510ccb2fd4
to the actual handler routine. All the pointers are static-intialized to the only handlers available, and yet various platform-specific inits still set those pointers (to the values they're already initialized to). Begin to drain the swamp by removing all the redundant external declarations and runtime setting of the pointers that's scattered around various places.
344 lines
10 KiB
C
344 lines
10 KiB
C
/*-
|
|
* Copyright (c) 2009 Yohanes Nugroho <yohanes@gmail.com>
|
|
* Copyright (c) 1994-1998 Mark Brinicombe.
|
|
* Copyright (c) 1994 Brini.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software written for Brini by Mark Brinicombe
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Brini.
|
|
* 4. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#define _ARM32_BUS_DMA_PRIVATE
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysproto.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/imgact.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ktr.h>
|
|
#include <sys/linker.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pcpu.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/ptrace.h>
|
|
#include <sys/cons.h>
|
|
#include <sys/bio.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/kdb.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <machine/physmem.h>
|
|
#include <machine/reg.h>
|
|
#include <machine/cpu.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/pmap.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <machine/devmap.h>
|
|
#include <machine/vmparam.h>
|
|
#include <machine/pcb.h>
|
|
#include <machine/undefined.h>
|
|
#include <machine/machdep.h>
|
|
#include <machine/metadata.h>
|
|
#include <machine/armreg.h>
|
|
#include <machine/bus.h>
|
|
#include <sys/reboot.h>
|
|
#include "econa_reg.h"
|
|
|
|
/* Page table for mapping proc0 zero page */
|
|
#define KERNEL_PT_SYS 0
|
|
#define KERNEL_PT_KERN 1
|
|
#define KERNEL_PT_KERN_NUM 22
|
|
/* L2 table for mapping after kernel */
|
|
#define KERNEL_PT_AFKERNEL KERNEL_PT_KERN + KERNEL_PT_KERN_NUM
|
|
#define KERNEL_PT_AFKERNEL_NUM 5
|
|
|
|
/* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
|
|
#define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
|
|
|
|
struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
|
|
|
|
/* Physical and virtual addresses for some global pages */
|
|
|
|
struct pv_addr systempage;
|
|
struct pv_addr msgbufpv;
|
|
struct pv_addr irqstack;
|
|
struct pv_addr undstack;
|
|
struct pv_addr abtstack;
|
|
struct pv_addr kernelstack;
|
|
|
|
/* Static device mappings. */
|
|
static const struct arm_devmap_entry econa_devmap[] = {
|
|
{
|
|
/*
|
|
* This maps DDR SDRAM
|
|
*/
|
|
ECONA_SDRAM_BASE, /*virtual*/
|
|
ECONA_SDRAM_BASE, /*physical*/
|
|
ECONA_SDRAM_SIZE, /*size*/
|
|
VM_PROT_READ|VM_PROT_WRITE,
|
|
PTE_NOCACHE,
|
|
},
|
|
/*
|
|
* Map the on-board devices VA == PA so that we can access them
|
|
* with the MMU on or off.
|
|
*/
|
|
{
|
|
/*
|
|
* This maps the interrupt controller, the UART
|
|
* and the timer.
|
|
*/
|
|
ECONA_IO_BASE, /*virtual*/
|
|
ECONA_IO_BASE, /*physical*/
|
|
ECONA_IO_SIZE, /*size*/
|
|
VM_PROT_READ|VM_PROT_WRITE,
|
|
PTE_NOCACHE,
|
|
},
|
|
{
|
|
/*
|
|
* OHCI + EHCI
|
|
*/
|
|
ECONA_OHCI_VBASE, /*virtual*/
|
|
ECONA_OHCI_PBASE, /*physical*/
|
|
ECONA_USB_SIZE, /*size*/
|
|
VM_PROT_READ|VM_PROT_WRITE,
|
|
PTE_NOCACHE,
|
|
},
|
|
{
|
|
/*
|
|
* CFI
|
|
*/
|
|
ECONA_CFI_VBASE, /*virtual*/
|
|
ECONA_CFI_PBASE, /*physical*/
|
|
ECONA_CFI_SIZE,
|
|
VM_PROT_READ|VM_PROT_WRITE,
|
|
PTE_NOCACHE,
|
|
},
|
|
{
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
0,
|
|
}
|
|
};
|
|
|
|
|
|
void *
|
|
initarm(struct arm_boot_params *abp)
|
|
{
|
|
struct pv_addr kernel_l1pt;
|
|
volatile uint32_t * ddr = (uint32_t *)0x4000000C;
|
|
int loop, i;
|
|
u_int l1pagetable;
|
|
vm_offset_t afterkern;
|
|
vm_offset_t freemempos;
|
|
vm_offset_t lastaddr;
|
|
uint32_t memsize;
|
|
int mem_info;
|
|
|
|
boothowto = RB_VERBOSE;
|
|
lastaddr = parse_boot_param(abp);
|
|
arm_physmem_kernaddr = abp->abp_physaddr;
|
|
set_cpufuncs();
|
|
pcpu0_init();
|
|
|
|
/* Do basic tuning, hz etc */
|
|
init_param1();
|
|
|
|
|
|
freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
|
|
/* Define a macro to simplify memory allocation */
|
|
#define valloc_pages(var, np) \
|
|
alloc_pages((var).pv_va, (np)); \
|
|
(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
|
|
|
|
#define alloc_pages(var, np) \
|
|
(var) = freemempos; \
|
|
freemempos += (np * PAGE_SIZE); \
|
|
memset((char *)(var), 0, ((np) * PAGE_SIZE));
|
|
|
|
while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
|
|
freemempos += PAGE_SIZE;
|
|
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
|
|
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
|
|
if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
|
|
valloc_pages(kernel_pt_table[loop],
|
|
L2_TABLE_SIZE / PAGE_SIZE);
|
|
} else {
|
|
kernel_pt_table[loop].pv_va = freemempos -
|
|
(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
|
|
L2_TABLE_SIZE_REAL;
|
|
kernel_pt_table[loop].pv_pa =
|
|
kernel_pt_table[loop].pv_va - KERNVIRTADDR +
|
|
abp->abp_physaddr;
|
|
}
|
|
}
|
|
/*
|
|
* Allocate a page for the system page mapped to V0x00000000
|
|
* This page will just contain the system vectors and can be
|
|
* shared by all processes.
|
|
*/
|
|
valloc_pages(systempage, 1);
|
|
|
|
/* Allocate stacks for all modes */
|
|
valloc_pages(irqstack, IRQ_STACK_SIZE);
|
|
valloc_pages(abtstack, ABT_STACK_SIZE);
|
|
valloc_pages(undstack, UND_STACK_SIZE);
|
|
valloc_pages(kernelstack, KSTACK_PAGES);
|
|
valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
|
|
|
|
/*
|
|
* Now we start construction of the L1 page table
|
|
* We start by mapping the L2 page tables into the L1.
|
|
* This means that we can replace L1 mappings later on if necessary
|
|
*/
|
|
l1pagetable = kernel_l1pt.pv_va;
|
|
|
|
/* Map the L2 pages tables in the L1 page table */
|
|
pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
|
|
&kernel_pt_table[KERNEL_PT_SYS]);
|
|
for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
|
|
pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
|
|
&kernel_pt_table[KERNEL_PT_KERN + i]);
|
|
pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
|
|
(((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE - 1));
|
|
for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
|
|
pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
|
|
&kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
|
|
}
|
|
|
|
/* Map the vector page. */
|
|
pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
|
|
|
|
/* Map the stack pages */
|
|
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
|
|
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
|
|
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
|
|
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
|
|
KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
|
|
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
|
|
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
|
|
pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
|
|
msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
|
|
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
|
|
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
|
|
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
|
|
}
|
|
|
|
arm_devmap_bootstrap(l1pagetable, econa_devmap);
|
|
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
|
|
setttb(kernel_l1pt.pv_pa);
|
|
cpu_tlb_flushID();
|
|
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
|
|
cninit();
|
|
mem_info = ((*ddr) >> 4) & 0x3;
|
|
memsize = (8<<mem_info)*1024*1024;
|
|
|
|
/*
|
|
* Pages were allocated during the secondary bootstrap for the
|
|
* stacks for different CPU modes.
|
|
* We must now set the r13 registers in the different CPU modes to
|
|
* point to these stacks.
|
|
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
|
|
* of the stack memory.
|
|
*/
|
|
cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
|
|
|
|
set_stackptrs(0);
|
|
|
|
/*
|
|
* We must now clean the cache again....
|
|
* Cleaning may be done by reading new data to displace any
|
|
* dirty data in the cache. This will have happened in setttb()
|
|
* but since we are boot strapping the addresses used for the read
|
|
* may have just been remapped and thus the cache could be out
|
|
* of sync. A re-clean after the switch will cure this.
|
|
* After booting there are no gross relocations of the kernel thus
|
|
* this problem will not occur after initarm().
|
|
*/
|
|
cpu_idcache_wbinv_all();
|
|
cpu_setup("");
|
|
|
|
undefined_init();
|
|
|
|
init_proc0(kernelstack.pv_va);
|
|
|
|
arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
|
|
|
|
pmap_curmaxkvaddr = afterkern + L1_S_SIZE * (KERNEL_PT_KERN_NUM - 1);
|
|
vm_max_kernel_address = KERNVIRTADDR + 3 * memsize;
|
|
pmap_bootstrap(freemempos, &kernel_l1pt);
|
|
|
|
msgbufp = (void*)msgbufpv.pv_va;
|
|
msgbufinit(msgbufp, msgbufsize);
|
|
|
|
mutex_init();
|
|
|
|
/*
|
|
* Add the physical ram we have available.
|
|
*
|
|
* Exclude the kernel, and all the things we allocated which immediately
|
|
* follow the kernel, from the VM allocation pool but not from crash
|
|
* dumps. virtual_avail is a global variable which tracks the kva we've
|
|
* "allocated" while setting up pmaps.
|
|
*
|
|
* Prepare the list of physical memory available to the vm subsystem.
|
|
*/
|
|
arm_physmem_hardware_region(PHYSADDR, memsize);
|
|
arm_physmem_exclude_region(abp->abp_physaddr,
|
|
virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
|
|
arm_physmem_init_kernel_globals();
|
|
|
|
init_param2(physmem);
|
|
kdb_init();
|
|
|
|
return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
|
|
sizeof(struct pcb)));
|
|
}
|