (value & 0xFF00) {
goto tr_stalled;
}
sc->sc_rt_addr = value;
goto tr_valid;
tr_handle_set_config:
if (value >= 2) {
goto tr_stalled;
}
sc->sc_conf = value;
goto tr_valid;
tr_handle_get_interface:
len = 1;
sc->sc_hub_temp.wValue[0] = 0;
goto tr_valid;
tr_handle_get_tt_state:
tr_handle_get_class_status:
tr_handle_get_iface_status:
tr_handle_get_ep_status:
len = 2;
USETW(sc->sc_hub_temp.wValue, 0);
goto tr_valid;
tr_handle_set_halt:
tr_handle_set_interface:
tr_handle_set_wakeup:
tr_handle_clear_wakeup:
tr_handle_clear_halt:
goto tr_valid;
tr_handle_clear_port_feature:
if (index != 1)
goto tr_stalled;
DPRINTFN(9, "UR_CLEAR_PORT_FEATURE on port %d\n", index);
switch (value) {
case UHF_PORT_SUSPEND:
dwc_otg_wakeup_peer(sc);
break;
case UHF_PORT_ENABLE:
if (sc->sc_flags.status_device_mode == 0) {
DWC_OTG_WRITE_4(sc, DOTG_HPRT,
sc->sc_hprt_val | HPRT_PRTENA);
}
sc->sc_flags.port_enabled = 0;
break;
case UHF_C_PORT_RESET:
sc->sc_flags.change_reset = 0;
break;
case UHF_C_PORT_ENABLE:
sc->sc_flags.change_enabled = 0;
break;
case UHF_C_PORT_OVER_CURRENT:
sc->sc_flags.change_over_current = 0;
break;
case UHF_PORT_TEST:
case UHF_PORT_INDICATOR:
/* nops */
break;
case UHF_PORT_POWER:
sc->sc_flags.port_powered = 0;
if (sc->sc_mode == DWC_MODE_HOST || sc->sc_mode == DWC_MODE_OTG) {
sc->sc_hprt_val = 0;
DWC_OTG_WRITE_4(sc, DOTG_HPRT, HPRT_PRTENA);
}
dwc_otg_pull_down(sc);
dwc_otg_clocks_off(sc);
break;
case UHF_C_PORT_CONNECTION:
/* clear connect change flag */
sc->sc_flags.change_connect = 0;
break;
case UHF_C_PORT_SUSPEND:
sc->sc_flags.change_suspend = 0;
break;
default:
err = USB_ERR_IOERROR;
goto done;
}
goto tr_valid;
tr_handle_set_port_feature:
if (index != 1) {
goto tr_stalled;
}
DPRINTFN(9, "UR_SET_PORT_FEATURE\n");
switch (value) {
case UHF_PORT_ENABLE:
break;
case UHF_PORT_SUSPEND:
if (sc->sc_flags.status_device_mode == 0) {
/* set suspend BIT */
sc->sc_hprt_val |= HPRT_PRTSUSP;
DWC_OTG_WRITE_4(sc, DOTG_HPRT, sc->sc_hprt_val);
/* generate HUB suspend event */
dwc_otg_suspend_irq(sc);
}
break;
case UHF_PORT_RESET:
if (sc->sc_flags.status_device_mode == 0) {
DPRINTF("PORT RESET\n");
/* enable PORT reset */
DWC_OTG_WRITE_4(sc, DOTG_HPRT, sc->sc_hprt_val | HPRT_PRTRST);
/* Wait 62.5ms for reset to complete */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 16);
DWC_OTG_WRITE_4(sc, DOTG_HPRT, sc->sc_hprt_val);
/* Wait 62.5ms for reset to complete */
usb_pause_mtx(&sc->sc_bus.bus_mtx, hz / 16);
/* reset FIFOs */
(void) dwc_otg_init_fifo(sc, DWC_MODE_HOST);
sc->sc_flags.change_reset = 1;
} else {
err = USB_ERR_IOERROR;
}
break;
case UHF_PORT_TEST:
case UHF_PORT_INDICATOR:
/* nops */
break;
case UHF_PORT_POWER:
sc->sc_flags.port_powered = 1;
if (sc->sc_mode == DWC_MODE_HOST || sc->sc_mode == DWC_MODE_OTG) {
sc->sc_hprt_val |= HPRT_PRTPWR;
DWC_OTG_WRITE_4(sc, DOTG_HPRT, sc->sc_hprt_val);
}
if (sc->sc_mode == DWC_MODE_DEVICE || sc->sc_mode == DWC_MODE_OTG) {
/* pull up D+, if any */
dwc_otg_pull_up(sc);
}
break;
default:
err = USB_ERR_IOERROR;
goto done;
}
goto tr_valid;
tr_handle_get_port_status:
DPRINTFN(9, "UR_GET_PORT_STATUS\n");
if (index != 1)
goto tr_stalled;
if (sc->sc_flags.status_vbus)
dwc_otg_clocks_on(sc);
else
dwc_otg_clocks_off(sc);
/* Select Device Side Mode */
if (sc->sc_flags.status_device_mode) {
value = UPS_PORT_MODE_DEVICE;
dwc_otg_timer_stop(sc);
} else {
value = 0;
dwc_otg_timer_start(sc);
}
if (sc->sc_flags.status_high_speed)
value |= UPS_HIGH_SPEED;
else if (sc->sc_flags.status_low_speed)
value |= UPS_LOW_SPEED;
if (sc->sc_flags.port_powered)
value |= UPS_PORT_POWER;
if (sc->sc_flags.port_enabled)
value |= UPS_PORT_ENABLED;
if (sc->sc_flags.port_over_current)
value |= UPS_OVERCURRENT_INDICATOR;
if (sc->sc_flags.status_vbus &&
sc->sc_flags.status_bus_reset)
value |= UPS_CURRENT_CONNECT_STATUS;
if (sc->sc_flags.status_suspend)
value |= UPS_SUSPEND;
USETW(sc->sc_hub_temp.ps.wPortStatus, value);
value = 0;
if (sc->sc_flags.change_enabled)
value |= UPS_C_PORT_ENABLED;
if (sc->sc_flags.change_connect)
value |= UPS_C_CONNECT_STATUS;
if (sc->sc_flags.change_suspend)
value |= UPS_C_SUSPEND;
if (sc->sc_flags.change_reset)
value |= UPS_C_PORT_RESET;
if (sc->sc_flags.change_over_current)
value |= UPS_C_OVERCURRENT_INDICATOR;
USETW(sc->sc_hub_temp.ps.wPortChange, value);
len = sizeof(sc->sc_hub_temp.ps);
goto tr_valid;
tr_handle_get_class_descriptor:
if (value & 0xFF) {
goto tr_stalled;
}
ptr = (const void *)&dwc_otg_hubd;
len = sizeof(dwc_otg_hubd);
goto tr_valid;
tr_stalled:
err = USB_ERR_STALLED;
tr_valid:
done:
*plength = len;
*pptr = ptr;
return (err);
}
static void
dwc_otg_xfer_setup(struct usb_setup_params *parm)
{
struct usb_xfer *xfer;
void *last_obj;
uint32_t ntd;
uint32_t n;
uint8_t ep_no;
uint8_t ep_type;
xfer = parm->curr_xfer;
/*
* NOTE: This driver does not use any of the parameters that
* are computed from the following values. Just set some
* reasonable dummies:
*/
parm->hc_max_packet_size = 0x500;
parm->hc_max_packet_count = 3;
parm->hc_max_frame_size = 3 * 0x500;
usbd_transfer_setup_sub(parm);
/*
* compute maximum number of TDs
*/
ep_type = (xfer->endpoint->edesc->bmAttributes & UE_XFERTYPE);
if (ep_type == UE_CONTROL) {
ntd = xfer->nframes + 1 /* STATUS */ + 1 /* SYNC 1 */
+ 1 /* SYNC 2 */ + 1 /* SYNC 3 */;
} else {
ntd = xfer->nframes + 1 /* SYNC */ ;
}
/*
* check if "usbd_transfer_setup_sub" set an error
*/
if (parm->err)
return;
/*
* allocate transfer descriptors
*/
last_obj = NULL;
ep_no = xfer->endpointno & UE_ADDR;
/*
* Check for a valid endpoint profile in USB device mode:
*/
if (xfer->flags_int.usb_mode == USB_MODE_DEVICE) {
const struct usb_hw_ep_profile *pf;
dwc_otg_get_hw_ep_profile(parm->udev, &pf, ep_no);
if (pf == NULL) {
/* should not happen */
parm->err = USB_ERR_INVAL;
return;
}
}
/* align data */
parm->size[0] += ((-parm->size[0]) & (USB_HOST_ALIGN - 1));
for (n = 0; n != ntd; n++) {
struct dwc_otg_td *td;
if (parm->buf) {
td = USB_ADD_BYTES(parm->buf, parm->size[0]);
/* compute shared bandwidth resource index for TT */
if (dwc_otg_uses_split(parm->udev)) {
if (parm->udev->parent_hs_hub->ddesc.bDeviceProtocol == UDPROTO_HSHUBMTT)
td->tt_index = parm->udev->device_index;
else
td->tt_index = parm->udev->parent_hs_hub->device_index;
} else {
td->tt_index = parm->udev->device_index;
}
/* init TD */
td->max_packet_size = xfer->max_packet_size;
td->max_packet_count = xfer->max_packet_count;
/* range check */
if (td->max_packet_count == 0 || td->max_packet_count > 3)
td->max_packet_count = 1;
td->ep_no = ep_no;
td->ep_type = ep_type;
td->obj_next = last_obj;
last_obj = td;
}
parm->size[0] += sizeof(*td);
}
xfer->td_start[0] = last_obj;
}
static void
dwc_otg_xfer_unsetup(struct usb_xfer *xfer)
{
return;
}
static void
dwc_otg_ep_init(struct usb_device *udev, struct usb_endpoint_descriptor *edesc,
struct usb_endpoint *ep)
{
struct dwc_otg_softc *sc = DWC_OTG_BUS2SC(udev->bus);
DPRINTFN(2, "endpoint=%p, addr=%d, endpt=%d, mode=%d (%d,%d)\n",
ep, udev->address,
edesc->bEndpointAddress, udev->flags.usb_mode,
sc->sc_rt_addr, udev->device_index);
if (udev->device_index != sc->sc_rt_addr) {
if (udev->flags.usb_mode == USB_MODE_DEVICE) {
if (udev->speed != USB_SPEED_FULL &&
udev->speed != USB_SPEED_HIGH) {
/* not supported */
return;
}
} else {
if (udev->speed == USB_SPEED_HIGH &&
(edesc->wMaxPacketSize[1] & 0x18) != 0 &&
(edesc->bmAttributes & UE_XFERTYPE) != UE_ISOCHRONOUS) {
/* not supported */
DPRINTFN(-1, "Non-isochronous high bandwidth "
"endpoint not supported\n");
return;
}
}
if ((edesc->bmAttributes & UE_XFERTYPE) == UE_ISOCHRONOUS)
ep->methods = &dwc_otg_device_isoc_methods;
else
ep->methods = &dwc_otg_device_non_isoc_methods;
}
}
static void
dwc_otg_set_hw_power_sleep(struct usb_bus *bus, uint32_t state)
{
struct dwc_otg_softc *sc = DWC_OTG_BUS2SC(bus);
switch (state) {
case USB_HW_POWER_SUSPEND:
dwc_otg_suspend(sc);
break;
case USB_HW_POWER_SHUTDOWN:
dwc_otg_uninit(sc);
break;
case USB_HW_POWER_RESUME:
dwc_otg_resume(sc);
break;
default:
break;
}
}
static void
dwc_otg_get_dma_delay(struct usb_device *udev, uint32_t *pus)
{
/* DMA delay - wait until any use of memory is finished */
*pus = (2125); /* microseconds */
}
static void
dwc_otg_device_resume(struct usb_device *udev)
{
DPRINTF("\n");
/* poll all transfers again to restart resumed ones */
dwc_otg_do_poll(udev->bus);
}
static void
dwc_otg_device_suspend(struct usb_device *udev)
{
DPRINTF("\n");
}
static const struct usb_bus_methods dwc_otg_bus_methods =
{
.endpoint_init = &dwc_otg_ep_init,
.xfer_setup = &dwc_otg_xfer_setup,
.xfer_unsetup = &dwc_otg_xfer_unsetup,
.get_hw_ep_profile = &dwc_otg_get_hw_ep_profile,
.xfer_stall = &dwc_otg_xfer_stall,
.set_stall = &dwc_otg_set_stall,
.clear_stall = &dwc_otg_clear_stall,
.roothub_exec = &dwc_otg_roothub_exec,
.xfer_poll = &dwc_otg_do_poll,
.device_state_change = &dwc_otg_device_state_change,
.set_hw_power_sleep = &dwc_otg_set_hw_power_sleep,
.get_dma_delay = &dwc_otg_get_dma_delay,
.device_resume = &dwc_otg_device_resume,
.device_suspend = &dwc_otg_device_suspend,
};