freebsd-nq/sys/dev/sfxge/sfxge_tx.c
Pedro F. Giffuni 453130d9bf sys/dev: minor spelling fixes.
Most affect comments, very few have user-visible effects.
2016-05-03 03:41:25 +00:00

1989 lines
52 KiB
C

/*-
* Copyright (c) 2010-2015 Solarflare Communications Inc.
* All rights reserved.
*
* This software was developed in part by Philip Paeps under contract for
* Solarflare Communications, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation are
* those of the authors and should not be interpreted as representing official
* policies, either expressed or implied, of the FreeBSD Project.
*/
/* Theory of operation:
*
* Tx queues allocation and mapping
*
* One Tx queue with enabled checksum offload is allocated per Rx channel
* (event queue). Also 2 Tx queues (one without checksum offload and one
* with IP checksum offload only) are allocated and bound to event queue 0.
* sfxge_txq_type is used as Tx queue label.
*
* So, event queue plus label mapping to Tx queue index is:
* if event queue index is 0, TxQ-index = TxQ-label * [0..SFXGE_TXQ_NTYPES)
* else TxQ-index = SFXGE_TXQ_NTYPES + EvQ-index - 1
* See sfxge_get_txq_by_label() sfxge_ev.c
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/limits.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/tcp.h>
#include "common/efx.h"
#include "sfxge.h"
#include "sfxge_tx.h"
#define SFXGE_PARAM_TX_DPL_GET_MAX SFXGE_PARAM(tx_dpl_get_max)
static int sfxge_tx_dpl_get_max = SFXGE_TX_DPL_GET_PKT_LIMIT_DEFAULT;
TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_MAX, &sfxge_tx_dpl_get_max);
SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_max, CTLFLAG_RDTUN,
&sfxge_tx_dpl_get_max, 0,
"Maximum number of any packets in deferred packet get-list");
#define SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX \
SFXGE_PARAM(tx_dpl_get_non_tcp_max)
static int sfxge_tx_dpl_get_non_tcp_max =
SFXGE_TX_DPL_GET_NON_TCP_PKT_LIMIT_DEFAULT;
TUNABLE_INT(SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX, &sfxge_tx_dpl_get_non_tcp_max);
SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_get_non_tcp_max, CTLFLAG_RDTUN,
&sfxge_tx_dpl_get_non_tcp_max, 0,
"Maximum number of non-TCP packets in deferred packet get-list");
#define SFXGE_PARAM_TX_DPL_PUT_MAX SFXGE_PARAM(tx_dpl_put_max)
static int sfxge_tx_dpl_put_max = SFXGE_TX_DPL_PUT_PKT_LIMIT_DEFAULT;
TUNABLE_INT(SFXGE_PARAM_TX_DPL_PUT_MAX, &sfxge_tx_dpl_put_max);
SYSCTL_INT(_hw_sfxge, OID_AUTO, tx_dpl_put_max, CTLFLAG_RDTUN,
&sfxge_tx_dpl_put_max, 0,
"Maximum number of any packets in deferred packet put-list");
#define SFXGE_PARAM_TSO_FW_ASSISTED SFXGE_PARAM(tso_fw_assisted)
static int sfxge_tso_fw_assisted = (SFXGE_FATSOV1 | SFXGE_FATSOV2);
TUNABLE_INT(SFXGE_PARAM_TSO_FW_ASSISTED, &sfxge_tso_fw_assisted);
SYSCTL_INT(_hw_sfxge, OID_AUTO, tso_fw_assisted, CTLFLAG_RDTUN,
&sfxge_tso_fw_assisted, 0,
"Bitmask of FW-assisted TSO allowed to use if supported by NIC firmware");
static const struct {
const char *name;
size_t offset;
} sfxge_tx_stats[] = {
#define SFXGE_TX_STAT(name, member) \
{ #name, offsetof(struct sfxge_txq, member) }
SFXGE_TX_STAT(tso_bursts, tso_bursts),
SFXGE_TX_STAT(tso_packets, tso_packets),
SFXGE_TX_STAT(tso_long_headers, tso_long_headers),
SFXGE_TX_STAT(tso_pdrop_too_many, tso_pdrop_too_many),
SFXGE_TX_STAT(tso_pdrop_no_rsrc, tso_pdrop_no_rsrc),
SFXGE_TX_STAT(tx_collapses, collapses),
SFXGE_TX_STAT(tx_drops, drops),
SFXGE_TX_STAT(tx_get_overflow, get_overflow),
SFXGE_TX_STAT(tx_get_non_tcp_overflow, get_non_tcp_overflow),
SFXGE_TX_STAT(tx_put_overflow, put_overflow),
SFXGE_TX_STAT(tx_netdown_drops, netdown_drops),
};
/* Forward declarations. */
static void sfxge_tx_qdpl_service(struct sfxge_txq *txq);
static void sfxge_tx_qlist_post(struct sfxge_txq *txq);
static void sfxge_tx_qunblock(struct sfxge_txq *txq);
static int sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
const bus_dma_segment_t *dma_seg, int n_dma_seg,
int vlan_tagged);
static int
sfxge_tx_maybe_insert_tag(struct sfxge_txq *txq, struct mbuf *mbuf)
{
uint16_t this_tag = ((mbuf->m_flags & M_VLANTAG) ?
mbuf->m_pkthdr.ether_vtag :
0);
if (this_tag == txq->hw_vlan_tci)
return (0);
efx_tx_qdesc_vlantci_create(txq->common,
bswap16(this_tag),
&txq->pend_desc[0]);
txq->n_pend_desc = 1;
txq->hw_vlan_tci = this_tag;
return (1);
}
static inline void
sfxge_next_stmp(struct sfxge_txq *txq, struct sfxge_tx_mapping **pstmp)
{
KASSERT((*pstmp)->flags == 0, ("stmp flags are not 0"));
if (__predict_false(*pstmp ==
&txq->stmp[txq->ptr_mask]))
*pstmp = &txq->stmp[0];
else
(*pstmp)++;
}
void
sfxge_tx_qcomplete(struct sfxge_txq *txq, struct sfxge_evq *evq)
{
unsigned int completed;
SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
completed = txq->completed;
while (completed != txq->pending) {
struct sfxge_tx_mapping *stmp;
unsigned int id;
id = completed++ & txq->ptr_mask;
stmp = &txq->stmp[id];
if (stmp->flags & TX_BUF_UNMAP) {
bus_dmamap_unload(txq->packet_dma_tag, stmp->map);
if (stmp->flags & TX_BUF_MBUF) {
struct mbuf *m = stmp->u.mbuf;
do
m = m_free(m);
while (m != NULL);
} else {
free(stmp->u.heap_buf, M_SFXGE);
}
stmp->flags = 0;
}
}
txq->completed = completed;
/* Check whether we need to unblock the queue. */
mb();
if (txq->blocked) {
unsigned int level;
level = txq->added - txq->completed;
if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries))
sfxge_tx_qunblock(txq);
}
}
static unsigned int
sfxge_is_mbuf_non_tcp(struct mbuf *mbuf)
{
/* Absence of TCP checksum flags does not mean that it is non-TCP
* but it should be true if user wants to achieve high throughput.
*/
return (!(mbuf->m_pkthdr.csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)));
}
/*
* Reorder the put list and append it to the get list.
*/
static void
sfxge_tx_qdpl_swizzle(struct sfxge_txq *txq)
{
struct sfxge_tx_dpl *stdp;
struct mbuf *mbuf, *get_next, **get_tailp;
volatile uintptr_t *putp;
uintptr_t put;
unsigned int count;
unsigned int non_tcp_count;
SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
stdp = &txq->dpl;
/* Acquire the put list. */
putp = &stdp->std_put;
put = atomic_readandclear_ptr(putp);
mbuf = (void *)put;
if (mbuf == NULL)
return;
/* Reverse the put list. */
get_tailp = &mbuf->m_nextpkt;
get_next = NULL;
count = 0;
non_tcp_count = 0;
do {
struct mbuf *put_next;
non_tcp_count += sfxge_is_mbuf_non_tcp(mbuf);
put_next = mbuf->m_nextpkt;
mbuf->m_nextpkt = get_next;
get_next = mbuf;
mbuf = put_next;
count++;
} while (mbuf != NULL);
if (count > stdp->std_put_hiwat)
stdp->std_put_hiwat = count;
/* Append the reversed put list to the get list. */
KASSERT(*get_tailp == NULL, ("*get_tailp != NULL"));
*stdp->std_getp = get_next;
stdp->std_getp = get_tailp;
stdp->std_get_count += count;
stdp->std_get_non_tcp_count += non_tcp_count;
}
static void
sfxge_tx_qreap(struct sfxge_txq *txq)
{
SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
txq->reaped = txq->completed;
}
static void
sfxge_tx_qlist_post(struct sfxge_txq *txq)
{
unsigned int old_added;
unsigned int block_level;
unsigned int level;
int rc;
SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
KASSERT(txq->n_pend_desc != 0, ("txq->n_pend_desc == 0"));
KASSERT(txq->n_pend_desc <= txq->max_pkt_desc,
("txq->n_pend_desc too large"));
KASSERT(!txq->blocked, ("txq->blocked"));
old_added = txq->added;
/* Post the fragment list. */
rc = efx_tx_qdesc_post(txq->common, txq->pend_desc, txq->n_pend_desc,
txq->reaped, &txq->added);
KASSERT(rc == 0, ("efx_tx_qdesc_post() failed"));
/* If efx_tx_qdesc_post() had to refragment, our information about
* buffers to free may be associated with the wrong
* descriptors.
*/
KASSERT(txq->added - old_added == txq->n_pend_desc,
("efx_tx_qdesc_post() refragmented descriptors"));
level = txq->added - txq->reaped;
KASSERT(level <= txq->entries, ("overfilled TX queue"));
/* Clear the fragment list. */
txq->n_pend_desc = 0;
/*
* Set the block level to ensure there is space to generate a
* large number of descriptors for TSO.
*/
block_level = EFX_TXQ_LIMIT(txq->entries) - txq->max_pkt_desc;
/* Have we reached the block level? */
if (level < block_level)
return;
/* Reap, and check again */
sfxge_tx_qreap(txq);
level = txq->added - txq->reaped;
if (level < block_level)
return;
txq->blocked = 1;
/*
* Avoid a race with completion interrupt handling that could leave
* the queue blocked.
*/
mb();
sfxge_tx_qreap(txq);
level = txq->added - txq->reaped;
if (level < block_level) {
mb();
txq->blocked = 0;
}
}
static int sfxge_tx_queue_mbuf(struct sfxge_txq *txq, struct mbuf *mbuf)
{
bus_dmamap_t *used_map;
bus_dmamap_t map;
bus_dma_segment_t dma_seg[SFXGE_TX_MAPPING_MAX_SEG];
unsigned int id;
struct sfxge_tx_mapping *stmp;
efx_desc_t *desc;
int n_dma_seg;
int rc;
int i;
int eop;
int vlan_tagged;
KASSERT(!txq->blocked, ("txq->blocked"));
if (mbuf->m_pkthdr.csum_flags & CSUM_TSO)
prefetch_read_many(mbuf->m_data);
if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED)) {
rc = EINTR;
goto reject;
}
/* Load the packet for DMA. */
id = txq->added & txq->ptr_mask;
stmp = &txq->stmp[id];
rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag, stmp->map,
mbuf, dma_seg, &n_dma_seg, 0);
if (rc == EFBIG) {
/* Try again. */
struct mbuf *new_mbuf = m_collapse(mbuf, M_NOWAIT,
SFXGE_TX_MAPPING_MAX_SEG);
if (new_mbuf == NULL)
goto reject;
++txq->collapses;
mbuf = new_mbuf;
rc = bus_dmamap_load_mbuf_sg(txq->packet_dma_tag,
stmp->map, mbuf,
dma_seg, &n_dma_seg, 0);
}
if (rc != 0)
goto reject;
/* Make the packet visible to the hardware. */
bus_dmamap_sync(txq->packet_dma_tag, stmp->map, BUS_DMASYNC_PREWRITE);
used_map = &stmp->map;
vlan_tagged = sfxge_tx_maybe_insert_tag(txq, mbuf);
if (vlan_tagged) {
sfxge_next_stmp(txq, &stmp);
}
if (mbuf->m_pkthdr.csum_flags & CSUM_TSO) {
rc = sfxge_tx_queue_tso(txq, mbuf, dma_seg, n_dma_seg, vlan_tagged);
if (rc < 0)
goto reject_mapped;
stmp = &txq->stmp[(rc - 1) & txq->ptr_mask];
} else {
/* Add the mapping to the fragment list, and set flags
* for the buffer.
*/
i = 0;
for (;;) {
desc = &txq->pend_desc[i + vlan_tagged];
eop = (i == n_dma_seg - 1);
efx_tx_qdesc_dma_create(txq->common,
dma_seg[i].ds_addr,
dma_seg[i].ds_len,
eop,
desc);
if (eop)
break;
i++;
sfxge_next_stmp(txq, &stmp);
}
txq->n_pend_desc = n_dma_seg + vlan_tagged;
}
/*
* If the mapping required more than one descriptor
* then we need to associate the DMA map with the last
* descriptor, not the first.
*/
if (used_map != &stmp->map) {
map = stmp->map;
stmp->map = *used_map;
*used_map = map;
}
stmp->u.mbuf = mbuf;
stmp->flags = TX_BUF_UNMAP | TX_BUF_MBUF;
/* Post the fragment list. */
sfxge_tx_qlist_post(txq);
return (0);
reject_mapped:
bus_dmamap_unload(txq->packet_dma_tag, *used_map);
reject:
/* Drop the packet on the floor. */
m_freem(mbuf);
++txq->drops;
return (rc);
}
/*
* Drain the deferred packet list into the transmit queue.
*/
static void
sfxge_tx_qdpl_drain(struct sfxge_txq *txq)
{
struct sfxge_softc *sc;
struct sfxge_tx_dpl *stdp;
struct mbuf *mbuf, *next;
unsigned int count;
unsigned int non_tcp_count;
unsigned int pushed;
int rc;
SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
sc = txq->sc;
stdp = &txq->dpl;
pushed = txq->added;
if (__predict_true(txq->init_state == SFXGE_TXQ_STARTED)) {
prefetch_read_many(sc->enp);
prefetch_read_many(txq->common);
}
mbuf = stdp->std_get;
count = stdp->std_get_count;
non_tcp_count = stdp->std_get_non_tcp_count;
if (count > stdp->std_get_hiwat)
stdp->std_get_hiwat = count;
while (count != 0) {
KASSERT(mbuf != NULL, ("mbuf == NULL"));
next = mbuf->m_nextpkt;
mbuf->m_nextpkt = NULL;
ETHER_BPF_MTAP(sc->ifnet, mbuf); /* packet capture */
if (next != NULL)
prefetch_read_many(next);
rc = sfxge_tx_queue_mbuf(txq, mbuf);
--count;
non_tcp_count -= sfxge_is_mbuf_non_tcp(mbuf);
mbuf = next;
if (rc != 0)
continue;
if (txq->blocked)
break;
/* Push the fragments to the hardware in batches. */
if (txq->added - pushed >= SFXGE_TX_BATCH) {
efx_tx_qpush(txq->common, txq->added, pushed);
pushed = txq->added;
}
}
if (count == 0) {
KASSERT(mbuf == NULL, ("mbuf != NULL"));
KASSERT(non_tcp_count == 0,
("inconsistent TCP/non-TCP detection"));
stdp->std_get = NULL;
stdp->std_get_count = 0;
stdp->std_get_non_tcp_count = 0;
stdp->std_getp = &stdp->std_get;
} else {
stdp->std_get = mbuf;
stdp->std_get_count = count;
stdp->std_get_non_tcp_count = non_tcp_count;
}
if (txq->added != pushed)
efx_tx_qpush(txq->common, txq->added, pushed);
KASSERT(txq->blocked || stdp->std_get_count == 0,
("queue unblocked but count is non-zero"));
}
#define SFXGE_TX_QDPL_PENDING(_txq) ((_txq)->dpl.std_put != 0)
/*
* Service the deferred packet list.
*
* NOTE: drops the txq mutex!
*/
static void
sfxge_tx_qdpl_service(struct sfxge_txq *txq)
{
SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
do {
if (SFXGE_TX_QDPL_PENDING(txq))
sfxge_tx_qdpl_swizzle(txq);
if (!txq->blocked)
sfxge_tx_qdpl_drain(txq);
SFXGE_TXQ_UNLOCK(txq);
} while (SFXGE_TX_QDPL_PENDING(txq) &&
SFXGE_TXQ_TRYLOCK(txq));
}
/*
* Put a packet on the deferred packet get-list.
*/
static int
sfxge_tx_qdpl_put_locked(struct sfxge_txq *txq, struct mbuf *mbuf)
{
struct sfxge_tx_dpl *stdp;
stdp = &txq->dpl;
KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
SFXGE_TXQ_LOCK_ASSERT_OWNED(txq);
if (stdp->std_get_count >= stdp->std_get_max) {
txq->get_overflow++;
return (ENOBUFS);
}
if (sfxge_is_mbuf_non_tcp(mbuf)) {
if (stdp->std_get_non_tcp_count >=
stdp->std_get_non_tcp_max) {
txq->get_non_tcp_overflow++;
return (ENOBUFS);
}
stdp->std_get_non_tcp_count++;
}
*(stdp->std_getp) = mbuf;
stdp->std_getp = &mbuf->m_nextpkt;
stdp->std_get_count++;
return (0);
}
/*
* Put a packet on the deferred packet put-list.
*
* We overload the csum_data field in the mbuf to keep track of this length
* because there is no cheap alternative to avoid races.
*/
static int
sfxge_tx_qdpl_put_unlocked(struct sfxge_txq *txq, struct mbuf *mbuf)
{
struct sfxge_tx_dpl *stdp;
volatile uintptr_t *putp;
uintptr_t old;
uintptr_t new;
unsigned old_len;
KASSERT(mbuf->m_nextpkt == NULL, ("mbuf->m_nextpkt != NULL"));
SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq);
stdp = &txq->dpl;
putp = &stdp->std_put;
new = (uintptr_t)mbuf;
do {
old = *putp;
if (old != 0) {
struct mbuf *mp = (struct mbuf *)old;
old_len = mp->m_pkthdr.csum_data;
} else
old_len = 0;
if (old_len >= stdp->std_put_max) {
atomic_add_long(&txq->put_overflow, 1);
return (ENOBUFS);
}
mbuf->m_pkthdr.csum_data = old_len + 1;
mbuf->m_nextpkt = (void *)old;
} while (atomic_cmpset_ptr(putp, old, new) == 0);
return (0);
}
/*
* Called from if_transmit - will try to grab the txq lock and enqueue to the
* put list if it succeeds, otherwise try to push onto the defer list if space.
*/
static int
sfxge_tx_packet_add(struct sfxge_txq *txq, struct mbuf *m)
{
int rc;
if (!SFXGE_LINK_UP(txq->sc)) {
atomic_add_long(&txq->netdown_drops, 1);
return (ENETDOWN);
}
/*
* Try to grab the txq lock. If we are able to get the lock,
* the packet will be appended to the "get list" of the deferred
* packet list. Otherwise, it will be pushed on the "put list".
*/
if (SFXGE_TXQ_TRYLOCK(txq)) {
/* First swizzle put-list to get-list to keep order */
sfxge_tx_qdpl_swizzle(txq);
rc = sfxge_tx_qdpl_put_locked(txq, m);
/* Try to service the list. */
sfxge_tx_qdpl_service(txq);
/* Lock has been dropped. */
} else {
rc = sfxge_tx_qdpl_put_unlocked(txq, m);
/*
* Try to grab the lock again.
*
* If we are able to get the lock, we need to process
* the deferred packet list. If we are not able to get
* the lock, another thread is processing the list.
*/
if ((rc == 0) && SFXGE_TXQ_TRYLOCK(txq)) {
sfxge_tx_qdpl_service(txq);
/* Lock has been dropped. */
}
}
SFXGE_TXQ_LOCK_ASSERT_NOTOWNED(txq);
return (rc);
}
static void
sfxge_tx_qdpl_flush(struct sfxge_txq *txq)
{
struct sfxge_tx_dpl *stdp = &txq->dpl;
struct mbuf *mbuf, *next;
SFXGE_TXQ_LOCK(txq);
sfxge_tx_qdpl_swizzle(txq);
for (mbuf = stdp->std_get; mbuf != NULL; mbuf = next) {
next = mbuf->m_nextpkt;
m_freem(mbuf);
}
stdp->std_get = NULL;
stdp->std_get_count = 0;
stdp->std_get_non_tcp_count = 0;
stdp->std_getp = &stdp->std_get;
SFXGE_TXQ_UNLOCK(txq);
}
void
sfxge_if_qflush(struct ifnet *ifp)
{
struct sfxge_softc *sc;
unsigned int i;
sc = ifp->if_softc;
for (i = 0; i < sc->txq_count; i++)
sfxge_tx_qdpl_flush(sc->txq[i]);
}
#if SFXGE_TX_PARSE_EARLY
/* There is little space for user data in mbuf pkthdr, so we
* use l*hlen fields which are not used by the driver otherwise
* to store header offsets.
* The fields are 8-bit, but it's ok, no header may be longer than 255 bytes.
*/
#define TSO_MBUF_PROTO(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[0])
/* We abuse l5hlen here because PH_loc can hold only 64 bits of data */
#define TSO_MBUF_FLAGS(_mbuf) ((_mbuf)->m_pkthdr.l5hlen)
#define TSO_MBUF_PACKETID(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.sixteen[1])
#define TSO_MBUF_SEQNUM(_mbuf) ((_mbuf)->m_pkthdr.PH_loc.thirtytwo[1])
static void sfxge_parse_tx_packet(struct mbuf *mbuf)
{
struct ether_header *eh = mtod(mbuf, struct ether_header *);
const struct tcphdr *th;
struct tcphdr th_copy;
/* Find network protocol and header */
TSO_MBUF_PROTO(mbuf) = eh->ether_type;
if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_VLAN)) {
struct ether_vlan_header *veh =
mtod(mbuf, struct ether_vlan_header *);
TSO_MBUF_PROTO(mbuf) = veh->evl_proto;
mbuf->m_pkthdr.l2hlen = sizeof(*veh);
} else {
mbuf->m_pkthdr.l2hlen = sizeof(*eh);
}
/* Find TCP header */
if (TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IP)) {
const struct ip *iph = (const struct ip *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen);
KASSERT(iph->ip_p == IPPROTO_TCP,
("TSO required on non-TCP packet"));
mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + 4 * iph->ip_hl;
TSO_MBUF_PACKETID(mbuf) = iph->ip_id;
} else {
KASSERT(TSO_MBUF_PROTO(mbuf) == htons(ETHERTYPE_IPV6),
("TSO required on non-IP packet"));
KASSERT(((const struct ip6_hdr *)mtodo(mbuf, mbuf->m_pkthdr.l2hlen))->ip6_nxt ==
IPPROTO_TCP,
("TSO required on non-TCP packet"));
mbuf->m_pkthdr.l3hlen = mbuf->m_pkthdr.l2hlen + sizeof(struct ip6_hdr);
TSO_MBUF_PACKETID(mbuf) = 0;
}
KASSERT(mbuf->m_len >= mbuf->m_pkthdr.l3hlen,
("network header is fragmented in mbuf"));
/* We need TCP header including flags (window is the next) */
if (mbuf->m_len < mbuf->m_pkthdr.l3hlen + offsetof(struct tcphdr, th_win)) {
m_copydata(mbuf, mbuf->m_pkthdr.l3hlen, sizeof(th_copy),
(caddr_t)&th_copy);
th = &th_copy;
} else {
th = (const struct tcphdr *)mtodo(mbuf, mbuf->m_pkthdr.l3hlen);
}
mbuf->m_pkthdr.l4hlen = mbuf->m_pkthdr.l3hlen + 4 * th->th_off;
TSO_MBUF_SEQNUM(mbuf) = ntohl(th->th_seq);
/* These flags must not be duplicated */
/*
* RST should not be duplicated as well, but FreeBSD kernel
* generates TSO packets with RST flag. So, do not assert
* its absence.
*/
KASSERT(!(th->th_flags & (TH_URG | TH_SYN)),
("incompatible TCP flag 0x%x on TSO packet",
th->th_flags & (TH_URG | TH_SYN)));
TSO_MBUF_FLAGS(mbuf) = th->th_flags;
}
#endif
/*
* TX start -- called by the stack.
*/
int
sfxge_if_transmit(struct ifnet *ifp, struct mbuf *m)
{
struct sfxge_softc *sc;
struct sfxge_txq *txq;
int rc;
sc = (struct sfxge_softc *)ifp->if_softc;
/*
* Transmit may be called when interface is up from the kernel
* point of view, but not yet up (in progress) from the driver
* point of view. I.e. link aggregation bring up.
* Transmit may be called when interface is up from the driver
* point of view, but already down from the kernel point of
* view. I.e. Rx when interface shutdown is in progress.
*/
KASSERT((ifp->if_flags & IFF_UP) || (sc->if_flags & IFF_UP),
("interface not up"));
/* Pick the desired transmit queue. */
if (m->m_pkthdr.csum_flags &
(CSUM_DELAY_DATA | CSUM_TCP_IPV6 | CSUM_UDP_IPV6 | CSUM_TSO)) {
int index = 0;
/* check if flowid is set */
if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
uint32_t hash = m->m_pkthdr.flowid;
index = sc->rx_indir_table[hash % SFXGE_RX_SCALE_MAX];
}
#if SFXGE_TX_PARSE_EARLY
if (m->m_pkthdr.csum_flags & CSUM_TSO)
sfxge_parse_tx_packet(m);
#endif
txq = sc->txq[SFXGE_TXQ_IP_TCP_UDP_CKSUM + index];
} else if (m->m_pkthdr.csum_flags & CSUM_DELAY_IP) {
txq = sc->txq[SFXGE_TXQ_IP_CKSUM];
} else {
txq = sc->txq[SFXGE_TXQ_NON_CKSUM];
}
rc = sfxge_tx_packet_add(txq, m);
if (rc != 0)
m_freem(m);
return (rc);
}
/*
* Software "TSO". Not quite as good as doing it in hardware, but
* still faster than segmenting in the stack.
*/
struct sfxge_tso_state {
/* Output position */
unsigned out_len; /* Remaining length in current segment */
unsigned seqnum; /* Current sequence number */
unsigned packet_space; /* Remaining space in current packet */
unsigned segs_space; /* Remaining number of DMA segments
for the packet (FATSOv2 only) */
/* Input position */
uint64_t dma_addr; /* DMA address of current position */
unsigned in_len; /* Remaining length in current mbuf */
const struct mbuf *mbuf; /* Input mbuf (head of chain) */
u_short protocol; /* Network protocol (after VLAN decap) */
ssize_t nh_off; /* Offset of network header */
ssize_t tcph_off; /* Offset of TCP header */
unsigned header_len; /* Number of bytes of header */
unsigned seg_size; /* TCP segment size */
int fw_assisted; /* Use FW-assisted TSO */
u_short packet_id; /* IPv4 packet ID from the original packet */
uint8_t tcp_flags; /* TCP flags */
efx_desc_t header_desc; /* Precomputed header descriptor for
* FW-assisted TSO */
};
#if !SFXGE_TX_PARSE_EARLY
static const struct ip *tso_iph(const struct sfxge_tso_state *tso)
{
KASSERT(tso->protocol == htons(ETHERTYPE_IP),
("tso_iph() in non-IPv4 state"));
return (const struct ip *)(tso->mbuf->m_data + tso->nh_off);
}
static __unused const struct ip6_hdr *tso_ip6h(const struct sfxge_tso_state *tso)
{
KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
("tso_ip6h() in non-IPv6 state"));
return (const struct ip6_hdr *)(tso->mbuf->m_data + tso->nh_off);
}
static const struct tcphdr *tso_tcph(const struct sfxge_tso_state *tso)
{
return (const struct tcphdr *)(tso->mbuf->m_data + tso->tcph_off);
}
#endif
/* Size of preallocated TSO header buffers. Larger blocks must be
* allocated from the heap.
*/
#define TSOH_STD_SIZE 128
/* At most half the descriptors in the queue at any time will refer to
* a TSO header buffer, since they must always be followed by a
* payload descriptor referring to an mbuf.
*/
#define TSOH_COUNT(_txq_entries) ((_txq_entries) / 2u)
#define TSOH_PER_PAGE (PAGE_SIZE / TSOH_STD_SIZE)
#define TSOH_PAGE_COUNT(_txq_entries) \
howmany(TSOH_COUNT(_txq_entries), TSOH_PER_PAGE)
static int tso_init(struct sfxge_txq *txq)
{
struct sfxge_softc *sc = txq->sc;
unsigned int tsoh_page_count = TSOH_PAGE_COUNT(sc->txq_entries);
int i, rc;
/* Allocate TSO header buffers */
txq->tsoh_buffer = malloc(tsoh_page_count * sizeof(txq->tsoh_buffer[0]),
M_SFXGE, M_WAITOK);
for (i = 0; i < tsoh_page_count; i++) {
rc = sfxge_dma_alloc(sc, PAGE_SIZE, &txq->tsoh_buffer[i]);
if (rc != 0)
goto fail;
}
return (0);
fail:
while (i-- > 0)
sfxge_dma_free(&txq->tsoh_buffer[i]);
free(txq->tsoh_buffer, M_SFXGE);
txq->tsoh_buffer = NULL;
return (rc);
}
static void tso_fini(struct sfxge_txq *txq)
{
int i;
if (txq->tsoh_buffer != NULL) {
for (i = 0; i < TSOH_PAGE_COUNT(txq->sc->txq_entries); i++)
sfxge_dma_free(&txq->tsoh_buffer[i]);
free(txq->tsoh_buffer, M_SFXGE);
}
}
static void tso_start(struct sfxge_txq *txq, struct sfxge_tso_state *tso,
const bus_dma_segment_t *hdr_dma_seg,
struct mbuf *mbuf)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(txq->sc->enp);
#if !SFXGE_TX_PARSE_EARLY
struct ether_header *eh = mtod(mbuf, struct ether_header *);
const struct tcphdr *th;
struct tcphdr th_copy;
#endif
tso->fw_assisted = txq->tso_fw_assisted;
tso->mbuf = mbuf;
/* Find network protocol and header */
#if !SFXGE_TX_PARSE_EARLY
tso->protocol = eh->ether_type;
if (tso->protocol == htons(ETHERTYPE_VLAN)) {
struct ether_vlan_header *veh =
mtod(mbuf, struct ether_vlan_header *);
tso->protocol = veh->evl_proto;
tso->nh_off = sizeof(*veh);
} else {
tso->nh_off = sizeof(*eh);
}
#else
tso->protocol = TSO_MBUF_PROTO(mbuf);
tso->nh_off = mbuf->m_pkthdr.l2hlen;
tso->tcph_off = mbuf->m_pkthdr.l3hlen;
tso->packet_id = TSO_MBUF_PACKETID(mbuf);
#endif
#if !SFXGE_TX_PARSE_EARLY
/* Find TCP header */
if (tso->protocol == htons(ETHERTYPE_IP)) {
KASSERT(tso_iph(tso)->ip_p == IPPROTO_TCP,
("TSO required on non-TCP packet"));
tso->tcph_off = tso->nh_off + 4 * tso_iph(tso)->ip_hl;
tso->packet_id = tso_iph(tso)->ip_id;
} else {
KASSERT(tso->protocol == htons(ETHERTYPE_IPV6),
("TSO required on non-IP packet"));
KASSERT(tso_ip6h(tso)->ip6_nxt == IPPROTO_TCP,
("TSO required on non-TCP packet"));
tso->tcph_off = tso->nh_off + sizeof(struct ip6_hdr);
tso->packet_id = 0;
}
#endif
if (tso->fw_assisted &&
__predict_false(tso->tcph_off >
encp->enc_tx_tso_tcp_header_offset_limit)) {
tso->fw_assisted = 0;
}
#if !SFXGE_TX_PARSE_EARLY
KASSERT(mbuf->m_len >= tso->tcph_off,
("network header is fragmented in mbuf"));
/* We need TCP header including flags (window is the next) */
if (mbuf->m_len < tso->tcph_off + offsetof(struct tcphdr, th_win)) {
m_copydata(tso->mbuf, tso->tcph_off, sizeof(th_copy),
(caddr_t)&th_copy);
th = &th_copy;
} else {
th = tso_tcph(tso);
}
tso->header_len = tso->tcph_off + 4 * th->th_off;
#else
tso->header_len = mbuf->m_pkthdr.l4hlen;
#endif
tso->seg_size = mbuf->m_pkthdr.tso_segsz;
#if !SFXGE_TX_PARSE_EARLY
tso->seqnum = ntohl(th->th_seq);
/* These flags must not be duplicated */
/*
* RST should not be duplicated as well, but FreeBSD kernel
* generates TSO packets with RST flag. So, do not assert
* its absence.
*/
KASSERT(!(th->th_flags & (TH_URG | TH_SYN)),
("incompatible TCP flag 0x%x on TSO packet",
th->th_flags & (TH_URG | TH_SYN)));
tso->tcp_flags = th->th_flags;
#else
tso->seqnum = TSO_MBUF_SEQNUM(mbuf);
tso->tcp_flags = TSO_MBUF_FLAGS(mbuf);
#endif
tso->out_len = mbuf->m_pkthdr.len - tso->header_len;
if (tso->fw_assisted) {
if (hdr_dma_seg->ds_len >= tso->header_len)
efx_tx_qdesc_dma_create(txq->common,
hdr_dma_seg->ds_addr,
tso->header_len,
B_FALSE,
&tso->header_desc);
else
tso->fw_assisted = 0;
}
}
/*
* tso_fill_packet_with_fragment - form descriptors for the current fragment
*
* Form descriptors for the current fragment, until we reach the end
* of fragment or end-of-packet. Return 0 on success, 1 if not enough
* space.
*/
static void tso_fill_packet_with_fragment(struct sfxge_txq *txq,
struct sfxge_tso_state *tso)
{
efx_desc_t *desc;
int n;
uint64_t dma_addr = tso->dma_addr;
boolean_t eop;
if (tso->in_len == 0 || tso->packet_space == 0)
return;
KASSERT(tso->in_len > 0, ("TSO input length went negative"));
KASSERT(tso->packet_space > 0, ("TSO packet space went negative"));
if (tso->fw_assisted & SFXGE_FATSOV2) {
n = tso->in_len;
tso->out_len -= n;
tso->seqnum += n;
tso->in_len = 0;
if (n < tso->packet_space) {
tso->packet_space -= n;
tso->segs_space--;
} else {
tso->packet_space = tso->seg_size -
(n - tso->packet_space) % tso->seg_size;
tso->segs_space =
EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1 -
(tso->packet_space != tso->seg_size);
}
} else {
n = min(tso->in_len, tso->packet_space);
tso->packet_space -= n;
tso->out_len -= n;
tso->dma_addr += n;
tso->in_len -= n;
}
/*
* It is OK to use binary OR below to avoid extra branching
* since all conditions may always be checked.
*/
eop = (tso->out_len == 0) | (tso->packet_space == 0) |
(tso->segs_space == 0);
desc = &txq->pend_desc[txq->n_pend_desc++];
efx_tx_qdesc_dma_create(txq->common, dma_addr, n, eop, desc);
}
/* Callback from bus_dmamap_load() for long TSO headers. */
static void tso_map_long_header(void *dma_addr_ret,
bus_dma_segment_t *segs, int nseg,
int error)
{
*(uint64_t *)dma_addr_ret = ((__predict_true(error == 0) &&
__predict_true(nseg == 1)) ?
segs->ds_addr : 0);
}
/*
* tso_start_new_packet - generate a new header and prepare for the new packet
*
* Generate a new header and prepare for the new packet. Return 0 on
* success, or an error code if failed to alloc header.
*/
static int tso_start_new_packet(struct sfxge_txq *txq,
struct sfxge_tso_state *tso,
unsigned int *idp)
{
unsigned int id = *idp;
struct tcphdr *tsoh_th;
unsigned ip_length;
caddr_t header;
uint64_t dma_addr;
bus_dmamap_t map;
efx_desc_t *desc;
int rc;
if (tso->fw_assisted) {
if (tso->fw_assisted & SFXGE_FATSOV2) {
/* Add 2 FATSOv2 option descriptors */
desc = &txq->pend_desc[txq->n_pend_desc];
efx_tx_qdesc_tso2_create(txq->common,
tso->packet_id,
tso->seqnum,
tso->seg_size,
desc,
EFX_TX_FATSOV2_OPT_NDESCS);
desc += EFX_TX_FATSOV2_OPT_NDESCS;
txq->n_pend_desc += EFX_TX_FATSOV2_OPT_NDESCS;
KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
id = (id + EFX_TX_FATSOV2_OPT_NDESCS) & txq->ptr_mask;
tso->segs_space =
EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1;
} else {
uint8_t tcp_flags = tso->tcp_flags;
if (tso->out_len > tso->seg_size)
tcp_flags &= ~(TH_FIN | TH_PUSH);
/* Add FATSOv1 option descriptor */
desc = &txq->pend_desc[txq->n_pend_desc++];
efx_tx_qdesc_tso_create(txq->common,
tso->packet_id,
tso->seqnum,
tcp_flags,
desc++);
KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
id = (id + 1) & txq->ptr_mask;
tso->seqnum += tso->seg_size;
tso->segs_space = UINT_MAX;
}
/* Header DMA descriptor */
*desc = tso->header_desc;
txq->n_pend_desc++;
KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
id = (id + 1) & txq->ptr_mask;
} else {
/* Allocate a DMA-mapped header buffer. */
if (__predict_true(tso->header_len <= TSOH_STD_SIZE)) {
unsigned int page_index = (id / 2) / TSOH_PER_PAGE;
unsigned int buf_index = (id / 2) % TSOH_PER_PAGE;
header = (txq->tsoh_buffer[page_index].esm_base +
buf_index * TSOH_STD_SIZE);
dma_addr = (txq->tsoh_buffer[page_index].esm_addr +
buf_index * TSOH_STD_SIZE);
map = txq->tsoh_buffer[page_index].esm_map;
KASSERT(txq->stmp[id].flags == 0,
("stmp flags are not 0"));
} else {
struct sfxge_tx_mapping *stmp = &txq->stmp[id];
/* We cannot use bus_dmamem_alloc() as that may sleep */
header = malloc(tso->header_len, M_SFXGE, M_NOWAIT);
if (__predict_false(!header))
return (ENOMEM);
rc = bus_dmamap_load(txq->packet_dma_tag, stmp->map,
header, tso->header_len,
tso_map_long_header, &dma_addr,
BUS_DMA_NOWAIT);
if (__predict_false(dma_addr == 0)) {
if (rc == 0) {
/* Succeeded but got >1 segment */
bus_dmamap_unload(txq->packet_dma_tag,
stmp->map);
rc = EINVAL;
}
free(header, M_SFXGE);
return (rc);
}
map = stmp->map;
txq->tso_long_headers++;
stmp->u.heap_buf = header;
stmp->flags = TX_BUF_UNMAP;
}
tsoh_th = (struct tcphdr *)(header + tso->tcph_off);
/* Copy and update the headers. */
m_copydata(tso->mbuf, 0, tso->header_len, header);
tsoh_th->th_seq = htonl(tso->seqnum);
tso->seqnum += tso->seg_size;
if (tso->out_len > tso->seg_size) {
/* This packet will not finish the TSO burst. */
ip_length = tso->header_len - tso->nh_off + tso->seg_size;
tsoh_th->th_flags &= ~(TH_FIN | TH_PUSH);
} else {
/* This packet will be the last in the TSO burst. */
ip_length = tso->header_len - tso->nh_off + tso->out_len;
}
if (tso->protocol == htons(ETHERTYPE_IP)) {
struct ip *tsoh_iph = (struct ip *)(header + tso->nh_off);
tsoh_iph->ip_len = htons(ip_length);
/* XXX We should increment ip_id, but FreeBSD doesn't
* currently allocate extra IDs for multiple segments.
*/
} else {
struct ip6_hdr *tsoh_iph =
(struct ip6_hdr *)(header + tso->nh_off);
tsoh_iph->ip6_plen = htons(ip_length - sizeof(*tsoh_iph));
}
/* Make the header visible to the hardware. */
bus_dmamap_sync(txq->packet_dma_tag, map, BUS_DMASYNC_PREWRITE);
/* Form a descriptor for this header. */
desc = &txq->pend_desc[txq->n_pend_desc++];
efx_tx_qdesc_dma_create(txq->common,
dma_addr,
tso->header_len,
0,
desc);
id = (id + 1) & txq->ptr_mask;
tso->segs_space = UINT_MAX;
}
tso->packet_space = tso->seg_size;
txq->tso_packets++;
*idp = id;
return (0);
}
static int
sfxge_tx_queue_tso(struct sfxge_txq *txq, struct mbuf *mbuf,
const bus_dma_segment_t *dma_seg, int n_dma_seg,
int vlan_tagged)
{
struct sfxge_tso_state tso;
unsigned int id;
unsigned skipped = 0;
tso_start(txq, &tso, dma_seg, mbuf);
while (dma_seg->ds_len + skipped <= tso.header_len) {
skipped += dma_seg->ds_len;
--n_dma_seg;
KASSERT(n_dma_seg, ("no payload found in TSO packet"));
++dma_seg;
}
tso.in_len = dma_seg->ds_len - (tso.header_len - skipped);
tso.dma_addr = dma_seg->ds_addr + (tso.header_len - skipped);
id = (txq->added + vlan_tagged) & txq->ptr_mask;
if (__predict_false(tso_start_new_packet(txq, &tso, &id)))
return (-1);
while (1) {
tso_fill_packet_with_fragment(txq, &tso);
/* Exactly one DMA descriptor is added */
KASSERT(txq->stmp[id].flags == 0, ("stmp flags are not 0"));
id = (id + 1) & txq->ptr_mask;
/* Move onto the next fragment? */
if (tso.in_len == 0) {
--n_dma_seg;
if (n_dma_seg == 0)
break;
++dma_seg;
tso.in_len = dma_seg->ds_len;
tso.dma_addr = dma_seg->ds_addr;
}
/* End of packet? */
if ((tso.packet_space == 0) | (tso.segs_space == 0)) {
unsigned int n_fatso_opt_desc =
(tso.fw_assisted & SFXGE_FATSOV2) ?
EFX_TX_FATSOV2_OPT_NDESCS :
(tso.fw_assisted & SFXGE_FATSOV1) ? 1 : 0;
/* If the queue is now full due to tiny MSS,
* or we can't create another header, discard
* the remainder of the input mbuf but do not
* roll back the work we have done.
*/
if (txq->n_pend_desc + n_fatso_opt_desc +
1 /* header */ + n_dma_seg > txq->max_pkt_desc) {
txq->tso_pdrop_too_many++;
break;
}
if (__predict_false(tso_start_new_packet(txq, &tso,
&id))) {
txq->tso_pdrop_no_rsrc++;
break;
}
}
}
txq->tso_bursts++;
return (id);
}
static void
sfxge_tx_qunblock(struct sfxge_txq *txq)
{
struct sfxge_softc *sc;
struct sfxge_evq *evq;
sc = txq->sc;
evq = sc->evq[txq->evq_index];
SFXGE_EVQ_LOCK_ASSERT_OWNED(evq);
if (__predict_false(txq->init_state != SFXGE_TXQ_STARTED))
return;
SFXGE_TXQ_LOCK(txq);
if (txq->blocked) {
unsigned int level;
level = txq->added - txq->completed;
if (level <= SFXGE_TXQ_UNBLOCK_LEVEL(txq->entries)) {
/* reaped must be in sync with blocked */
sfxge_tx_qreap(txq);
txq->blocked = 0;
}
}
sfxge_tx_qdpl_service(txq);
/* note: lock has been dropped */
}
void
sfxge_tx_qflush_done(struct sfxge_txq *txq)
{
txq->flush_state = SFXGE_FLUSH_DONE;
}
static void
sfxge_tx_qstop(struct sfxge_softc *sc, unsigned int index)
{
struct sfxge_txq *txq;
struct sfxge_evq *evq;
unsigned int count;
SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc);
txq = sc->txq[index];
evq = sc->evq[txq->evq_index];
SFXGE_EVQ_LOCK(evq);
SFXGE_TXQ_LOCK(txq);
KASSERT(txq->init_state == SFXGE_TXQ_STARTED,
("txq->init_state != SFXGE_TXQ_STARTED"));
txq->init_state = SFXGE_TXQ_INITIALIZED;
if (txq->flush_state != SFXGE_FLUSH_DONE) {
txq->flush_state = SFXGE_FLUSH_PENDING;
SFXGE_EVQ_UNLOCK(evq);
SFXGE_TXQ_UNLOCK(txq);
/* Flush the transmit queue. */
if (efx_tx_qflush(txq->common) != 0) {
log(LOG_ERR, "%s: Flushing Tx queue %u failed\n",
device_get_nameunit(sc->dev), index);
txq->flush_state = SFXGE_FLUSH_DONE;
} else {
count = 0;
do {
/* Spin for 100ms. */
DELAY(100000);
if (txq->flush_state != SFXGE_FLUSH_PENDING)
break;
} while (++count < 20);
}
SFXGE_EVQ_LOCK(evq);
SFXGE_TXQ_LOCK(txq);
KASSERT(txq->flush_state != SFXGE_FLUSH_FAILED,
("txq->flush_state == SFXGE_FLUSH_FAILED"));
if (txq->flush_state != SFXGE_FLUSH_DONE) {
/* Flush timeout */
log(LOG_ERR, "%s: Cannot flush Tx queue %u\n",
device_get_nameunit(sc->dev), index);
txq->flush_state = SFXGE_FLUSH_DONE;
}
}
txq->blocked = 0;
txq->pending = txq->added;
sfxge_tx_qcomplete(txq, evq);
KASSERT(txq->completed == txq->added,
("txq->completed != txq->added"));
sfxge_tx_qreap(txq);
KASSERT(txq->reaped == txq->completed,
("txq->reaped != txq->completed"));
txq->added = 0;
txq->pending = 0;
txq->completed = 0;
txq->reaped = 0;
/* Destroy the common code transmit queue. */
efx_tx_qdestroy(txq->common);
txq->common = NULL;
efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
EFX_TXQ_NBUFS(sc->txq_entries));
SFXGE_EVQ_UNLOCK(evq);
SFXGE_TXQ_UNLOCK(txq);
}
/*
* Estimate maximum number of Tx descriptors required for TSO packet.
* With minimum MSS and maximum mbuf length we might need more (even
* than a ring-ful of descriptors), but this should not happen in
* practice except due to deliberate attack. In that case we will
* truncate the output at a packet boundary.
*/
static unsigned int
sfxge_tx_max_pkt_desc(const struct sfxge_softc *sc, enum sfxge_txq_type type,
unsigned int tso_fw_assisted)
{
/* One descriptor for every input fragment */
unsigned int max_descs = SFXGE_TX_MAPPING_MAX_SEG;
unsigned int sw_tso_max_descs;
unsigned int fa_tso_v1_max_descs = 0;
unsigned int fa_tso_v2_max_descs = 0;
/* VLAN tagging Tx option descriptor may be required */
if (efx_nic_cfg_get(sc->enp)->enc_hw_tx_insert_vlan_enabled)
max_descs++;
if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM) {
/*
* Plus header and payload descriptor for each output segment.
* Minus one since header fragment is already counted.
* Even if FATSO is used, we should be ready to fallback
* to do it in the driver.
*/
sw_tso_max_descs = SFXGE_TSO_MAX_SEGS * 2 - 1;
/* FW assisted TSOv1 requires one more descriptor per segment
* in comparison to SW TSO */
if (tso_fw_assisted & SFXGE_FATSOV1)
fa_tso_v1_max_descs =
sw_tso_max_descs + SFXGE_TSO_MAX_SEGS;
/* FW assisted TSOv2 requires 3 (2 FATSO plus header) extra
* descriptors per superframe limited by number of DMA fetches
* per packet. The first packet header is already counted.
*/
if (tso_fw_assisted & SFXGE_FATSOV2) {
fa_tso_v2_max_descs =
howmany(SFXGE_TX_MAPPING_MAX_SEG,
EFX_TX_FATSOV2_DMA_SEGS_PER_PKT_MAX - 1) *
(EFX_TX_FATSOV2_OPT_NDESCS + 1) - 1;
}
max_descs += MAX(sw_tso_max_descs,
MAX(fa_tso_v1_max_descs, fa_tso_v2_max_descs));
}
return (max_descs);
}
static int
sfxge_tx_qstart(struct sfxge_softc *sc, unsigned int index)
{
struct sfxge_txq *txq;
efsys_mem_t *esmp;
uint16_t flags;
unsigned int tso_fw_assisted;
struct sfxge_evq *evq;
unsigned int desc_index;
int rc;
SFXGE_ADAPTER_LOCK_ASSERT_OWNED(sc);
txq = sc->txq[index];
esmp = &txq->mem;
evq = sc->evq[txq->evq_index];
KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
("txq->init_state != SFXGE_TXQ_INITIALIZED"));
KASSERT(evq->init_state == SFXGE_EVQ_STARTED,
("evq->init_state != SFXGE_EVQ_STARTED"));
/* Program the buffer table. */
if ((rc = efx_sram_buf_tbl_set(sc->enp, txq->buf_base_id, esmp,
EFX_TXQ_NBUFS(sc->txq_entries))) != 0)
return (rc);
/* Determine the kind of queue we are creating. */
tso_fw_assisted = 0;
switch (txq->type) {
case SFXGE_TXQ_NON_CKSUM:
flags = 0;
break;
case SFXGE_TXQ_IP_CKSUM:
flags = EFX_TXQ_CKSUM_IPV4;
break;
case SFXGE_TXQ_IP_TCP_UDP_CKSUM:
flags = EFX_TXQ_CKSUM_IPV4 | EFX_TXQ_CKSUM_TCPUDP;
tso_fw_assisted = sc->tso_fw_assisted;
if (tso_fw_assisted & SFXGE_FATSOV2)
flags |= EFX_TXQ_FATSOV2;
break;
default:
KASSERT(0, ("Impossible TX queue"));
flags = 0;
break;
}
/* Create the common code transmit queue. */
if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp,
sc->txq_entries, txq->buf_base_id, flags, evq->common,
&txq->common, &desc_index)) != 0) {
/* Retry if no FATSOv2 resources, otherwise fail */
if ((rc != ENOSPC) || (~flags & EFX_TXQ_FATSOV2))
goto fail;
/* Looks like all FATSOv2 contexts are used */
flags &= ~EFX_TXQ_FATSOV2;
tso_fw_assisted &= ~SFXGE_FATSOV2;
if ((rc = efx_tx_qcreate(sc->enp, index, txq->type, esmp,
sc->txq_entries, txq->buf_base_id, flags, evq->common,
&txq->common, &desc_index)) != 0)
goto fail;
}
/* Initialise queue descriptor indexes */
txq->added = txq->pending = txq->completed = txq->reaped = desc_index;
SFXGE_TXQ_LOCK(txq);
/* Enable the transmit queue. */
efx_tx_qenable(txq->common);
txq->init_state = SFXGE_TXQ_STARTED;
txq->flush_state = SFXGE_FLUSH_REQUIRED;
txq->tso_fw_assisted = tso_fw_assisted;
txq->max_pkt_desc = sfxge_tx_max_pkt_desc(sc, txq->type,
tso_fw_assisted);
SFXGE_TXQ_UNLOCK(txq);
return (0);
fail:
efx_sram_buf_tbl_clear(sc->enp, txq->buf_base_id,
EFX_TXQ_NBUFS(sc->txq_entries));
return (rc);
}
void
sfxge_tx_stop(struct sfxge_softc *sc)
{
int index;
index = sc->txq_count;
while (--index >= 0)
sfxge_tx_qstop(sc, index);
/* Tear down the transmit module */
efx_tx_fini(sc->enp);
}
int
sfxge_tx_start(struct sfxge_softc *sc)
{
int index;
int rc;
/* Initialize the common code transmit module. */
if ((rc = efx_tx_init(sc->enp)) != 0)
return (rc);
for (index = 0; index < sc->txq_count; index++) {
if ((rc = sfxge_tx_qstart(sc, index)) != 0)
goto fail;
}
return (0);
fail:
while (--index >= 0)
sfxge_tx_qstop(sc, index);
efx_tx_fini(sc->enp);
return (rc);
}
static int
sfxge_txq_stat_init(struct sfxge_txq *txq, struct sysctl_oid *txq_node)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(txq->sc->dev);
struct sysctl_oid *stat_node;
unsigned int id;
stat_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO,
"stats", CTLFLAG_RD, NULL,
"Tx queue statistics");
if (stat_node == NULL)
return (ENOMEM);
for (id = 0; id < nitems(sfxge_tx_stats); id++) {
SYSCTL_ADD_ULONG(
ctx, SYSCTL_CHILDREN(stat_node), OID_AUTO,
sfxge_tx_stats[id].name, CTLFLAG_RD | CTLFLAG_STATS,
(unsigned long *)((caddr_t)txq + sfxge_tx_stats[id].offset),
"");
}
return (0);
}
/**
* Destroy a transmit queue.
*/
static void
sfxge_tx_qfini(struct sfxge_softc *sc, unsigned int index)
{
struct sfxge_txq *txq;
unsigned int nmaps;
txq = sc->txq[index];
KASSERT(txq->init_state == SFXGE_TXQ_INITIALIZED,
("txq->init_state != SFXGE_TXQ_INITIALIZED"));
if (txq->type == SFXGE_TXQ_IP_TCP_UDP_CKSUM)
tso_fini(txq);
/* Free the context arrays. */
free(txq->pend_desc, M_SFXGE);
nmaps = sc->txq_entries;
while (nmaps-- != 0)
bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
free(txq->stmp, M_SFXGE);
/* Release DMA memory mapping. */
sfxge_dma_free(&txq->mem);
sc->txq[index] = NULL;
SFXGE_TXQ_LOCK_DESTROY(txq);
free(txq, M_SFXGE);
}
static int
sfxge_tx_qinit(struct sfxge_softc *sc, unsigned int txq_index,
enum sfxge_txq_type type, unsigned int evq_index)
{
char name[16];
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
struct sysctl_oid *txq_node;
struct sfxge_txq *txq;
struct sfxge_evq *evq;
struct sfxge_tx_dpl *stdp;
struct sysctl_oid *dpl_node;
efsys_mem_t *esmp;
unsigned int nmaps;
int rc;
txq = malloc(sizeof(struct sfxge_txq), M_SFXGE, M_ZERO | M_WAITOK);
txq->sc = sc;
txq->entries = sc->txq_entries;
txq->ptr_mask = txq->entries - 1;
sc->txq[txq_index] = txq;
esmp = &txq->mem;
evq = sc->evq[evq_index];
/* Allocate and zero DMA space for the descriptor ring. */
if ((rc = sfxge_dma_alloc(sc, EFX_TXQ_SIZE(sc->txq_entries), esmp)) != 0)
return (rc);
/* Allocate buffer table entries. */
sfxge_sram_buf_tbl_alloc(sc, EFX_TXQ_NBUFS(sc->txq_entries),
&txq->buf_base_id);
/* Create a DMA tag for packet mappings. */
if (bus_dma_tag_create(sc->parent_dma_tag, 1, 0x1000,
MIN(0x3FFFFFFFFFFFUL, BUS_SPACE_MAXADDR), BUS_SPACE_MAXADDR, NULL,
NULL, 0x11000, SFXGE_TX_MAPPING_MAX_SEG, 0x1000, 0, NULL, NULL,
&txq->packet_dma_tag) != 0) {
device_printf(sc->dev, "Couldn't allocate txq DMA tag\n");
rc = ENOMEM;
goto fail;
}
/* Allocate pending descriptor array for batching writes. */
txq->pend_desc = malloc(sizeof(efx_desc_t) * sc->txq_entries,
M_SFXGE, M_ZERO | M_WAITOK);
/* Allocate and initialise mbuf DMA mapping array. */
txq->stmp = malloc(sizeof(struct sfxge_tx_mapping) * sc->txq_entries,
M_SFXGE, M_ZERO | M_WAITOK);
for (nmaps = 0; nmaps < sc->txq_entries; nmaps++) {
rc = bus_dmamap_create(txq->packet_dma_tag, 0,
&txq->stmp[nmaps].map);
if (rc != 0)
goto fail2;
}
snprintf(name, sizeof(name), "%u", txq_index);
txq_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(sc->txqs_node),
OID_AUTO, name, CTLFLAG_RD, NULL, "");
if (txq_node == NULL) {
rc = ENOMEM;
goto fail_txq_node;
}
if (type == SFXGE_TXQ_IP_TCP_UDP_CKSUM &&
(rc = tso_init(txq)) != 0)
goto fail3;
if (sfxge_tx_dpl_get_max <= 0) {
log(LOG_ERR, "%s=%d must be greater than 0",
SFXGE_PARAM_TX_DPL_GET_MAX, sfxge_tx_dpl_get_max);
rc = EINVAL;
goto fail_tx_dpl_get_max;
}
if (sfxge_tx_dpl_get_non_tcp_max <= 0) {
log(LOG_ERR, "%s=%d must be greater than 0",
SFXGE_PARAM_TX_DPL_GET_NON_TCP_MAX,
sfxge_tx_dpl_get_non_tcp_max);
rc = EINVAL;
goto fail_tx_dpl_get_max;
}
if (sfxge_tx_dpl_put_max < 0) {
log(LOG_ERR, "%s=%d must be greater or equal to 0",
SFXGE_PARAM_TX_DPL_PUT_MAX, sfxge_tx_dpl_put_max);
rc = EINVAL;
goto fail_tx_dpl_put_max;
}
/* Initialize the deferred packet list. */
stdp = &txq->dpl;
stdp->std_put_max = sfxge_tx_dpl_put_max;
stdp->std_get_max = sfxge_tx_dpl_get_max;
stdp->std_get_non_tcp_max = sfxge_tx_dpl_get_non_tcp_max;
stdp->std_getp = &stdp->std_get;
SFXGE_TXQ_LOCK_INIT(txq, device_get_nameunit(sc->dev), txq_index);
dpl_node = SYSCTL_ADD_NODE(ctx, SYSCTL_CHILDREN(txq_node), OID_AUTO,
"dpl", CTLFLAG_RD, NULL,
"Deferred packet list statistics");
if (dpl_node == NULL) {
rc = ENOMEM;
goto fail_dpl_node;
}
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
"get_count", CTLFLAG_RD | CTLFLAG_STATS,
&stdp->std_get_count, 0, "");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
"get_non_tcp_count", CTLFLAG_RD | CTLFLAG_STATS,
&stdp->std_get_non_tcp_count, 0, "");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
"get_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
&stdp->std_get_hiwat, 0, "");
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(dpl_node), OID_AUTO,
"put_hiwat", CTLFLAG_RD | CTLFLAG_STATS,
&stdp->std_put_hiwat, 0, "");
rc = sfxge_txq_stat_init(txq, txq_node);
if (rc != 0)
goto fail_txq_stat_init;
txq->type = type;
txq->evq_index = evq_index;
txq->txq_index = txq_index;
txq->init_state = SFXGE_TXQ_INITIALIZED;
txq->hw_vlan_tci = 0;
return (0);
fail_txq_stat_init:
fail_dpl_node:
fail_tx_dpl_put_max:
fail_tx_dpl_get_max:
fail3:
fail_txq_node:
free(txq->pend_desc, M_SFXGE);
fail2:
while (nmaps-- != 0)
bus_dmamap_destroy(txq->packet_dma_tag, txq->stmp[nmaps].map);
free(txq->stmp, M_SFXGE);
bus_dma_tag_destroy(txq->packet_dma_tag);
fail:
sfxge_dma_free(esmp);
return (rc);
}
static int
sfxge_tx_stat_handler(SYSCTL_HANDLER_ARGS)
{
struct sfxge_softc *sc = arg1;
unsigned int id = arg2;
unsigned long sum;
unsigned int index;
/* Sum across all TX queues */
sum = 0;
for (index = 0; index < sc->txq_count; index++)
sum += *(unsigned long *)((caddr_t)sc->txq[index] +
sfxge_tx_stats[id].offset);
return (SYSCTL_OUT(req, &sum, sizeof(sum)));
}
static void
sfxge_tx_stat_init(struct sfxge_softc *sc)
{
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->dev);
struct sysctl_oid_list *stat_list;
unsigned int id;
stat_list = SYSCTL_CHILDREN(sc->stats_node);
for (id = 0; id < nitems(sfxge_tx_stats); id++) {
SYSCTL_ADD_PROC(
ctx, stat_list,
OID_AUTO, sfxge_tx_stats[id].name,
CTLTYPE_ULONG|CTLFLAG_RD,
sc, id, sfxge_tx_stat_handler, "LU",
"");
}
}
uint64_t
sfxge_tx_get_drops(struct sfxge_softc *sc)
{
unsigned int index;
uint64_t drops = 0;
struct sfxge_txq *txq;
/* Sum across all TX queues */
for (index = 0; index < sc->txq_count; index++) {
txq = sc->txq[index];
/*
* In theory, txq->put_overflow and txq->netdown_drops
* should use atomic operation and other should be
* obtained under txq lock, but it is just statistics.
*/
drops += txq->drops + txq->get_overflow +
txq->get_non_tcp_overflow +
txq->put_overflow + txq->netdown_drops +
txq->tso_pdrop_too_many + txq->tso_pdrop_no_rsrc;
}
return (drops);
}
void
sfxge_tx_fini(struct sfxge_softc *sc)
{
int index;
index = sc->txq_count;
while (--index >= 0)
sfxge_tx_qfini(sc, index);
sc->txq_count = 0;
}
int
sfxge_tx_init(struct sfxge_softc *sc)
{
const efx_nic_cfg_t *encp = efx_nic_cfg_get(sc->enp);
struct sfxge_intr *intr;
int index;
int rc;
intr = &sc->intr;
KASSERT(intr->state == SFXGE_INTR_INITIALIZED,
("intr->state != SFXGE_INTR_INITIALIZED"));
sc->txq_count = SFXGE_TXQ_NTYPES - 1 + sc->intr.n_alloc;
sc->tso_fw_assisted = sfxge_tso_fw_assisted;
if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO) ||
(!encp->enc_fw_assisted_tso_enabled))
sc->tso_fw_assisted &= ~SFXGE_FATSOV1;
if ((~encp->enc_features & EFX_FEATURE_FW_ASSISTED_TSO_V2) ||
(!encp->enc_fw_assisted_tso_v2_enabled))
sc->tso_fw_assisted &= ~SFXGE_FATSOV2;
sc->txqs_node = SYSCTL_ADD_NODE(
device_get_sysctl_ctx(sc->dev),
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)),
OID_AUTO, "txq", CTLFLAG_RD, NULL, "Tx queues");
if (sc->txqs_node == NULL) {
rc = ENOMEM;
goto fail_txq_node;
}
/* Initialize the transmit queues */
if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NON_CKSUM,
SFXGE_TXQ_NON_CKSUM, 0)) != 0)
goto fail;
if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_IP_CKSUM,
SFXGE_TXQ_IP_CKSUM, 0)) != 0)
goto fail2;
for (index = 0;
index < sc->txq_count - SFXGE_TXQ_NTYPES + 1;
index++) {
if ((rc = sfxge_tx_qinit(sc, SFXGE_TXQ_NTYPES - 1 + index,
SFXGE_TXQ_IP_TCP_UDP_CKSUM, index)) != 0)
goto fail3;
}
sfxge_tx_stat_init(sc);
return (0);
fail3:
while (--index >= 0)
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_TCP_UDP_CKSUM + index);
sfxge_tx_qfini(sc, SFXGE_TXQ_IP_CKSUM);
fail2:
sfxge_tx_qfini(sc, SFXGE_TXQ_NON_CKSUM);
fail:
fail_txq_node:
sc->txq_count = 0;
return (rc);
}