freebsd-skq/sys/pc98/cbus/clock.c

1147 lines
27 KiB
C
Raw Normal View History

/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* William Jolitz and Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)clock.c 7.2 (Berkeley) 5/12/91
1999-08-28 01:08:13 +00:00
* $FreeBSD$
*/
/*
* Routines to handle clock hardware.
*/
/*
* inittodr, settodr and support routines written
* by Christoph Robitschko <chmr@edvz.tu-graz.ac.at>
*
* reintroduced and updated by Chris Stenton <chris@gnome.co.uk> 8/10/94
*/
/*
Another round of merge/updates. (1) Add #ifdef PC98: sys/pc98/boot/biosboot/boot2.S (2) Fix bug that made it impossible to boot from sd's other than unit 0: sys/pc98/boot/biosboot/sys.c (3) Delete redundant $Id$: sys/pc98/pc98/clock.c (reject$B$5$l$k$+$b$7$l$J$$(B) (4) unt -> u_int: sys/pc98/pc98/if_ed.c (5) Add support for rebooting by the hot-key sequence: sys/pc98/pc98/kbdtables.h (6) Display now looks like PC/AT version: sys/pc98/pc98/npx.c (7) Change comment to match that of PC/AT version: sys/pc98/pc98/pc98.c (8) Add function prototypes: sys/pc98/pc98/pc98_machdep.c (9) Include PC98 headers: sys/pc98/pc98/sound/adlib_card.c sys/pc98/pc98/sound/audio.c sys/pc98/pc98/sound/dev_table.c sys/pc98/pc98/sound/dmabuf.c sys/pc98/pc98/sound/midi_synth.c sys/pc98/pc98/sound/midibuf.c sys/pc98/pc98/sound/opl3.c sys/pc98/pc98/sound/oatmgr.c sys/pc98/pc98/sound/sb16_dsp.c sys/pc98/pc98/sound/sb16_midi.c sys/pc98/pc98/sound/sb_card.c sys/pc98/pc98/sound/sb_dsp.c sys/pc98/pc98/sound/sb_midi.c sys/pc98/pc98/sound/sb_mixer.c sys/pc98/pc98/sound/sequencer.c sys/pc98/pc98/sound/sound_config.h sys/pc98/pc98/sound/sound_switch.c sys/pc98/pc98/sound/soundcard.c sys/pc98/pc98/sound/sys_timer.c (10) Merge in PC98 changes: sys/i386/isa/sound/os.h (11) Deleted as result of 9. and 10. above: sys/pc98/pc98/sound/ad1848_mixer.h sys/pc98/pc98/sound/aedsp16.c sys/pc98/pc98/sound/coproc.h sys/pc98/pc98/sound/finetune.h sys/pc98/pc98/sound/gus_hw.h sys/pc98/pc98/sound/gus_linearvol.h sys/pc98/pc98/sound/hex2hex.h sys/pc98/pc98/sound/mad16.h sys/pc98/pc98/sound/midi_ctrl.h sys/pc98/pc98/sound/midi_synth.h sys/pc98/pc98/sound/opl3.h sys/pc98/pc98/sound/os.h sys/pc98/pc98/sound/pas.h sys/pc98/pc98/sound/sb_mixer.h sys/pc98/pc98/sound/soundvers.h sys/pc98/pc98/sound/tuning.h Submitted by: The FreeBSD(98) Development Team
1996-10-29 08:37:02 +00:00
* modified for PC98 by Kakefuda
*/
#include "opt_clock.h"
2002-01-31 04:28:52 +00:00
#include "opt_isa.h"
#include "opt_mca.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/cons.h>
2001-12-22 01:35:44 +00:00
#include <sys/power.h>
#include <machine/clock.h>
#include <machine/cputypes.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/psl.h>
#ifdef APIC_IO
#include <machine/segments.h>
#endif
#if defined(SMP) || defined(APIC_IO)
#include <machine/smp.h>
#endif /* SMP || APIC_IO */
#include <machine/specialreg.h>
#include <i386/isa/icu.h>
#include <pc98/pc98/pc98.h>
#include <pc98/pc98/pc98_machdep.h>
#include <i386/isa/isa_device.h>
2002-01-31 04:28:52 +00:00
#ifdef DEV_ISA
#include <isa/isavar.h>
2002-01-31 04:28:52 +00:00
#endif
#include <i386/isa/timerreg.h>
#include <i386/isa/intr_machdep.h>
#ifdef APIC_IO
#include <i386/isa/intr_machdep.h>
/* The interrupt triggered by the 8254 (timer) chip */
int apic_8254_intr;
2002-03-20 12:22:31 +00:00
static u_long read_intr_count(int vec);
static void setup_8254_mixed_mode(void);
#endif
/*
* 32-bit time_t's can't reach leap years before 1904 or after 2036, so we
* can use a simple formula for leap years.
*/
#define LEAPYEAR(y) ((u_int)(y) % 4 == 0)
#define DAYSPERYEAR (31+28+31+30+31+30+31+31+30+31+30+31)
#define TIMER_DIV(x) ((timer_freq + (x) / 2) / (x))
/*
* Time in timer cycles that it takes for microtime() to disable interrupts
* and latch the count. microtime() currently uses "cli; outb ..." so it
* normally takes less than 2 timer cycles. Add a few for cache misses.
* Add a few more to allow for latency in bogus calls to microtime() with
* interrupts already disabled.
*/
#define TIMER0_LATCH_COUNT 20
/*
* Maximum frequency that we are willing to allow for timer0. Must be
* low enough to guarantee that the timer interrupt handler returns
* before the next timer interrupt.
*/
#define TIMER0_MAX_FREQ 20000
int adjkerntz; /* local offset from GMT in seconds */
int clkintr_pending;
int disable_rtc_set; /* disable resettodr() if != 0 */
int pscnt = 1;
int psdiv = 1;
int statclock_disable;
#ifndef TIMER_FREQ
#define TIMER_FREQ 2457600
#endif
u_int timer_freq = TIMER_FREQ;
int timer0_max_count;
int wall_cmos_clock; /* wall CMOS clock assumed if != 0 */
struct mtx clock_lock;
static int beeping = 0;
static const u_char daysinmonth[] = {31,28,31,30,31,30,31,31,30,31,30,31};
static u_int hardclock_max_count;
static u_int32_t i8254_lastcount;
static u_int32_t i8254_offset;
static int i8254_ticked;
/*
* XXX new_function and timer_func should not handle clockframes, but
* timer_func currently needs to hold hardclock to handle the
* timer0_state == 0 case. We should use inthand_add()/inthand_remove()
* to switch between clkintr() and a slightly different timerintr().
*/
2002-03-20 12:22:31 +00:00
static void (*new_function)(struct clockframe *frame);
static u_int new_rate;
static u_int timer0_prescaler_count;
/* Values for timerX_state: */
#define RELEASED 0
#define RELEASE_PENDING 1
#define ACQUIRED 2
#define ACQUIRE_PENDING 3
static u_char timer0_state;
static u_char timer1_state;
static u_char timer2_state;
2002-03-20 12:22:31 +00:00
static void (*timer_func)(struct clockframe *frame) = hardclock;
static void rtc_serialcombit(int);
static void rtc_serialcom(int);
static int rtc_inb(void);
static void rtc_outb(int);
2002-03-20 12:22:31 +00:00
static unsigned i8254_get_timecount(struct timecounter *tc);
static void set_timer_freq(u_int freq, int intr_freq);
static struct timecounter i8254_timecounter = {
i8254_get_timecount, /* get_timecount */
0, /* no poll_pps */
~0u, /* counter_mask */
0, /* frequency */
"i8254" /* name */
};
static void
clkintr(struct clockframe frame)
{
if (timecounter->tc_get_timecount == i8254_get_timecount) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&clock_lock);
if (i8254_ticked)
i8254_ticked = 0;
else {
i8254_offset += timer0_max_count;
i8254_lastcount = 0;
}
clkintr_pending = 0;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&clock_lock);
}
timer_func(&frame);
#ifdef SMP
if (timer_func == hardclock)
forward_hardclock();
#endif
switch (timer0_state) {
case RELEASED:
break;
case ACQUIRED:
if ((timer0_prescaler_count += timer0_max_count)
>= hardclock_max_count) {
timer0_prescaler_count -= hardclock_max_count;
hardclock(&frame);
#ifdef SMP
forward_hardclock();
#endif
}
break;
case ACQUIRE_PENDING:
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&clock_lock);
i8254_offset = i8254_get_timecount(NULL);
i8254_lastcount = 0;
timer0_max_count = TIMER_DIV(new_rate);
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
outb(TIMER_CNTR0, timer0_max_count & 0xff);
outb(TIMER_CNTR0, timer0_max_count >> 8);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&clock_lock);
timer_func = new_function;
timer0_state = ACQUIRED;
break;
case RELEASE_PENDING:
if ((timer0_prescaler_count += timer0_max_count)
>= hardclock_max_count) {
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&clock_lock);
i8254_offset = i8254_get_timecount(NULL);
i8254_lastcount = 0;
timer0_max_count = hardclock_max_count;
outb(TIMER_MODE,
TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
outb(TIMER_CNTR0, timer0_max_count & 0xff);
outb(TIMER_CNTR0, timer0_max_count >> 8);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&clock_lock);
timer0_prescaler_count = 0;
timer_func = hardclock;
timer0_state = RELEASED;
hardclock(&frame);
#ifdef SMP
forward_hardclock();
#endif
}
break;
}
}
/*
* The acquire and release functions must be called at ipl >= splclock().
*/
int
2002-03-20 12:22:31 +00:00
acquire_timer0(int rate, void (*function)(struct clockframe *frame))
{
static int old_rate;
if (rate <= 0 || rate > TIMER0_MAX_FREQ)
return (-1);
switch (timer0_state) {
case RELEASED:
timer0_state = ACQUIRE_PENDING;
break;
case RELEASE_PENDING:
if (rate != old_rate)
return (-1);
/*
* The timer has been released recently, but is being
* re-acquired before the release completed. In this
* case, we simply reclaim it as if it had not been
* released at all.
*/
timer0_state = ACQUIRED;
break;
default:
return (-1); /* busy */
}
new_function = function;
old_rate = new_rate = rate;
return (0);
}
int
acquire_timer1(int mode)
{
if (timer1_state != RELEASED)
return (-1);
timer1_state = ACQUIRED;
/*
* This access to the timer registers is as atomic as possible
* because it is a single instruction. We could do better if we
* knew the rate. Use of splclock() limits glitches to 10-100us,
* and this is probably good enough for timer2, so we aren't as
* careful with it as with timer0.
*/
outb(TIMER_MODE, TIMER_SEL1 | (mode & 0x3f));
return (0);
}
int
acquire_timer2(int mode)
{
if (timer2_state != RELEASED)
return (-1);
timer2_state = ACQUIRED;
/*
* This access to the timer registers is as atomic as possible
* because it is a single instruction. We could do better if we
* knew the rate. Use of splclock() limits glitches to 10-100us,
* and this is probably good enough for timer2, so we aren't as
* careful with it as with timer0.
*/
outb(TIMER_MODE, TIMER_SEL2 | (mode & 0x3f));
return (0);
}
int
release_timer0()
{
switch (timer0_state) {
case ACQUIRED:
timer0_state = RELEASE_PENDING;
break;
case ACQUIRE_PENDING:
/* Nothing happened yet, release quickly. */
timer0_state = RELEASED;
break;
default:
return (-1);
}
return (0);
}
int
release_timer1()
{
if (timer1_state != ACQUIRED)
return (-1);
timer1_state = RELEASED;
outb(TIMER_MODE, TIMER_SEL1 | TIMER_SQWAVE | TIMER_16BIT);
return (0);
}
int
release_timer2()
{
if (timer2_state != ACQUIRED)
return (-1);
timer2_state = RELEASED;
outb(TIMER_MODE, TIMER_SEL2 | TIMER_SQWAVE | TIMER_16BIT);
return (0);
}
static int
getit(void)
{
int high, low;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&clock_lock);
/* Select timer0 and latch counter value. */
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
low = inb(TIMER_CNTR0);
high = inb(TIMER_CNTR0);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&clock_lock);
return ((high << 8) | low);
}
/*
* Wait "n" microseconds.
* Relies on timer 1 counting down from (timer_freq / hz)
* Note: timer had better have been programmed before this is first used!
*/
void
DELAY(int n)
{
int delta, prev_tick, tick, ticks_left;
#ifdef DELAYDEBUG
int getit_calls = 1;
int n1;
static int state = 0;
if (state == 0) {
state = 1;
for (n1 = 1; n1 <= 10000000; n1 *= 10)
DELAY(n1);
state = 2;
}
if (state == 1)
printf("DELAY(%d)...", n);
#endif
/*
* Guard against the timer being uninitialized if we are called
* early for console i/o.
*/
if (timer0_max_count == 0)
set_timer_freq(timer_freq, hz);
/*
* Read the counter first, so that the rest of the setup overhead is
* counted. Guess the initial overhead is 20 usec (on most systems it
* takes about 1.5 usec for each of the i/o's in getit(). The loop
* takes about 6 usec on a 486/33 and 13 usec on a 386/20. The
* multiplications and divisions to scale the count take a while).
*/
prev_tick = getit();
n -= 0; /* XXX actually guess no initial overhead */
/*
* Calculate (n * (timer_freq / 1e6)) without using floating point
* and without any avoidable overflows.
*/
if (n <= 0)
ticks_left = 0;
else if (n < 256)
/*
* Use fixed point to avoid a slow division by 1000000.
* 39099 = 1193182 * 2^15 / 10^6 rounded to nearest.
* 2^15 is the first power of 2 that gives exact results
* for n between 0 and 256.
*/
ticks_left = ((u_int)n * 39099 + (1 << 15) - 1) >> 15;
else
/*
* Don't bother using fixed point, although gcc-2.7.2
* generates particularly poor code for the long long
* division, since even the slow way will complete long
* before the delay is up (unless we're interrupted).
*/
ticks_left = ((u_int)n * (long long)timer_freq + 999999)
/ 1000000;
while (ticks_left > 0) {
tick = getit();
#ifdef DELAYDEBUG
++getit_calls;
#endif
delta = prev_tick - tick;
prev_tick = tick;
if (delta < 0) {
delta += timer0_max_count;
/*
* Guard against timer0_max_count being wrong.
* This shouldn't happen in normal operation,
* but it may happen if set_timer_freq() is
* traced.
*/
if (delta < 0)
delta = 0;
}
ticks_left -= delta;
}
#ifdef DELAYDEBUG
if (state == 1)
printf(" %d calls to getit() at %d usec each\n",
getit_calls, (n + 5) / getit_calls);
#endif
}
static void
sysbeepstop(void *chan)
{
outb(IO_PPI, inb(IO_PPI)|0x08); /* disable counter1 output to speaker */
release_timer1();
beeping = 0;
}
int
sysbeep(int pitch, int period)
{
int x = splclock();
if (acquire_timer1(TIMER_SQWAVE|TIMER_16BIT))
if (!beeping) {
/* Something else owns it. */
splx(x);
return (-1); /* XXX Should be EBUSY, but nobody cares anyway. */
}
disable_intr();
outb(0x3fdb, pitch);
outb(0x3fdb, (pitch>>8));
enable_intr();
if (!beeping) {
/* enable counter1 output to speaker */
outb(IO_PPI, (inb(IO_PPI) & 0xf7));
beeping = period;
timeout(sysbeepstop, (void *)NULL, period);
}
splx(x);
return (0);
}
unsigned int delaycount;
#define FIRST_GUESS 0x2000
static void findcpuspeed(void)
{
int i;
int remainder;
/* Put counter in count down mode */
outb(TIMER_MODE, TIMER_SEL0 | TIMER_16BIT | TIMER_RATEGEN);
outb(TIMER_CNTR0, 0xff);
outb(TIMER_CNTR0, 0xff);
for (i = FIRST_GUESS; i; i--)
;
remainder = getit();
delaycount = (FIRST_GUESS * TIMER_DIV(1000)) / (0xffff - remainder);
}
static u_int
calibrate_clocks(void)
{
int timeout;
u_int count, prev_count, tot_count;
u_short sec, start_sec;
if (bootverbose)
printf("Calibrating clock(s) ... ");
/* Check ARTIC. */
if (!(PC98_SYSTEM_PARAMETER(0x458) & 0x80) &&
!(PC98_SYSTEM_PARAMETER(0x45b) & 0x04))
goto fail;
timeout = 100000000;
/* Read the ARTIC. */
sec = inw(0x5e);
/* Wait for the ARTIC to changes. */
start_sec = sec;
for (;;) {
sec = inw(0x5e);
if (sec != start_sec)
break;
if (--timeout == 0)
goto fail;
}
prev_count = getit();
if (prev_count == 0 || prev_count > timer0_max_count)
goto fail;
tot_count = 0;
start_sec = sec;
for (;;) {
sec = inw(0x5e);
count = getit();
if (count == 0 || count > timer0_max_count)
goto fail;
if (count > prev_count)
tot_count += prev_count - (count - timer0_max_count);
else
tot_count += prev_count - count;
prev_count = count;
if ((sec == start_sec + 1200) ||
(sec < start_sec &&
1998-10-13 03:24:01 +00:00
(u_int)sec + 0x10000 == (u_int)start_sec + 1200))
break;
if (--timeout == 0)
goto fail;
}
if (bootverbose) {
printf("i8254 clock: %u Hz\n", tot_count);
}
return (tot_count);
fail:
if (bootverbose)
printf("failed, using default i8254 clock of %u Hz\n",
timer_freq);
return (timer_freq);
}
static void
set_timer_freq(u_int freq, int intr_freq)
{
int new_timer0_max_count;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&clock_lock);
timer_freq = freq;
new_timer0_max_count = hardclock_max_count = TIMER_DIV(intr_freq);
if (new_timer0_max_count != timer0_max_count) {
timer0_max_count = new_timer0_max_count;
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
outb(TIMER_CNTR0, timer0_max_count & 0xff);
outb(TIMER_CNTR0, timer0_max_count >> 8);
}
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&clock_lock);
}
static void
i8254_restore(void)
{
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&clock_lock);
outb(TIMER_MODE, TIMER_SEL0 | TIMER_RATEGEN | TIMER_16BIT);
outb(TIMER_CNTR0, timer0_max_count & 0xff);
outb(TIMER_CNTR0, timer0_max_count >> 8);
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&clock_lock);
}
/*
2002-10-22 15:19:46 +00:00
* Restore all the timers non-atomically (XXX: should be atomically).
*
* This function is called from pmtimer_resume() to restore all the timers.
* This should not be necessary, but there are broken laptops that do not
* restore all the timers on resume.
*/
void
timer_restore(void)
{
i8254_restore(); /* restore timer_freq and hz */
}
/*
* Initialize 8254 timer 0 early so that it can be used in DELAY().
* XXX initialization of other timers is unintentionally left blank.
*/
void
startrtclock()
{
u_int delta, freq;
findcpuspeed();
if (pc98_machine_type & M_8M)
timer_freq = 1996800L; /* 1.9968 MHz */
else
timer_freq = 2457600L; /* 2.4576 MHz */
set_timer_freq(timer_freq, hz);
freq = calibrate_clocks();
#ifdef CLK_CALIBRATION_LOOP
if (bootverbose) {
printf(
"Press a key on the console to abort clock calibration\n");
while (cncheckc() == -1)
calibrate_clocks();
}
#endif
/*
* Use the calibrated i8254 frequency if it seems reasonable.
* Otherwise use the default, and don't use the calibrated i586
* frequency.
*/
delta = freq > timer_freq ? freq - timer_freq : timer_freq - freq;
if (delta < timer_freq / 100) {
#ifndef CLK_USE_I8254_CALIBRATION
if (bootverbose)
printf(
"CLK_USE_I8254_CALIBRATION not specified - using default frequency\n");
freq = timer_freq;
#endif
timer_freq = freq;
} else {
if (bootverbose)
printf(
"%d Hz differs from default of %d Hz by more than 1%%\n",
freq, timer_freq);
}
set_timer_freq(timer_freq, hz);
i8254_timecounter.tc_frequency = timer_freq;
tc_init(&i8254_timecounter);
init_TSC();
}
static void
rtc_serialcombit(int i)
{
outb(IO_RTC, ((i&0x01)<<5)|0x07);
DELAY(1);
outb(IO_RTC, ((i&0x01)<<5)|0x17);
DELAY(1);
outb(IO_RTC, ((i&0x01)<<5)|0x07);
DELAY(1);
}
static void
rtc_serialcom(int i)
{
rtc_serialcombit(i&0x01);
rtc_serialcombit((i&0x02)>>1);
rtc_serialcombit((i&0x04)>>2);
rtc_serialcombit((i&0x08)>>3);
outb(IO_RTC, 0x07);
DELAY(1);
outb(IO_RTC, 0x0f);
DELAY(1);
outb(IO_RTC, 0x07);
DELAY(1);
}
static void
rtc_outb(int val)
{
int s;
int sa = 0;
for (s=0;s<8;s++) {
sa = ((val >> s) & 0x01) ? 0x27 : 0x07;
outb(IO_RTC, sa); /* set DI & CLK 0 */
DELAY(1);
outb(IO_RTC, sa | 0x10); /* CLK 1 */
DELAY(1);
}
outb(IO_RTC, sa & 0xef); /* CLK 0 */
}
static int
rtc_inb(void)
{
int s;
int sa = 0;
for (s=0;s<8;s++) {
sa |= ((inb(0x33) & 0x01) << s);
outb(IO_RTC, 0x17); /* CLK 1 */
DELAY(1);
outb(IO_RTC, 0x07); /* CLK 0 */
DELAY(2);
}
return sa;
}
/*
* Initialize the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
void
inittodr(time_t base)
{
unsigned long sec, days;
int year, month;
int y, m, s;
1998-02-21 15:54:23 +00:00
struct timespec ts;
int second, min, hour;
if (base) {
s = splclock();
ts.tv_sec = base;
ts.tv_nsec = 0;
tc_setclock(&ts);
splx(s);
}
rtc_serialcom(0x03); /* Time Read */
rtc_serialcom(0x01); /* Register shift command. */
DELAY(20);
second = bcd2bin(rtc_inb() & 0xff); /* sec */
min = bcd2bin(rtc_inb() & 0xff); /* min */
hour = bcd2bin(rtc_inb() & 0xff); /* hour */
days = bcd2bin(rtc_inb() & 0xff) - 1; /* date */
month = (rtc_inb() >> 4) & 0x0f; /* month */
for (m = 1; m < month; m++)
days += daysinmonth[m-1];
year = bcd2bin(rtc_inb() & 0xff) + 1900; /* year */
/* 2000 year problem */
if (year < 1995)
year += 100;
if (year < 1970)
goto wrong_time;
for (y = 1970; y < year; y++)
days += DAYSPERYEAR + LEAPYEAR(y);
if ((month > 2) && LEAPYEAR(year))
days ++;
sec = ((( days * 24 +
hour) * 60 +
min) * 60 +
second);
/* sec now contains the number of seconds, since Jan 1 1970,
in the local time zone */
2000-10-15 04:54:17 +00:00
s = splhigh();
sec += tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
y = time_second - sec;
if (y <= -2 || y >= 2) {
/* badly off, adjust it */
ts.tv_sec = sec;
ts.tv_nsec = 0;
tc_setclock(&ts);
}
splx(s);
return;
wrong_time:
printf("Invalid time in real time clock.\n");
printf("Check and reset the date immediately!\n");
}
/*
* Write system time back to RTC
*/
void
resettodr()
{
unsigned long tm;
int y, m, s;
int wd;
if (disable_rtc_set)
return;
s = splclock();
tm = time_second;
splx(s);
rtc_serialcom(0x01); /* Register shift command. */
/* Calculate local time to put in RTC */
tm -= tz_minuteswest * 60 + (wall_cmos_clock ? adjkerntz : 0);
rtc_outb(bin2bcd(tm%60)); tm /= 60; /* Write back Seconds */
rtc_outb(bin2bcd(tm%60)); tm /= 60; /* Write back Minutes */
rtc_outb(bin2bcd(tm%24)); tm /= 24; /* Write back Hours */
/* We have now the days since 01-01-1970 in tm */
2003-02-05 09:35:02 +00:00
wd = (tm + 4) % 7 + 1; /* Write back Weekday */
for (y = 1970, m = DAYSPERYEAR + LEAPYEAR(y);
tm >= m;
y++, m = DAYSPERYEAR + LEAPYEAR(y))
tm -= m;
/* Now we have the years in y and the day-of-the-year in tm */
for (m = 0; ; m++) {
int ml;
ml = daysinmonth[m];
if (m == 1 && LEAPYEAR(y))
ml++;
if (tm < ml)
break;
tm -= ml;
}
m++;
rtc_outb(bin2bcd(tm+1)); /* Write back Day */
rtc_outb((m << 4) | wd); /* Write back Month & Weekday */
rtc_outb(bin2bcd(y%100)); /* Write back Year */
rtc_serialcom(0x02); /* Time set & Counter hold command. */
rtc_serialcom(0x00); /* Register hold command. */
}
/*
* Start both clocks running.
*/
void
cpu_initclocks()
{
#ifdef APIC_IO
int apic_8254_trial;
void *clkdesc;
#endif /* APIC_IO */
register_t crit;
/* Finish initializing 8253 timer 0. */
#ifdef APIC_IO
apic_8254_intr = isa_apic_irq(0);
apic_8254_trial = 0;
if (apic_8254_intr >= 0 ) {
if (apic_int_type(0, 0) == 3)
apic_8254_trial = 1;
} else {
/* look for ExtInt on pin 0 */
if (apic_int_type(0, 0) == 3) {
apic_8254_intr = apic_irq(0, 0);
setup_8254_mixed_mode();
} else
panic("APIC_IO: Cannot route 8254 interrupt to CPU");
}
inthand_add("clk", apic_8254_intr, (driver_intr_t *)clkintr, NULL,
INTR_TYPE_CLK | INTR_FAST, &clkdesc);
crit = intr_disable();
2001-12-22 00:38:32 +00:00
mtx_lock_spin(&icu_lock);
INTREN(1 << apic_8254_intr);
2001-12-22 00:38:32 +00:00
mtx_unlock_spin(&icu_lock);
intr_restore(crit);
#else /* APIC_IO */
/*
* XXX Check the priority of this interrupt handler. I
* couldn't find anything suitable in the BSD/OS code (grog,
* 19 July 2000).
*/
inthand_add("clk", 0, (driver_intr_t *)clkintr, NULL,
INTR_TYPE_CLK | INTR_FAST, NULL);
crit = intr_disable();
2001-12-22 00:38:32 +00:00
mtx_lock_spin(&icu_lock);
INTREN(IRQ0);
2001-12-22 00:38:32 +00:00
mtx_unlock_spin(&icu_lock);
intr_restore(crit);
#endif /* APIC_IO */
#ifdef APIC_IO
if (apic_8254_trial) {
printf("APIC_IO: Testing 8254 interrupt delivery\n");
while (read_intr_count(8) < 6)
; /* nothing */
if (read_intr_count(apic_8254_intr) < 3) {
/*
* The MP table is broken.
* The 8254 was not connected to the specified pin
* on the IO APIC.
* Workaround: Limited variant of mixed mode.
*/
2002-10-22 15:19:46 +00:00
crit = intr_disable();
2001-12-22 00:38:32 +00:00
mtx_lock_spin(&icu_lock);
INTRDIS(1 << apic_8254_intr);
2001-12-22 00:38:32 +00:00
mtx_unlock_spin(&icu_lock);
intr_restore(crit);
inthand_remove(clkdesc);
printf("APIC_IO: Broken MP table detected: "
"8254 is not connected to "
"IOAPIC #%d intpin %d\n",
int_to_apicintpin[apic_8254_intr].ioapic,
int_to_apicintpin[apic_8254_intr].int_pin);
/*
* Revoke current ISA IRQ 0 assignment and
* configure a fallback interrupt routing from
* the 8254 Timer via the 8259 PIC to the
* an ExtInt interrupt line on IOAPIC #0 intpin 0.
* We reuse the low level interrupt handler number.
*/
if (apic_irq(0, 0) < 0) {
revoke_apic_irq(apic_8254_intr);
assign_apic_irq(0, 0, apic_8254_intr);
}
apic_8254_intr = apic_irq(0, 0);
setup_8254_mixed_mode();
inthand_add("clk", apic_8254_intr,
(driver_intr_t *)clkintr, NULL,
INTR_TYPE_CLK | INTR_FAST, NULL);
crit = intr_disable();
2001-12-22 00:38:32 +00:00
mtx_lock_spin(&icu_lock);
INTREN(1 << apic_8254_intr);
2001-12-22 00:38:32 +00:00
mtx_unlock_spin(&icu_lock);
intr_restore(crit);
}
}
if (apic_int_type(0, 0) != 3 ||
int_to_apicintpin[apic_8254_intr].ioapic != 0 ||
int_to_apicintpin[apic_8254_intr].int_pin != 0)
printf("APIC_IO: routing 8254 via IOAPIC #%d intpin %d\n",
int_to_apicintpin[apic_8254_intr].ioapic,
int_to_apicintpin[apic_8254_intr].int_pin);
else
printf("APIC_IO: "
"routing 8254 via 8259 and IOAPIC #0 intpin 0\n");
#endif
}
#ifdef APIC_IO
static u_long
read_intr_count(int vec)
{
u_long *up;
up = intr_countp[vec];
if (up)
return *up;
return 0UL;
}
static void
setup_8254_mixed_mode()
{
/*
* Allow 8254 timer to INTerrupt 8259:
* re-initialize master 8259:
* reset; prog 4 bytes, single ICU, edge triggered
*/
outb(IO_ICU1, 0x13);
outb(IO_ICU1 + 2, NRSVIDT); /* start vector (unused) */
outb(IO_ICU1 + 2, 0x00); /* ignore slave */
outb(IO_ICU1 + 2, 0x03); /* auto EOI, 8086 */
outb(IO_ICU1 + 2, 0xfe); /* unmask INT0 */
/* program IO APIC for type 3 INT on INT0 */
if (ext_int_setup(0, 0) < 0)
panic("8254 redirect via APIC pin0 impossible!");
}
#endif
void
cpu_startprofclock(void)
{
}
void
cpu_stopprofclock(void)
{
}
static int
sysctl_machdep_i8254_freq(SYSCTL_HANDLER_ARGS)
{
int error;
u_int freq;
/*
* Use `i8254' instead of `timer' in external names because `timer'
* is is too generic. Should use it everywhere.
*/
freq = timer_freq;
error = sysctl_handle_int(oidp, &freq, sizeof(freq), req);
if (error == 0 && req->newptr != NULL) {
if (timer0_state != RELEASED)
return (EBUSY); /* too much trouble to handle */
set_timer_freq(freq, hz);
i8254_timecounter.tc_frequency = freq;
}
return (error);
}
SYSCTL_PROC(_machdep, OID_AUTO, i8254_freq, CTLTYPE_INT | CTLFLAG_RW,
0, sizeof(u_int), sysctl_machdep_i8254_freq, "IU", "");
static unsigned
i8254_get_timecount(struct timecounter *tc)
{
u_int count;
u_int high, low;
u_int eflags;
eflags = read_eflags();
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_lock_spin(&clock_lock);
/* Select timer0 and latch counter value. */
outb(TIMER_MODE, TIMER_SEL0 | TIMER_LATCH);
low = inb(TIMER_CNTR0);
high = inb(TIMER_CNTR0);
count = timer0_max_count - ((high << 8) | low);
if (count < i8254_lastcount ||
(!i8254_ticked && (clkintr_pending ||
((count < 20 || (!(eflags & PSL_I) && count < timer0_max_count / 2u)) &&
#ifdef APIC_IO
#define lapic_irr1 ((volatile u_int *)&lapic)[0x210 / 4] /* XXX XXX */
/* XXX this assumes that apic_8254_intr is < 24. */
(lapic_irr1 & (1 << apic_8254_intr))))
#else
(inb(IO_ICU1) & 1)))
#endif
)) {
i8254_ticked = 1;
i8254_offset += timer0_max_count;
}
i8254_lastcount = count;
count += i8254_offset;
Change and clean the mutex lock interface. mtx_enter(lock, type) becomes: mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks) mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized) similarily, for releasing a lock, we now have: mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN. We change the caller interface for the two different types of locks because the semantics are entirely different for each case, and this makes it explicitly clear and, at the same time, it rids us of the extra `type' argument. The enter->lock and exit->unlock change has been made with the idea that we're "locking data" and not "entering locked code" in mind. Further, remove all additional "flags" previously passed to the lock acquire/release routines with the exception of two: MTX_QUIET and MTX_NOSWITCH The functionality of these flags is preserved and they can be passed to the lock/unlock routines by calling the corresponding wrappers: mtx_{lock, unlock}_flags(lock, flag(s)) and mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN locks, respectively. Re-inline some lock acq/rel code; in the sleep lock case, we only inline the _obtain_lock()s in order to ensure that the inlined code fits into a cache line. In the spin lock case, we inline recursion and actually only perform a function call if we need to spin. This change has been made with the idea that we generally tend to avoid spin locks and that also the spin locks that we do have and are heavily used (i.e. sched_lock) do recurse, and therefore in an effort to reduce function call overhead for some architectures (such as alpha), we inline recursion for this case. Create a new malloc type for the witness code and retire from using the M_DEV type. The new type is called M_WITNESS and is only declared if WITNESS is enabled. Begin cleaning up some machdep/mutex.h code - specifically updated the "optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently need those. Finally, caught up to the interface changes in all sys code. Contributors: jake, jhb, jasone (in no particular order)
2001-02-09 06:11:45 +00:00
mtx_unlock_spin(&clock_lock);
return (count);
}
2002-01-31 04:28:52 +00:00
#ifdef DEV_ISA
/*
* Attach to the ISA PnP descriptors for the timer and realtime clock.
*/
static struct isa_pnp_id attimer_ids[] = {
{ 0x0001d041 /* PNP0100 */, "AT timer" },
{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
{ 0 }
};
static int
attimer_probe(device_t dev)
{
int result;
if ((result = ISA_PNP_PROBE(device_get_parent(dev), dev, attimer_ids)) <= 0)
device_quiet(dev);
return(result);
}
static int
attimer_attach(device_t dev)
{
return(0);
}
static device_method_t attimer_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, attimer_probe),
DEVMETHOD(device_attach, attimer_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend), /* XXX stop statclock? */
DEVMETHOD(device_resume, bus_generic_resume), /* XXX restart statclock? */
{ 0, 0 }
};
static driver_t attimer_driver = {
"attimer",
attimer_methods,
1, /* no softc */
};
static devclass_t attimer_devclass;
DRIVER_MODULE(attimer, isa, attimer_driver, attimer_devclass, 0, 0);
2002-01-31 04:28:52 +00:00
#endif /* DEV_ISA */