freebsd-nq/sys/netinet/ip_input.c
Julian Elischer 8b07e49a00 Add code to allow the system to handle multiple routing tables.
This particular implementation is designed to be fully backwards compatible
and to be MFC-able to 7.x (and 6.x)

Currently the only protocol that can make use of the multiple tables is IPv4
Similar functionality exists in OpenBSD and Linux.

From my notes:

-----

  One thing where FreeBSD has been falling behind, and which by chance I
  have some time to work on is "policy based routing", which allows
  different
  packet streams to be routed by more than just the destination address.

  Constraints:
  ------------

  I want to make some form of this available in the 6.x tree
  (and by extension 7.x) , but FreeBSD in general needs it so I might as
  well do it in -current and back port the portions I need.

  One of the ways that this can be done is to have the ability to
  instantiate multiple kernel routing tables (which I will now
  refer to as "Forwarding Information Bases" or "FIBs" for political
  correctness reasons). Which FIB a particular packet uses to make
  the next hop decision can be decided by a number of mechanisms.
  The policies these mechanisms implement are the "Policies" referred
  to in "Policy based routing".

  One of the constraints I have if I try to back port this work to
  6.x is that it must be implemented as a EXTENSION to the existing
  ABIs in 6.x so that third party applications do not need to be
  recompiled in timespan of the branch.

  This first version will not have some of the bells and whistles that
  will come with later versions. It will, for example, be limited to 16
  tables in the first commit.
  Implementation method, Compatible version. (part 1)
  -------------------------------
  For this reason I have implemented a "sufficient subset" of a
  multiple routing table solution in Perforce, and back-ported it
  to 6.x. (also in Perforce though not  always caught up with what I
  have done in -current/P4). The subset allows a number of FIBs
  to be defined at compile time (8 is sufficient for my purposes in 6.x)
  and implements the changes needed to allow IPV4 to use them. I have not
  done the changes for ipv6 simply because I do not need it, and I do not
  have enough knowledge of ipv6 (e.g. neighbor discovery) needed to do it.

  Other protocol families are left untouched and should there be
  users with proprietary protocol families, they should continue to work
  and be oblivious to the existence of the extra FIBs.

  To understand how this is done, one must know that the current FIB
  code starts everything off with a single dimensional array of
  pointers to FIB head structures (One per protocol family), each of
  which in turn points to the trie of routes available to that family.

  The basic change in the ABI compatible version of the change is to
  extent that array to be a 2 dimensional array, so that
  instead of protocol family X looking at rt_tables[X] for the
  table it needs, it looks at rt_tables[Y][X] when for all
  protocol families except ipv4 Y is always 0.
  Code that is unaware of the change always just sees the first row
  of the table, which of course looks just like the one dimensional
  array that existed before.

  The entry points rtrequest(), rtalloc(), rtalloc1(), rtalloc_ign()
  are all maintained, but refer only to the first row of the array,
  so that existing callers in proprietary protocols can continue to
  do the "right thing".
  Some new entry points are added, for the exclusive use of ipv4 code
  called in_rtrequest(), in_rtalloc(), in_rtalloc1() and in_rtalloc_ign(),
  which have an extra argument which refers the code to the correct row.

  In addition, there are some new entry points (currently called
  rtalloc_fib() and friends) that check the Address family being
  looked up and call either rtalloc() (and friends) if the protocol
  is not IPv4 forcing the action to row 0 or to the appropriate row
  if it IS IPv4 (and that info is available). These are for calling
  from code that is not specific to any particular protocol. The way
  these are implemented would change in the non ABI preserving code
  to be added later.

  One feature of the first version of the code is that for ipv4,
  the interface routes show up automatically on all the FIBs, so
  that no matter what FIB you select you always have the basic
  direct attached hosts available to you. (rtinit() does this
  automatically).

  You CAN delete an interface route from one FIB should you want
  to but by default it's there. ARP information is also available
  in each FIB. It's assumed that the same machine would have the
  same MAC address, regardless of which FIB you are using to get
  to it.

  This brings us as to how the correct FIB is selected for an outgoing
  IPV4 packet.

  Firstly, all packets have a FIB associated with them. if nothing
  has been done to change it, it will be FIB 0. The FIB is changed
  in the following ways.

  Packets fall into one of a number of classes.

  1/ locally generated packets, coming from a socket/PCB.
     Such packets select a FIB from a number associated with the
     socket/PCB. This in turn is inherited from the process,
     but can be changed by a socket option. The process in turn
     inherits it on fork. I have written a utility call setfib
     that acts a bit like nice..

         setfib -3 ping target.example.com # will use fib 3 for ping.

     It is an obvious extension to make it a property of a jail
     but I have not done so. It can be achieved by combining the setfib and
     jail commands.

  2/ packets received on an interface for forwarding.
     By default these packets would use table 0,
     (or possibly a number settable in a sysctl(not yet)).
     but prior to routing the firewall can inspect them (see below).
     (possibly in the future you may be able to associate a FIB
     with packets received on an interface..  An ifconfig arg, but not yet.)

  3/ packets inspected by a packet classifier, which can arbitrarily
     associate a fib with it on a packet by packet basis.
     A fib assigned to a packet by a packet classifier
     (such as ipfw) would over-ride a fib associated by
     a more default source. (such as cases 1 or 2).

  4/ a tcp listen socket associated with a fib will generate
     accept sockets that are associated with that same fib.

  5/ Packets generated in response to some other packet (e.g. reset
     or icmp packets). These should use the FIB associated with the
     packet being reponded to.

  6/ Packets generated during encapsulation.
     gif, tun and other tunnel interfaces will encapsulate using the FIB
     that was in effect withthe proces that set up the tunnel.
     thus setfib 1 ifconfig gif0 [tunnel instructions]
     will set the fib for the tunnel to use to be fib 1.

  Routing messages would be associated with their
  process, and thus select one FIB or another.
  messages from the kernel would be associated with the fib they
  refer to and would only be received by a routing socket associated
  with that fib. (not yet implemented)

  In addition Netstat has been edited to be able to cope with the
  fact that the array is now 2 dimensional. (It looks in system
  memory using libkvm (!)). Old versions of netstat see only the first FIB.

  In addition two sysctls are added to give:
  a) the number of FIBs compiled in (active)
  b) the default FIB of the calling process.

  Early testing experience:
  -------------------------

  Basically our (IronPort's) appliance does this functionality already
  using ipfw fwd but that method has some drawbacks.

  For example,
  It can't fully simulate a routing table because it can't influence the
  socket's choice of local address when a connect() is done.

  Testing during the generating of these changes has been
  remarkably smooth so far. Multiple tables have co-existed
  with no notable side effects, and packets have been routes
  accordingly.

  ipfw has grown 2 new keywords:

  setfib N ip from anay to any
  count ip from any to any fib N

  In pf there seems to be a requirement to be able to give symbolic names to the
  fibs but I do not have that capacity. I am not sure if it is required.

  SCTP has interestingly enough built in support for this, called VRFs
  in Cisco parlance. it will be interesting to see how that handles it
  when it suddenly actually does something.

  Where to next:
  --------------------

  After committing the ABI compatible version and MFCing it, I'd
  like to proceed in a forward direction in -current. this will
  result in some roto-tilling in the routing code.

  Firstly: the current code's idea of having a separate tree per
  protocol family, all of the same format, and pointed to by the
  1 dimensional array is a bit silly. Especially when one considers that
  there is code that makes assumptions about every protocol having the
  same internal structures there. Some protocols don't WANT that
  sort of structure. (for example the whole idea of a netmask is foreign
  to appletalk). This needs to be made opaque to the external code.

  My suggested first change is to add routing method pointers to the
  'domain' structure, along with information pointing the data.
  instead of having an array of pointers to uniform structures,
  there would be an array pointing to the 'domain' structures
  for each protocol address domain (protocol family),
  and the methods this reached would be called. The methods would have
  an argument that gives FIB number, but the protocol would be free
  to ignore it.

  When the ABI can be changed it raises the possibilty of the
  addition of a fib entry into the "struct route". Currently,
  the structure contains the sockaddr of the desination, and the resulting
  fib entry. To make this work fully, one could add a fib number
  so that given an address and a fib, one can find the third element, the
  fib entry.

  Interaction with the ARP layer/ LL layer would need to be
  revisited as well. Qing Li has been working on this already.

  This work was sponsored by Ironport Systems/Cisco

Reviewed by:    several including rwatson, bz and mlair (parts each)
Obtained from:  Ironport systems/Cisco
2008-05-09 23:03:00 +00:00

1622 lines
41 KiB
C

/*-
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)ip_input.c 8.2 (Berkeley) 1/4/94
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_bootp.h"
#include "opt_ipfw.h"
#include "opt_ipstealth.h"
#include "opt_ipsec.h"
#include "opt_mac.h"
#include "opt_carp.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <net/pfil.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <net/netisr.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/ip_icmp.h>
#include <netinet/ip_options.h>
#include <machine/in_cksum.h>
#ifdef DEV_CARP
#include <netinet/ip_carp.h>
#endif
#ifdef IPSEC
#include <netinet/ip_ipsec.h>
#endif /* IPSEC */
#include <sys/socketvar.h>
/* XXX: Temporary until ipfw_ether and ipfw_bridge are converted. */
#include <netinet/ip_fw.h>
#include <netinet/ip_dummynet.h>
#include <security/mac/mac_framework.h>
int rsvp_on = 0;
int ipforwarding = 0;
SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
&ipforwarding, 0, "Enable IP forwarding between interfaces");
static int ipsendredirects = 1; /* XXX */
SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
&ipsendredirects, 0, "Enable sending IP redirects");
int ip_defttl = IPDEFTTL;
SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
&ip_defttl, 0, "Maximum TTL on IP packets");
static int ip_keepfaith = 0;
SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
&ip_keepfaith, 0,
"Enable packet capture for FAITH IPv4->IPv6 translater daemon");
static int ip_sendsourcequench = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
&ip_sendsourcequench, 0,
"Enable the transmission of source quench packets");
int ip_do_randomid = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
&ip_do_randomid, 0,
"Assign random ip_id values");
/*
* XXX - Setting ip_checkinterface mostly implements the receive side of
* the Strong ES model described in RFC 1122, but since the routing table
* and transmit implementation do not implement the Strong ES model,
* setting this to 1 results in an odd hybrid.
*
* XXX - ip_checkinterface currently must be disabled if you use ipnat
* to translate the destination address to another local interface.
*
* XXX - ip_checkinterface must be disabled if you add IP aliases
* to the loopback interface instead of the interface where the
* packets for those addresses are received.
*/
static int ip_checkinterface = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
&ip_checkinterface, 0, "Verify packet arrives on correct interface");
struct pfil_head inet_pfil_hook; /* Packet filter hooks */
static struct ifqueue ipintrq;
static int ipqmaxlen = IFQ_MAXLEN;
extern struct domain inetdomain;
extern struct protosw inetsw[];
u_char ip_protox[IPPROTO_MAX];
struct in_ifaddrhead in_ifaddrhead; /* first inet address */
struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */
u_long in_ifaddrhmask; /* mask for hash table */
SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
&ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
&ipintrq.ifq_drops, 0,
"Number of packets dropped from the IP input queue");
struct ipstat ipstat;
SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
&ipstat, ipstat, "IP statistics (struct ipstat, netinet/ip_var.h)");
/*
* IP datagram reassembly.
*/
#define IPREASS_NHASH_LOG2 6
#define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
#define IPREASS_HMASK (IPREASS_NHASH - 1)
#define IPREASS_HASH(x,y) \
(((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
static uma_zone_t ipq_zone;
static TAILQ_HEAD(ipqhead, ipq) ipq[IPREASS_NHASH];
static struct mtx ipqlock;
#define IPQ_LOCK() mtx_lock(&ipqlock)
#define IPQ_UNLOCK() mtx_unlock(&ipqlock)
#define IPQ_LOCK_INIT() mtx_init(&ipqlock, "ipqlock", NULL, MTX_DEF)
#define IPQ_LOCK_ASSERT() mtx_assert(&ipqlock, MA_OWNED)
static void maxnipq_update(void);
static void ipq_zone_change(void *);
static int maxnipq; /* Administrative limit on # reass queues. */
static int nipq = 0; /* Total # of reass queues */
SYSCTL_INT(_net_inet_ip, OID_AUTO, fragpackets, CTLFLAG_RD,
&nipq, 0, "Current number of IPv4 fragment reassembly queue entries");
static int maxfragsperpacket;
SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
&maxfragsperpacket, 0,
"Maximum number of IPv4 fragments allowed per packet");
struct callout ipport_tick_callout;
#ifdef IPCTL_DEFMTU
SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
&ip_mtu, 0, "Default MTU");
#endif
#ifdef IPSTEALTH
int ipstealth = 0;
SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW,
&ipstealth, 0, "IP stealth mode, no TTL decrementation on forwarding");
#endif
/*
* ipfw_ether and ipfw_bridge hooks.
* XXX: Temporary until those are converted to pfil_hooks as well.
*/
ip_fw_chk_t *ip_fw_chk_ptr = NULL;
ip_dn_io_t *ip_dn_io_ptr = NULL;
int fw_one_pass = 1;
static void ip_freef(struct ipqhead *, struct ipq *);
/*
* IP initialization: fill in IP protocol switch table.
* All protocols not implemented in kernel go to raw IP protocol handler.
*/
void
ip_init(void)
{
struct protosw *pr;
int i;
TAILQ_INIT(&in_ifaddrhead);
in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
if (pr == NULL)
panic("ip_init: PF_INET not found");
/* Initialize the entire ip_protox[] array to IPPROTO_RAW. */
for (i = 0; i < IPPROTO_MAX; i++)
ip_protox[i] = pr - inetsw;
/*
* Cycle through IP protocols and put them into the appropriate place
* in ip_protox[].
*/
for (pr = inetdomain.dom_protosw;
pr < inetdomain.dom_protoswNPROTOSW; pr++)
if (pr->pr_domain->dom_family == PF_INET &&
pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW) {
/* Be careful to only index valid IP protocols. */
if (pr->pr_protocol < IPPROTO_MAX)
ip_protox[pr->pr_protocol] = pr - inetsw;
}
/* Initialize packet filter hooks. */
inet_pfil_hook.ph_type = PFIL_TYPE_AF;
inet_pfil_hook.ph_af = AF_INET;
if ((i = pfil_head_register(&inet_pfil_hook)) != 0)
printf("%s: WARNING: unable to register pfil hook, "
"error %d\n", __func__, i);
/* Initialize IP reassembly queue. */
IPQ_LOCK_INIT();
for (i = 0; i < IPREASS_NHASH; i++)
TAILQ_INIT(&ipq[i]);
maxnipq = nmbclusters / 32;
maxfragsperpacket = 16;
ipq_zone = uma_zcreate("ipq", sizeof(struct ipq), NULL, NULL, NULL,
NULL, UMA_ALIGN_PTR, 0);
maxnipq_update();
/* Start ipport_tick. */
callout_init(&ipport_tick_callout, CALLOUT_MPSAFE);
ipport_tick(NULL);
EVENTHANDLER_REGISTER(shutdown_pre_sync, ip_fini, NULL,
SHUTDOWN_PRI_DEFAULT);
EVENTHANDLER_REGISTER(nmbclusters_change, ipq_zone_change,
NULL, EVENTHANDLER_PRI_ANY);
/* Initialize various other remaining things. */
ip_id = time_second & 0xffff;
ipintrq.ifq_maxlen = ipqmaxlen;
mtx_init(&ipintrq.ifq_mtx, "ip_inq", NULL, MTX_DEF);
netisr_register(NETISR_IP, ip_input, &ipintrq, NETISR_MPSAFE);
}
void
ip_fini(void *xtp)
{
callout_stop(&ipport_tick_callout);
}
/*
* Ip input routine. Checksum and byte swap header. If fragmented
* try to reassemble. Process options. Pass to next level.
*/
void
ip_input(struct mbuf *m)
{
struct ip *ip = NULL;
struct in_ifaddr *ia = NULL;
struct ifaddr *ifa;
int checkif, hlen = 0;
u_short sum;
int dchg = 0; /* dest changed after fw */
struct in_addr odst; /* original dst address */
M_ASSERTPKTHDR(m);
if (m->m_flags & M_FASTFWD_OURS) {
/*
* Firewall or NAT changed destination to local.
* We expect ip_len and ip_off to be in host byte order.
*/
m->m_flags &= ~M_FASTFWD_OURS;
/* Set up some basics that will be used later. */
ip = mtod(m, struct ip *);
hlen = ip->ip_hl << 2;
goto ours;
}
ipstat.ips_total++;
if (m->m_pkthdr.len < sizeof(struct ip))
goto tooshort;
if (m->m_len < sizeof (struct ip) &&
(m = m_pullup(m, sizeof (struct ip))) == NULL) {
ipstat.ips_toosmall++;
return;
}
ip = mtod(m, struct ip *);
if (ip->ip_v != IPVERSION) {
ipstat.ips_badvers++;
goto bad;
}
hlen = ip->ip_hl << 2;
if (hlen < sizeof(struct ip)) { /* minimum header length */
ipstat.ips_badhlen++;
goto bad;
}
if (hlen > m->m_len) {
if ((m = m_pullup(m, hlen)) == NULL) {
ipstat.ips_badhlen++;
return;
}
ip = mtod(m, struct ip *);
}
/* 127/8 must not appear on wire - RFC1122 */
if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
(ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
if ((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) {
ipstat.ips_badaddr++;
goto bad;
}
}
if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
} else {
if (hlen == sizeof(struct ip)) {
sum = in_cksum_hdr(ip);
} else {
sum = in_cksum(m, hlen);
}
}
if (sum) {
ipstat.ips_badsum++;
goto bad;
}
#ifdef ALTQ
if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0)
/* packet is dropped by traffic conditioner */
return;
#endif
/*
* Convert fields to host representation.
*/
ip->ip_len = ntohs(ip->ip_len);
if (ip->ip_len < hlen) {
ipstat.ips_badlen++;
goto bad;
}
ip->ip_off = ntohs(ip->ip_off);
/*
* Check that the amount of data in the buffers
* is as at least much as the IP header would have us expect.
* Trim mbufs if longer than we expect.
* Drop packet if shorter than we expect.
*/
if (m->m_pkthdr.len < ip->ip_len) {
tooshort:
ipstat.ips_tooshort++;
goto bad;
}
if (m->m_pkthdr.len > ip->ip_len) {
if (m->m_len == m->m_pkthdr.len) {
m->m_len = ip->ip_len;
m->m_pkthdr.len = ip->ip_len;
} else
m_adj(m, ip->ip_len - m->m_pkthdr.len);
}
#ifdef IPSEC
/*
* Bypass packet filtering for packets from a tunnel (gif).
*/
if (ip_ipsec_filtertunnel(m))
goto passin;
#endif /* IPSEC */
/*
* Run through list of hooks for input packets.
*
* NB: Beware of the destination address changing (e.g.
* by NAT rewriting). When this happens, tell
* ip_forward to do the right thing.
*/
/* Jump over all PFIL processing if hooks are not active. */
if (!PFIL_HOOKED(&inet_pfil_hook))
goto passin;
odst = ip->ip_dst;
if (pfil_run_hooks(&inet_pfil_hook, &m, m->m_pkthdr.rcvif,
PFIL_IN, NULL) != 0)
return;
if (m == NULL) /* consumed by filter */
return;
ip = mtod(m, struct ip *);
dchg = (odst.s_addr != ip->ip_dst.s_addr);
#ifdef IPFIREWALL_FORWARD
if (m->m_flags & M_FASTFWD_OURS) {
m->m_flags &= ~M_FASTFWD_OURS;
goto ours;
}
if ((dchg = (m_tag_find(m, PACKET_TAG_IPFORWARD, NULL) != NULL)) != 0) {
/*
* Directly ship on the packet. This allows to forward packets
* that were destined for us to some other directly connected
* host.
*/
ip_forward(m, dchg);
return;
}
#endif /* IPFIREWALL_FORWARD */
passin:
/*
* Process options and, if not destined for us,
* ship it on. ip_dooptions returns 1 when an
* error was detected (causing an icmp message
* to be sent and the original packet to be freed).
*/
if (hlen > sizeof (struct ip) && ip_dooptions(m, 0))
return;
/* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
* matter if it is destined to another node, or whether it is
* a multicast one, RSVP wants it! and prevents it from being forwarded
* anywhere else. Also checks if the rsvp daemon is running before
* grabbing the packet.
*/
if (rsvp_on && ip->ip_p==IPPROTO_RSVP)
goto ours;
/*
* Check our list of addresses, to see if the packet is for us.
* If we don't have any addresses, assume any unicast packet
* we receive might be for us (and let the upper layers deal
* with it).
*/
if (TAILQ_EMPTY(&in_ifaddrhead) &&
(m->m_flags & (M_MCAST|M_BCAST)) == 0)
goto ours;
/*
* Enable a consistency check between the destination address
* and the arrival interface for a unicast packet (the RFC 1122
* strong ES model) if IP forwarding is disabled and the packet
* is not locally generated and the packet is not subject to
* 'ipfw fwd'.
*
* XXX - Checking also should be disabled if the destination
* address is ipnat'ed to a different interface.
*
* XXX - Checking is incompatible with IP aliases added
* to the loopback interface instead of the interface where
* the packets are received.
*
* XXX - This is the case for carp vhost IPs as well so we
* insert a workaround. If the packet got here, we already
* checked with carp_iamatch() and carp_forus().
*/
checkif = ip_checkinterface && (ipforwarding == 0) &&
m->m_pkthdr.rcvif != NULL &&
((m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) == 0) &&
#ifdef DEV_CARP
!m->m_pkthdr.rcvif->if_carp &&
#endif
(dchg == 0);
/*
* Check for exact addresses in the hash bucket.
*/
LIST_FOREACH(ia, INADDR_HASH(ip->ip_dst.s_addr), ia_hash) {
/*
* If the address matches, verify that the packet
* arrived via the correct interface if checking is
* enabled.
*/
if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr &&
(!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
goto ours;
}
/*
* Check for broadcast addresses.
*
* Only accept broadcast packets that arrive via the matching
* interface. Reception of forwarded directed broadcasts would
* be handled via ip_forward() and ether_output() with the loopback
* into the stack for SIMPLEX interfaces handled by ether_output().
*/
if (m->m_pkthdr.rcvif != NULL &&
m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != AF_INET)
continue;
ia = ifatoia(ifa);
if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
ip->ip_dst.s_addr)
goto ours;
if (ia->ia_netbroadcast.s_addr == ip->ip_dst.s_addr)
goto ours;
#ifdef BOOTP_COMPAT
if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
goto ours;
#endif
}
}
/* RFC 3927 2.7: Do not forward datagrams for 169.254.0.0/16. */
if (IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
ipstat.ips_cantforward++;
m_freem(m);
return;
}
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
struct in_multi *inm;
if (ip_mrouter) {
/*
* If we are acting as a multicast router, all
* incoming multicast packets are passed to the
* kernel-level multicast forwarding function.
* The packet is returned (relatively) intact; if
* ip_mforward() returns a non-zero value, the packet
* must be discarded, else it may be accepted below.
*/
if (ip_mforward &&
ip_mforward(ip, m->m_pkthdr.rcvif, m, 0) != 0) {
ipstat.ips_cantforward++;
m_freem(m);
return;
}
/*
* The process-level routing daemon needs to receive
* all multicast IGMP packets, whether or not this
* host belongs to their destination groups.
*/
if (ip->ip_p == IPPROTO_IGMP)
goto ours;
ipstat.ips_forward++;
}
/*
* See if we belong to the destination multicast group on the
* arrival interface.
*/
IN_MULTI_LOCK();
IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
IN_MULTI_UNLOCK();
if (inm == NULL) {
ipstat.ips_notmember++;
m_freem(m);
return;
}
goto ours;
}
if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
goto ours;
if (ip->ip_dst.s_addr == INADDR_ANY)
goto ours;
/*
* FAITH(Firewall Aided Internet Translator)
*/
if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
if (ip_keepfaith) {
if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
goto ours;
}
m_freem(m);
return;
}
/*
* Not for us; forward if possible and desirable.
*/
if (ipforwarding == 0) {
ipstat.ips_cantforward++;
m_freem(m);
} else {
#ifdef IPSEC
if (ip_ipsec_fwd(m))
goto bad;
#endif /* IPSEC */
ip_forward(m, dchg);
}
return;
ours:
#ifdef IPSTEALTH
/*
* IPSTEALTH: Process non-routing options only
* if the packet is destined for us.
*/
if (ipstealth && hlen > sizeof (struct ip) &&
ip_dooptions(m, 1))
return;
#endif /* IPSTEALTH */
/* Count the packet in the ip address stats */
if (ia != NULL) {
ia->ia_ifa.if_ipackets++;
ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
}
/*
* Attempt reassembly; if it succeeds, proceed.
* ip_reass() will return a different mbuf.
*/
if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
m = ip_reass(m);
if (m == NULL)
return;
ip = mtod(m, struct ip *);
/* Get the header length of the reassembled packet */
hlen = ip->ip_hl << 2;
}
/*
* Further protocols expect the packet length to be w/o the
* IP header.
*/
ip->ip_len -= hlen;
#ifdef IPSEC
/*
* enforce IPsec policy checking if we are seeing last header.
* note that we do not visit this with protocols with pcb layer
* code - like udp/tcp/raw ip.
*/
if (ip_ipsec_input(m))
goto bad;
#endif /* IPSEC */
/*
* Switch out to protocol's input routine.
*/
ipstat.ips_delivered++;
(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
return;
bad:
m_freem(m);
}
/*
* After maxnipq has been updated, propagate the change to UMA. The UMA zone
* max has slightly different semantics than the sysctl, for historical
* reasons.
*/
static void
maxnipq_update(void)
{
/*
* -1 for unlimited allocation.
*/
if (maxnipq < 0)
uma_zone_set_max(ipq_zone, 0);
/*
* Positive number for specific bound.
*/
if (maxnipq > 0)
uma_zone_set_max(ipq_zone, maxnipq);
/*
* Zero specifies no further fragment queue allocation -- set the
* bound very low, but rely on implementation elsewhere to actually
* prevent allocation and reclaim current queues.
*/
if (maxnipq == 0)
uma_zone_set_max(ipq_zone, 1);
}
static void
ipq_zone_change(void *tag)
{
if (maxnipq > 0 && maxnipq < (nmbclusters / 32)) {
maxnipq = nmbclusters / 32;
maxnipq_update();
}
}
static int
sysctl_maxnipq(SYSCTL_HANDLER_ARGS)
{
int error, i;
i = maxnipq;
error = sysctl_handle_int(oidp, &i, 0, req);
if (error || !req->newptr)
return (error);
/*
* XXXRW: Might be a good idea to sanity check the argument and place
* an extreme upper bound.
*/
if (i < -1)
return (EINVAL);
maxnipq = i;
maxnipq_update();
return (0);
}
SYSCTL_PROC(_net_inet_ip, OID_AUTO, maxfragpackets, CTLTYPE_INT|CTLFLAG_RW,
NULL, 0, sysctl_maxnipq, "I",
"Maximum number of IPv4 fragment reassembly queue entries");
/*
* Take incoming datagram fragment and try to reassemble it into
* whole datagram. If the argument is the first fragment or one
* in between the function will return NULL and store the mbuf
* in the fragment chain. If the argument is the last fragment
* the packet will be reassembled and the pointer to the new
* mbuf returned for further processing. Only m_tags attached
* to the first packet/fragment are preserved.
* The IP header is *NOT* adjusted out of iplen.
*/
struct mbuf *
ip_reass(struct mbuf *m)
{
struct ip *ip;
struct mbuf *p, *q, *nq, *t;
struct ipq *fp = NULL;
struct ipqhead *head;
int i, hlen, next;
u_int8_t ecn, ecn0;
u_short hash;
/* If maxnipq or maxfragsperpacket are 0, never accept fragments. */
if (maxnipq == 0 || maxfragsperpacket == 0) {
ipstat.ips_fragments++;
ipstat.ips_fragdropped++;
m_freem(m);
return (NULL);
}
ip = mtod(m, struct ip *);
hlen = ip->ip_hl << 2;
hash = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
head = &ipq[hash];
IPQ_LOCK();
/*
* Look for queue of fragments
* of this datagram.
*/
TAILQ_FOREACH(fp, head, ipq_list)
if (ip->ip_id == fp->ipq_id &&
ip->ip_src.s_addr == fp->ipq_src.s_addr &&
ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
#ifdef MAC
mac_ipq_match(m, fp) &&
#endif
ip->ip_p == fp->ipq_p)
goto found;
fp = NULL;
/*
* Attempt to trim the number of allocated fragment queues if it
* exceeds the administrative limit.
*/
if ((nipq > maxnipq) && (maxnipq > 0)) {
/*
* drop something from the tail of the current queue
* before proceeding further
*/
struct ipq *q = TAILQ_LAST(head, ipqhead);
if (q == NULL) { /* gak */
for (i = 0; i < IPREASS_NHASH; i++) {
struct ipq *r = TAILQ_LAST(&ipq[i], ipqhead);
if (r) {
ipstat.ips_fragtimeout += r->ipq_nfrags;
ip_freef(&ipq[i], r);
break;
}
}
} else {
ipstat.ips_fragtimeout += q->ipq_nfrags;
ip_freef(head, q);
}
}
found:
/*
* Adjust ip_len to not reflect header,
* convert offset of this to bytes.
*/
ip->ip_len -= hlen;
if (ip->ip_off & IP_MF) {
/*
* Make sure that fragments have a data length
* that's a non-zero multiple of 8 bytes.
*/
if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
ipstat.ips_toosmall++; /* XXX */
goto dropfrag;
}
m->m_flags |= M_FRAG;
} else
m->m_flags &= ~M_FRAG;
ip->ip_off <<= 3;
/*
* Attempt reassembly; if it succeeds, proceed.
* ip_reass() will return a different mbuf.
*/
ipstat.ips_fragments++;
m->m_pkthdr.header = ip;
/* Previous ip_reass() started here. */
/*
* Presence of header sizes in mbufs
* would confuse code below.
*/
m->m_data += hlen;
m->m_len -= hlen;
/*
* If first fragment to arrive, create a reassembly queue.
*/
if (fp == NULL) {
fp = uma_zalloc(ipq_zone, M_NOWAIT);
if (fp == NULL)
goto dropfrag;
#ifdef MAC
if (mac_ipq_init(fp, M_NOWAIT) != 0) {
uma_zfree(ipq_zone, fp);
fp = NULL;
goto dropfrag;
}
mac_ipq_create(m, fp);
#endif
TAILQ_INSERT_HEAD(head, fp, ipq_list);
nipq++;
fp->ipq_nfrags = 1;
fp->ipq_ttl = IPFRAGTTL;
fp->ipq_p = ip->ip_p;
fp->ipq_id = ip->ip_id;
fp->ipq_src = ip->ip_src;
fp->ipq_dst = ip->ip_dst;
fp->ipq_frags = m;
m->m_nextpkt = NULL;
goto done;
} else {
fp->ipq_nfrags++;
#ifdef MAC
mac_ipq_update(m, fp);
#endif
}
#define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
/*
* Handle ECN by comparing this segment with the first one;
* if CE is set, do not lose CE.
* drop if CE and not-ECT are mixed for the same packet.
*/
ecn = ip->ip_tos & IPTOS_ECN_MASK;
ecn0 = GETIP(fp->ipq_frags)->ip_tos & IPTOS_ECN_MASK;
if (ecn == IPTOS_ECN_CE) {
if (ecn0 == IPTOS_ECN_NOTECT)
goto dropfrag;
if (ecn0 != IPTOS_ECN_CE)
GETIP(fp->ipq_frags)->ip_tos |= IPTOS_ECN_CE;
}
if (ecn == IPTOS_ECN_NOTECT && ecn0 != IPTOS_ECN_NOTECT)
goto dropfrag;
/*
* Find a segment which begins after this one does.
*/
for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
if (GETIP(q)->ip_off > ip->ip_off)
break;
/*
* If there is a preceding segment, it may provide some of
* our data already. If so, drop the data from the incoming
* segment. If it provides all of our data, drop us, otherwise
* stick new segment in the proper place.
*
* If some of the data is dropped from the the preceding
* segment, then it's checksum is invalidated.
*/
if (p) {
i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
if (i > 0) {
if (i >= ip->ip_len)
goto dropfrag;
m_adj(m, i);
m->m_pkthdr.csum_flags = 0;
ip->ip_off += i;
ip->ip_len -= i;
}
m->m_nextpkt = p->m_nextpkt;
p->m_nextpkt = m;
} else {
m->m_nextpkt = fp->ipq_frags;
fp->ipq_frags = m;
}
/*
* While we overlap succeeding segments trim them or,
* if they are completely covered, dequeue them.
*/
for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
q = nq) {
i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
if (i < GETIP(q)->ip_len) {
GETIP(q)->ip_len -= i;
GETIP(q)->ip_off += i;
m_adj(q, i);
q->m_pkthdr.csum_flags = 0;
break;
}
nq = q->m_nextpkt;
m->m_nextpkt = nq;
ipstat.ips_fragdropped++;
fp->ipq_nfrags--;
m_freem(q);
}
/*
* Check for complete reassembly and perform frag per packet
* limiting.
*
* Frag limiting is performed here so that the nth frag has
* a chance to complete the packet before we drop the packet.
* As a result, n+1 frags are actually allowed per packet, but
* only n will ever be stored. (n = maxfragsperpacket.)
*
*/
next = 0;
for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
if (GETIP(q)->ip_off != next) {
if (fp->ipq_nfrags > maxfragsperpacket) {
ipstat.ips_fragdropped += fp->ipq_nfrags;
ip_freef(head, fp);
}
goto done;
}
next += GETIP(q)->ip_len;
}
/* Make sure the last packet didn't have the IP_MF flag */
if (p->m_flags & M_FRAG) {
if (fp->ipq_nfrags > maxfragsperpacket) {
ipstat.ips_fragdropped += fp->ipq_nfrags;
ip_freef(head, fp);
}
goto done;
}
/*
* Reassembly is complete. Make sure the packet is a sane size.
*/
q = fp->ipq_frags;
ip = GETIP(q);
if (next + (ip->ip_hl << 2) > IP_MAXPACKET) {
ipstat.ips_toolong++;
ipstat.ips_fragdropped += fp->ipq_nfrags;
ip_freef(head, fp);
goto done;
}
/*
* Concatenate fragments.
*/
m = q;
t = m->m_next;
m->m_next = NULL;
m_cat(m, t);
nq = q->m_nextpkt;
q->m_nextpkt = NULL;
for (q = nq; q != NULL; q = nq) {
nq = q->m_nextpkt;
q->m_nextpkt = NULL;
m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
m_cat(m, q);
}
/*
* In order to do checksumming faster we do 'end-around carry' here
* (and not in for{} loop), though it implies we are not going to
* reassemble more than 64k fragments.
*/
m->m_pkthdr.csum_data =
(m->m_pkthdr.csum_data & 0xffff) + (m->m_pkthdr.csum_data >> 16);
#ifdef MAC
mac_ipq_reassemble(fp, m);
mac_ipq_destroy(fp);
#endif
/*
* Create header for new ip packet by modifying header of first
* packet; dequeue and discard fragment reassembly header.
* Make header visible.
*/
ip->ip_len = (ip->ip_hl << 2) + next;
ip->ip_src = fp->ipq_src;
ip->ip_dst = fp->ipq_dst;
TAILQ_REMOVE(head, fp, ipq_list);
nipq--;
uma_zfree(ipq_zone, fp);
m->m_len += (ip->ip_hl << 2);
m->m_data -= (ip->ip_hl << 2);
/* some debugging cruft by sklower, below, will go away soon */
if (m->m_flags & M_PKTHDR) /* XXX this should be done elsewhere */
m_fixhdr(m);
ipstat.ips_reassembled++;
IPQ_UNLOCK();
return (m);
dropfrag:
ipstat.ips_fragdropped++;
if (fp != NULL)
fp->ipq_nfrags--;
m_freem(m);
done:
IPQ_UNLOCK();
return (NULL);
#undef GETIP
}
/*
* Free a fragment reassembly header and all
* associated datagrams.
*/
static void
ip_freef(struct ipqhead *fhp, struct ipq *fp)
{
struct mbuf *q;
IPQ_LOCK_ASSERT();
while (fp->ipq_frags) {
q = fp->ipq_frags;
fp->ipq_frags = q->m_nextpkt;
m_freem(q);
}
TAILQ_REMOVE(fhp, fp, ipq_list);
uma_zfree(ipq_zone, fp);
nipq--;
}
/*
* IP timer processing;
* if a timer expires on a reassembly
* queue, discard it.
*/
void
ip_slowtimo(void)
{
struct ipq *fp;
int i;
IPQ_LOCK();
for (i = 0; i < IPREASS_NHASH; i++) {
for(fp = TAILQ_FIRST(&ipq[i]); fp;) {
struct ipq *fpp;
fpp = fp;
fp = TAILQ_NEXT(fp, ipq_list);
if(--fpp->ipq_ttl == 0) {
ipstat.ips_fragtimeout += fpp->ipq_nfrags;
ip_freef(&ipq[i], fpp);
}
}
}
/*
* If we are over the maximum number of fragments
* (due to the limit being lowered), drain off
* enough to get down to the new limit.
*/
if (maxnipq >= 0 && nipq > maxnipq) {
for (i = 0; i < IPREASS_NHASH; i++) {
while (nipq > maxnipq && !TAILQ_EMPTY(&ipq[i])) {
ipstat.ips_fragdropped +=
TAILQ_FIRST(&ipq[i])->ipq_nfrags;
ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
}
}
}
IPQ_UNLOCK();
}
/*
* Drain off all datagram fragments.
*/
void
ip_drain(void)
{
int i;
IPQ_LOCK();
for (i = 0; i < IPREASS_NHASH; i++) {
while(!TAILQ_EMPTY(&ipq[i])) {
ipstat.ips_fragdropped +=
TAILQ_FIRST(&ipq[i])->ipq_nfrags;
ip_freef(&ipq[i], TAILQ_FIRST(&ipq[i]));
}
}
IPQ_UNLOCK();
in_rtqdrain();
}
/*
* The protocol to be inserted into ip_protox[] must be already registered
* in inetsw[], either statically or through pf_proto_register().
*/
int
ipproto_register(u_char ipproto)
{
struct protosw *pr;
/* Sanity checks. */
if (ipproto == 0)
return (EPROTONOSUPPORT);
/*
* The protocol slot must not be occupied by another protocol
* already. An index pointing to IPPROTO_RAW is unused.
*/
pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
if (pr == NULL)
return (EPFNOSUPPORT);
if (ip_protox[ipproto] != pr - inetsw) /* IPPROTO_RAW */
return (EEXIST);
/* Find the protocol position in inetsw[] and set the index. */
for (pr = inetdomain.dom_protosw;
pr < inetdomain.dom_protoswNPROTOSW; pr++) {
if (pr->pr_domain->dom_family == PF_INET &&
pr->pr_protocol && pr->pr_protocol == ipproto) {
/* Be careful to only index valid IP protocols. */
if (pr->pr_protocol < IPPROTO_MAX) {
ip_protox[pr->pr_protocol] = pr - inetsw;
return (0);
} else
return (EINVAL);
}
}
return (EPROTONOSUPPORT);
}
int
ipproto_unregister(u_char ipproto)
{
struct protosw *pr;
/* Sanity checks. */
if (ipproto == 0)
return (EPROTONOSUPPORT);
/* Check if the protocol was indeed registered. */
pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
if (pr == NULL)
return (EPFNOSUPPORT);
if (ip_protox[ipproto] == pr - inetsw) /* IPPROTO_RAW */
return (ENOENT);
/* Reset the protocol slot to IPPROTO_RAW. */
ip_protox[ipproto] = pr - inetsw;
return (0);
}
/*
* Given address of next destination (final or next hop),
* return internet address info of interface to be used to get there.
*/
struct in_ifaddr *
ip_rtaddr(struct in_addr dst, u_int fibnum)
{
struct route sro;
struct sockaddr_in *sin;
struct in_ifaddr *ifa;
bzero(&sro, sizeof(sro));
sin = (struct sockaddr_in *)&sro.ro_dst;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = dst;
in_rtalloc_ign(&sro, RTF_CLONING, fibnum);
if (sro.ro_rt == NULL)
return (NULL);
ifa = ifatoia(sro.ro_rt->rt_ifa);
RTFREE(sro.ro_rt);
return (ifa);
}
u_char inetctlerrmap[PRC_NCMDS] = {
0, 0, 0, 0,
0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
EMSGSIZE, EHOSTUNREACH, 0, 0,
0, 0, EHOSTUNREACH, 0,
ENOPROTOOPT, ECONNREFUSED
};
/*
* Forward a packet. If some error occurs return the sender
* an icmp packet. Note we can't always generate a meaningful
* icmp message because icmp doesn't have a large enough repertoire
* of codes and types.
*
* If not forwarding, just drop the packet. This could be confusing
* if ipforwarding was zero but some routing protocol was advancing
* us as a gateway to somewhere. However, we must let the routing
* protocol deal with that.
*
* The srcrt parameter indicates whether the packet is being forwarded
* via a source route.
*/
void
ip_forward(struct mbuf *m, int srcrt)
{
struct ip *ip = mtod(m, struct ip *);
struct in_ifaddr *ia = NULL;
struct mbuf *mcopy;
struct in_addr dest;
struct route ro;
int error, type = 0, code = 0, mtu = 0;
if (m->m_flags & (M_BCAST|M_MCAST) || in_canforward(ip->ip_dst) == 0) {
ipstat.ips_cantforward++;
m_freem(m);
return;
}
#ifdef IPSTEALTH
if (!ipstealth) {
#endif
if (ip->ip_ttl <= IPTTLDEC) {
icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS,
0, 0);
return;
}
#ifdef IPSTEALTH
}
#endif
ia = ip_rtaddr(ip->ip_dst, M_GETFIB(m));
if (!srcrt && ia == NULL) {
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
return;
}
/*
* Save the IP header and at most 8 bytes of the payload,
* in case we need to generate an ICMP message to the src.
*
* XXX this can be optimized a lot by saving the data in a local
* buffer on the stack (72 bytes at most), and only allocating the
* mbuf if really necessary. The vast majority of the packets
* are forwarded without having to send an ICMP back (either
* because unnecessary, or because rate limited), so we are
* really we are wasting a lot of work here.
*
* We don't use m_copy() because it might return a reference
* to a shared cluster. Both this function and ip_output()
* assume exclusive access to the IP header in `m', so any
* data in a cluster may change before we reach icmp_error().
*/
MGETHDR(mcopy, M_DONTWAIT, m->m_type);
if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, M_DONTWAIT)) {
/*
* It's probably ok if the pkthdr dup fails (because
* the deep copy of the tag chain failed), but for now
* be conservative and just discard the copy since
* code below may some day want the tags.
*/
m_free(mcopy);
mcopy = NULL;
}
if (mcopy != NULL) {
mcopy->m_len = min(ip->ip_len, M_TRAILINGSPACE(mcopy));
mcopy->m_pkthdr.len = mcopy->m_len;
m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
}
#ifdef IPSTEALTH
if (!ipstealth) {
#endif
ip->ip_ttl -= IPTTLDEC;
#ifdef IPSTEALTH
}
#endif
/*
* If forwarding packet using same interface that it came in on,
* perhaps should send a redirect to sender to shortcut a hop.
* Only send redirect if source is sending directly to us,
* and if packet was not source routed (or has any options).
* Also, don't send redirect if forwarding using a default route
* or a route modified by a redirect.
*/
dest.s_addr = 0;
if (!srcrt && ipsendredirects && ia->ia_ifp == m->m_pkthdr.rcvif) {
struct sockaddr_in *sin;
struct rtentry *rt;
bzero(&ro, sizeof(ro));
sin = (struct sockaddr_in *)&ro.ro_dst;
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_addr = ip->ip_dst;
in_rtalloc_ign(&ro, RTF_CLONING, M_GETFIB(m));
rt = ro.ro_rt;
if (rt && (rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
satosin(rt_key(rt))->sin_addr.s_addr != 0) {
#define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
u_long src = ntohl(ip->ip_src.s_addr);
if (RTA(rt) &&
(src & RTA(rt)->ia_subnetmask) == RTA(rt)->ia_subnet) {
if (rt->rt_flags & RTF_GATEWAY)
dest.s_addr = satosin(rt->rt_gateway)->sin_addr.s_addr;
else
dest.s_addr = ip->ip_dst.s_addr;
/* Router requirements says to only send host redirects */
type = ICMP_REDIRECT;
code = ICMP_REDIRECT_HOST;
}
}
if (rt)
RTFREE(rt);
}
/*
* Try to cache the route MTU from ip_output so we can consider it for
* the ICMP_UNREACH_NEEDFRAG "Next-Hop MTU" field described in RFC1191.
*/
bzero(&ro, sizeof(ro));
rtalloc_ign_fib(&ro, RTF_CLONING, M_GETFIB(m));
error = ip_output(m, NULL, &ro, IP_FORWARDING, NULL, NULL);
if (error == EMSGSIZE && ro.ro_rt)
mtu = ro.ro_rt->rt_rmx.rmx_mtu;
if (ro.ro_rt)
RTFREE(ro.ro_rt);
if (error)
ipstat.ips_cantforward++;
else {
ipstat.ips_forward++;
if (type)
ipstat.ips_redirectsent++;
else {
if (mcopy)
m_freem(mcopy);
return;
}
}
if (mcopy == NULL)
return;
switch (error) {
case 0: /* forwarded, but need redirect */
/* type, code set above */
break;
case ENETUNREACH: /* shouldn't happen, checked above */
case EHOSTUNREACH:
case ENETDOWN:
case EHOSTDOWN:
default:
type = ICMP_UNREACH;
code = ICMP_UNREACH_HOST;
break;
case EMSGSIZE:
type = ICMP_UNREACH;
code = ICMP_UNREACH_NEEDFRAG;
#ifdef IPSEC
/*
* If IPsec is configured for this path,
* override any possibly mtu value set by ip_output.
*/
mtu = ip_ipsec_mtu(m, mtu);
#endif /* IPSEC */
/*
* If the MTU was set before make sure we are below the
* interface MTU.
* If the MTU wasn't set before use the interface mtu or
* fall back to the next smaller mtu step compared to the
* current packet size.
*/
if (mtu != 0) {
if (ia != NULL)
mtu = min(mtu, ia->ia_ifp->if_mtu);
} else {
if (ia != NULL)
mtu = ia->ia_ifp->if_mtu;
else
mtu = ip_next_mtu(ip->ip_len, 0);
}
ipstat.ips_cantfrag++;
break;
case ENOBUFS:
/*
* A router should not generate ICMP_SOURCEQUENCH as
* required in RFC1812 Requirements for IP Version 4 Routers.
* Source quench could be a big problem under DoS attacks,
* or if the underlying interface is rate-limited.
* Those who need source quench packets may re-enable them
* via the net.inet.ip.sendsourcequench sysctl.
*/
if (ip_sendsourcequench == 0) {
m_freem(mcopy);
return;
} else {
type = ICMP_SOURCEQUENCH;
code = 0;
}
break;
case EACCES: /* ipfw denied packet */
m_freem(mcopy);
return;
}
icmp_error(mcopy, type, code, dest.s_addr, mtu);
}
void
ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
struct mbuf *m)
{
if (inp->inp_socket->so_options & (SO_BINTIME | SO_TIMESTAMP)) {
struct bintime bt;
bintime(&bt);
if (inp->inp_socket->so_options & SO_BINTIME) {
*mp = sbcreatecontrol((caddr_t) &bt, sizeof(bt),
SCM_BINTIME, SOL_SOCKET);
if (*mp)
mp = &(*mp)->m_next;
}
if (inp->inp_socket->so_options & SO_TIMESTAMP) {
struct timeval tv;
bintime2timeval(&bt, &tv);
*mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
SCM_TIMESTAMP, SOL_SOCKET);
if (*mp)
mp = &(*mp)->m_next;
}
}
if (inp->inp_flags & INP_RECVDSTADDR) {
*mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
if (*mp)
mp = &(*mp)->m_next;
}
if (inp->inp_flags & INP_RECVTTL) {
*mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
if (*mp)
mp = &(*mp)->m_next;
}
#ifdef notyet
/* XXX
* Moving these out of udp_input() made them even more broken
* than they already were.
*/
/* options were tossed already */
if (inp->inp_flags & INP_RECVOPTS) {
*mp = sbcreatecontrol((caddr_t) opts_deleted_above,
sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
if (*mp)
mp = &(*mp)->m_next;
}
/* ip_srcroute doesn't do what we want here, need to fix */
if (inp->inp_flags & INP_RECVRETOPTS) {
*mp = sbcreatecontrol((caddr_t) ip_srcroute(m),
sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
if (*mp)
mp = &(*mp)->m_next;
}
#endif
if (inp->inp_flags & INP_RECVIF) {
struct ifnet *ifp;
struct sdlbuf {
struct sockaddr_dl sdl;
u_char pad[32];
} sdlbuf;
struct sockaddr_dl *sdp;
struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
if (((ifp = m->m_pkthdr.rcvif))
&& ( ifp->if_index && (ifp->if_index <= if_index))) {
sdp = (struct sockaddr_dl *)ifp->if_addr->ifa_addr;
/*
* Change our mind and don't try copy.
*/
if ((sdp->sdl_family != AF_LINK)
|| (sdp->sdl_len > sizeof(sdlbuf))) {
goto makedummy;
}
bcopy(sdp, sdl2, sdp->sdl_len);
} else {
makedummy:
sdl2->sdl_len
= offsetof(struct sockaddr_dl, sdl_data[0]);
sdl2->sdl_family = AF_LINK;
sdl2->sdl_index = 0;
sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
}
*mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
IP_RECVIF, IPPROTO_IP);
if (*mp)
mp = &(*mp)->m_next;
}
}
/*
* XXXRW: Multicast routing code in ip_mroute.c is generally MPSAFE, but the
* ip_rsvp and ip_rsvp_on variables need to be interlocked with rsvp_on
* locking. This code remains in ip_input.c as ip_mroute.c is optionally
* compiled.
*/
static int ip_rsvp_on;
struct socket *ip_rsvpd;
int
ip_rsvp_init(struct socket *so)
{
if (so->so_type != SOCK_RAW ||
so->so_proto->pr_protocol != IPPROTO_RSVP)
return EOPNOTSUPP;
if (ip_rsvpd != NULL)
return EADDRINUSE;
ip_rsvpd = so;
/*
* This may seem silly, but we need to be sure we don't over-increment
* the RSVP counter, in case something slips up.
*/
if (!ip_rsvp_on) {
ip_rsvp_on = 1;
rsvp_on++;
}
return 0;
}
int
ip_rsvp_done(void)
{
ip_rsvpd = NULL;
/*
* This may seem silly, but we need to be sure we don't over-decrement
* the RSVP counter, in case something slips up.
*/
if (ip_rsvp_on) {
ip_rsvp_on = 0;
rsvp_on--;
}
return 0;
}
void
rsvp_input(struct mbuf *m, int off) /* XXX must fixup manually */
{
if (rsvp_input_p) { /* call the real one if loaded */
rsvp_input_p(m, off);
return;
}
/* Can still get packets with rsvp_on = 0 if there is a local member
* of the group to which the RSVP packet is addressed. But in this
* case we want to throw the packet away.
*/
if (!rsvp_on) {
m_freem(m);
return;
}
if (ip_rsvpd != NULL) {
rip_input(m, off);
return;
}
/* Drop the packet */
m_freem(m);
}