Ruslan Bukin 951e058411 o Add support for BERI IOMMU device
o Add an experimental IOMMU support to xDMA framework

The BERI IOMMU device is the part of CHERI device-model project [1]. It
translates memory addresses for various BERI peripherals modelled in
software. It accepts FreeBSD/mips64 page directories format and manages
BERI TLB.

1. https://github.com/CTSRD-CHERI/device-model

Sponsored by:	DARPA, AFRL
2019-07-22 16:01:20 +00:00

303 lines
9.0 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2016-2019 Ruslan Bukin <br@bsdpad.com>
*
* This software was developed by SRI International and the University of
* Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237
* ("CTSRD"), as part of the DARPA CRASH research programme.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#ifndef _DEV_XDMA_XDMA_H_
#define _DEV_XDMA_XDMA_H_
#include <sys/proc.h>
#include <sys/vmem.h>
#ifdef FDT
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#endif
#include <vm/vm.h>
#include <vm/pmap.h>
enum xdma_direction {
XDMA_MEM_TO_MEM,
XDMA_MEM_TO_DEV,
XDMA_DEV_TO_MEM,
XDMA_DEV_TO_DEV,
};
enum xdma_operation_type {
XDMA_MEMCPY,
XDMA_CYCLIC,
XDMA_FIFO,
XDMA_SG,
};
enum xdma_request_type {
XR_TYPE_PHYS,
XR_TYPE_VIRT,
XR_TYPE_MBUF,
XR_TYPE_BIO,
};
enum xdma_command {
XDMA_CMD_BEGIN,
XDMA_CMD_PAUSE,
XDMA_CMD_TERMINATE,
};
struct xdma_transfer_status {
uint32_t transferred;
int error;
};
typedef struct xdma_transfer_status xdma_transfer_status_t;
struct xdma_controller {
device_t dev; /* DMA consumer device_t. */
device_t dma_dev; /* A real DMA device_t. */
void *data; /* OFW MD part. */
vmem_t *vmem; /* Bounce memory. */
/* List of virtual channels allocated. */
TAILQ_HEAD(xdma_channel_list, xdma_channel) channels;
};
typedef struct xdma_controller xdma_controller_t;
struct xchan_buf {
bus_dmamap_t map;
uint32_t nsegs;
uint32_t nsegs_left;
vm_offset_t vaddr;
vm_offset_t paddr;
vm_size_t size;
};
struct xdma_request {
struct mbuf *m;
struct bio *bp;
enum xdma_operation_type operation;
enum xdma_request_type req_type;
enum xdma_direction direction;
bus_addr_t src_addr;
bus_addr_t dst_addr;
uint8_t src_width;
uint8_t dst_width;
bus_size_t block_num;
bus_size_t block_len;
xdma_transfer_status_t status;
void *user;
TAILQ_ENTRY(xdma_request) xr_next;
struct xchan_buf buf;
};
struct xdma_sglist {
bus_addr_t src_addr;
bus_addr_t dst_addr;
size_t len;
uint8_t src_width;
uint8_t dst_width;
enum xdma_direction direction;
bool first;
bool last;
};
struct xdma_iommu {
struct pmap p;
vmem_t *vmem; /* VA space */
device_t dev; /* IOMMU device */
};
struct xdma_channel {
xdma_controller_t *xdma;
vmem_t *vmem;
uint32_t flags;
#define XCHAN_BUFS_ALLOCATED (1 << 0)
#define XCHAN_SGLIST_ALLOCATED (1 << 1)
#define XCHAN_CONFIGURED (1 << 2)
#define XCHAN_TYPE_CYCLIC (1 << 3)
#define XCHAN_TYPE_MEMCPY (1 << 4)
#define XCHAN_TYPE_FIFO (1 << 5)
#define XCHAN_TYPE_SG (1 << 6)
uint32_t caps;
#define XCHAN_CAP_BUSDMA (1 << 0)
#define XCHAN_CAP_NOSEG (1 << 1)
#define XCHAN_CAP_BOUNCE (1 << 2)
#define XCHAN_CAP_IOMMU (1 << 3)
/* A real hardware driver channel. */
void *chan;
/* Interrupt handlers. */
TAILQ_HEAD(, xdma_intr_handler) ie_handlers;
TAILQ_ENTRY(xdma_channel) xchan_next;
struct mtx mtx_lock;
struct mtx mtx_qin_lock;
struct mtx mtx_qout_lock;
struct mtx mtx_bank_lock;
struct mtx mtx_proc_lock;
/* Request queue. */
bus_dma_tag_t dma_tag_bufs;
struct xdma_request *xr_mem;
uint32_t xr_num;
/* Bus dma tag options. */
bus_size_t maxsegsize;
bus_size_t maxnsegs;
bus_size_t alignment;
bus_addr_t boundary;
bus_addr_t lowaddr;
bus_addr_t highaddr;
struct xdma_sglist *sg;
TAILQ_HEAD(, xdma_request) bank;
TAILQ_HEAD(, xdma_request) queue_in;
TAILQ_HEAD(, xdma_request) queue_out;
TAILQ_HEAD(, xdma_request) processing;
/* iommu */
struct xdma_iommu xio;
};
typedef struct xdma_channel xdma_channel_t;
struct xdma_intr_handler {
int (*cb)(void *cb_user, xdma_transfer_status_t *status);
void *cb_user;
TAILQ_ENTRY(xdma_intr_handler) ih_next;
};
static MALLOC_DEFINE(M_XDMA, "xdma", "xDMA framework");
#define XCHAN_LOCK(xchan) mtx_lock(&(xchan)->mtx_lock)
#define XCHAN_UNLOCK(xchan) mtx_unlock(&(xchan)->mtx_lock)
#define XCHAN_ASSERT_LOCKED(xchan) \
mtx_assert(&(xchan)->mtx_lock, MA_OWNED)
#define QUEUE_IN_LOCK(xchan) mtx_lock(&(xchan)->mtx_qin_lock)
#define QUEUE_IN_UNLOCK(xchan) mtx_unlock(&(xchan)->mtx_qin_lock)
#define QUEUE_IN_ASSERT_LOCKED(xchan) \
mtx_assert(&(xchan)->mtx_qin_lock, MA_OWNED)
#define QUEUE_OUT_LOCK(xchan) mtx_lock(&(xchan)->mtx_qout_lock)
#define QUEUE_OUT_UNLOCK(xchan) mtx_unlock(&(xchan)->mtx_qout_lock)
#define QUEUE_OUT_ASSERT_LOCKED(xchan) \
mtx_assert(&(xchan)->mtx_qout_lock, MA_OWNED)
#define QUEUE_BANK_LOCK(xchan) mtx_lock(&(xchan)->mtx_bank_lock)
#define QUEUE_BANK_UNLOCK(xchan) mtx_unlock(&(xchan)->mtx_bank_lock)
#define QUEUE_BANK_ASSERT_LOCKED(xchan) \
mtx_assert(&(xchan)->mtx_bank_lock, MA_OWNED)
#define QUEUE_PROC_LOCK(xchan) mtx_lock(&(xchan)->mtx_proc_lock)
#define QUEUE_PROC_UNLOCK(xchan) mtx_unlock(&(xchan)->mtx_proc_lock)
#define QUEUE_PROC_ASSERT_LOCKED(xchan) \
mtx_assert(&(xchan)->mtx_proc_lock, MA_OWNED)
#define XDMA_SGLIST_MAXLEN 2048
#define XDMA_MAX_SEG 128
/* xDMA controller ops */
xdma_controller_t *xdma_ofw_get(device_t dev, const char *prop);
int xdma_put(xdma_controller_t *xdma);
vmem_t * xdma_get_memory(device_t dev);
void xdma_put_memory(vmem_t *vmem);
#ifdef FDT
int xdma_handle_mem_node(vmem_t *vmem, phandle_t memory);
#endif
/* xDMA channel ops */
xdma_channel_t * xdma_channel_alloc(xdma_controller_t *, uint32_t caps);
int xdma_channel_free(xdma_channel_t *);
int xdma_request(xdma_channel_t *xchan, struct xdma_request *r);
void xchan_set_memory(xdma_channel_t *xchan, vmem_t *vmem);
/* SG interface */
int xdma_prep_sg(xdma_channel_t *, uint32_t,
bus_size_t, bus_size_t, bus_size_t, bus_addr_t, bus_addr_t, bus_addr_t);
void xdma_channel_free_sg(xdma_channel_t *xchan);
int xdma_queue_submit_sg(xdma_channel_t *xchan);
void xchan_seg_done(xdma_channel_t *xchan, xdma_transfer_status_t *);
/* Queue operations */
int xdma_dequeue_mbuf(xdma_channel_t *xchan, struct mbuf **m,
xdma_transfer_status_t *);
int xdma_enqueue_mbuf(xdma_channel_t *xchan, struct mbuf **m, uintptr_t addr,
uint8_t, uint8_t, enum xdma_direction dir);
int xdma_dequeue_bio(xdma_channel_t *xchan, struct bio **bp,
xdma_transfer_status_t *status);
int xdma_enqueue_bio(xdma_channel_t *xchan, struct bio **bp, bus_addr_t addr,
uint8_t, uint8_t, enum xdma_direction dir);
int xdma_dequeue(xdma_channel_t *xchan, void **user,
xdma_transfer_status_t *status);
int xdma_enqueue(xdma_channel_t *xchan, uintptr_t src, uintptr_t dst,
uint8_t, uint8_t, bus_size_t, enum xdma_direction dir, void *);
int xdma_queue_submit(xdma_channel_t *xchan);
/* Mbuf operations */
uint32_t xdma_mbuf_defrag(xdma_channel_t *xchan, struct xdma_request *xr);
uint32_t xdma_mbuf_chain_count(struct mbuf *m0);
/* Channel Control */
int xdma_control(xdma_channel_t *xchan, enum xdma_command cmd);
/* Interrupt callback */
int xdma_setup_intr(xdma_channel_t *xchan, int (*cb)(void *,
xdma_transfer_status_t *), void *arg, void **);
int xdma_teardown_intr(xdma_channel_t *xchan, struct xdma_intr_handler *ih);
int xdma_teardown_all_intr(xdma_channel_t *xchan);
void xdma_callback(struct xdma_channel *xchan, xdma_transfer_status_t *status);
/* Sglist */
int xchan_sglist_alloc(xdma_channel_t *xchan);
void xchan_sglist_free(xdma_channel_t *xchan);
int xdma_sglist_add(struct xdma_sglist *sg, struct bus_dma_segment *seg,
uint32_t nsegs, struct xdma_request *xr);
/* Requests bank */
void xchan_bank_init(xdma_channel_t *xchan);
int xchan_bank_free(xdma_channel_t *xchan);
struct xdma_request * xchan_bank_get(xdma_channel_t *xchan);
int xchan_bank_put(xdma_channel_t *xchan, struct xdma_request *xr);
/* IOMMU */
void xdma_iommu_add_entry(xdma_channel_t *xchan, vm_offset_t *va,
vm_paddr_t pa, vm_size_t size, vm_prot_t prot);
void xdma_iommu_remove_entry(xdma_channel_t *xchan, vm_offset_t va);
int xdma_iommu_init(struct xdma_iommu *xio);
int xdma_iommu_release(struct xdma_iommu *xio);
#endif /* !_DEV_XDMA_XDMA_H_ */