freebsd-skq/sys/x86/xen/pv.c

440 lines
12 KiB
C
Raw Normal View History

/*
* Copyright (c) 2004 Christian Limpach.
* Copyright (c) 2004-2006,2008 Kip Macy
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* Copyright (c) 2013 Roger Pau Monné <roger.pau@citrix.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
ddb: allow specifying the exact address of the symtab and strtab When the FreeBSD kernel is loaded from Xen the symtab and strtab are not loaded the same way as the native boot loader. This patch adds three new global variables to ddb that can be used to specify the exact position and size of those tables, so they can be directly used as parameters to db_add_symbol_table. A new helper is introduced, so callers that used to set ksym_start and ksym_end can use this helper to set the new variables. It also adds support for loading them from the Xen PVH port, that was previously missing those tables. Sponsored by: Citrix Systems R&D Reviewed by: kib ddb/db_main.c: - Add three new global variables: ksymtab, kstrtab, ksymtab_size that can be used to specify the position and size of the symtab and strtab. - Use those new variables in db_init in order to call db_add_symbol_table. - Move the logic in db_init to db_fetch_symtab in order to set ksymtab, kstrtab, ksymtab_size from ksym_start and ksym_end. ddb/ddb.h: - Add prototype for db_fetch_ksymtab. - Declate the extern variables ksymtab, kstrtab and ksymtab_size. x86/xen/pv.c: - Add support for finding the symtab and strtab when booted as a Xen PVH guest. Since Xen loads the symtab and strtab as NetBSD expects to find them we have to adapt and use the same method. amd64/amd64/machdep.c: arm/arm/machdep.c: i386/i386/machdep.c: mips/mips/machdep.c: pc98/pc98/machdep.c: powerpc/aim/machdep.c: powerpc/booke/machdep.c: sparc64/sparc64/machdep.c: - Use the newly introduced db_fetch_ksymtab in order to set ksymtab, kstrtab and ksymtab_size.
2014-09-25 08:28:10 +00:00
#include "opt_ddb.h"
#include "opt_kstack_pages.h"
ddb: allow specifying the exact address of the symtab and strtab When the FreeBSD kernel is loaded from Xen the symtab and strtab are not loaded the same way as the native boot loader. This patch adds three new global variables to ddb that can be used to specify the exact position and size of those tables, so they can be directly used as parameters to db_add_symbol_table. A new helper is introduced, so callers that used to set ksym_start and ksym_end can use this helper to set the new variables. It also adds support for loading them from the Xen PVH port, that was previously missing those tables. Sponsored by: Citrix Systems R&D Reviewed by: kib ddb/db_main.c: - Add three new global variables: ksymtab, kstrtab, ksymtab_size that can be used to specify the position and size of the symtab and strtab. - Use those new variables in db_init in order to call db_add_symbol_table. - Move the logic in db_init to db_fetch_symtab in order to set ksymtab, kstrtab, ksymtab_size from ksym_start and ksym_end. ddb/ddb.h: - Add prototype for db_fetch_ksymtab. - Declate the extern variables ksymtab, kstrtab and ksymtab_size. x86/xen/pv.c: - Add support for finding the symtab and strtab when booted as a Xen PVH guest. Since Xen loads the symtab and strtab as NetBSD expects to find them we have to adapt and use the same method. amd64/amd64/machdep.c: arm/arm/machdep.c: i386/i386/machdep.c: mips/mips/machdep.c: pc98/pc98/machdep.c: powerpc/aim/machdep.c: powerpc/booke/machdep.c: sparc64/sparc64/machdep.c: - Use the newly introduced db_fetch_ksymtab in order to set ksymtab, kstrtab and ksymtab_size.
2014-09-25 08:28:10 +00:00
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/reboot.h>
#include <sys/systm.h>
#include <sys/malloc.h>
ddb: allow specifying the exact address of the symtab and strtab When the FreeBSD kernel is loaded from Xen the symtab and strtab are not loaded the same way as the native boot loader. This patch adds three new global variables to ddb that can be used to specify the exact position and size of those tables, so they can be directly used as parameters to db_add_symbol_table. A new helper is introduced, so callers that used to set ksym_start and ksym_end can use this helper to set the new variables. It also adds support for loading them from the Xen PVH port, that was previously missing those tables. Sponsored by: Citrix Systems R&D Reviewed by: kib ddb/db_main.c: - Add three new global variables: ksymtab, kstrtab, ksymtab_size that can be used to specify the position and size of the symtab and strtab. - Use those new variables in db_init in order to call db_add_symbol_table. - Move the logic in db_init to db_fetch_symtab in order to set ksymtab, kstrtab, ksymtab_size from ksym_start and ksym_end. ddb/ddb.h: - Add prototype for db_fetch_ksymtab. - Declate the extern variables ksymtab, kstrtab and ksymtab_size. x86/xen/pv.c: - Add support for finding the symtab and strtab when booted as a Xen PVH guest. Since Xen loads the symtab and strtab as NetBSD expects to find them we have to adapt and use the same method. amd64/amd64/machdep.c: arm/arm/machdep.c: i386/i386/machdep.c: mips/mips/machdep.c: pc98/pc98/machdep.c: powerpc/aim/machdep.c: powerpc/booke/machdep.c: sparc64/sparc64/machdep.c: - Use the newly introduced db_fetch_ksymtab in order to set ksymtab, kstrtab and ksymtab_size.
2014-09-25 08:28:10 +00:00
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/rwlock.h>
#include <sys/boot.h>
#include <sys/ctype.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>
#include <vm/vm_param.h>
#include <machine/intr_machdep.h>
#include <x86/apicvar.h>
#include <x86/init.h>
#include <machine/pc/bios.h>
#include <machine/smp.h>
msi: add Xen MSI implementation This patch adds support for MSI interrupts when running on Xen. Apart from adding the Xen related code needed in order to register MSI interrupts this patch also makes the msi_init function a hook in init_ops, so different MSI implementations can have different initialization functions. Sponsored by: Citrix Systems R&D xen/interface/physdev.h: - Add the MAP_PIRQ_TYPE_MULTI_MSI to map multi-vector MSI to the Xen public interface. x86/include/init.h: - Add a hook for setting custom msi_init methods. amd64/amd64/machdep.c: i386/i386/machdep.c: - Set the default msi_init hook to point to the native MSI initialization method. x86/xen/pv.c: - Set the Xen MSI init hook when running as a Xen guest. x86/x86/local_apic.c: - Call the msi_init hook instead of directly calling msi_init. xen/xen_intr.h: x86/xen/xen_intr.c: - Introduce support for registering/releasing MSI interrupts with Xen. - The MSI interrupts will use the same PIC as the IO APIC interrupts. xen/xen_msi.h: x86/xen/xen_msi.c: - Introduce a Xen MSI implementation. x86/xen/xen_nexus.c: - Overwrite the default MSI hooks in the Xen Nexus to use the Xen MSI implementation. x86/xen/xen_pci.c: - Introduce a Xen specific PCI bus that inherits from the ACPI PCI bus and overwrites the native MSI methods. - This is needed because when running under Xen the MSI messages used to configure MSI interrupts on PCI devices are written by Xen itself. dev/acpica/acpi_pci.c: - Lower the quality of the ACPI PCI bus so the newly introduced Xen PCI bus can take over when needed. conf/files.i386: conf/files.amd64: - Add the newly created files to the build process.
2014-09-30 16:46:45 +00:00
#include <machine/intr_machdep.h>
loader: implement multiboot support for Xen Dom0 Implement a subset of the multiboot specification in order to boot Xen and a FreeBSD Dom0 from the FreeBSD bootloader. This multiboot implementation is tailored to boot Xen and FreeBSD Dom0, and it will most surely fail to boot any other multiboot compilant kernel. In order to detect and boot the Xen microkernel, two new file formats are added to the bootloader, multiboot and multiboot_obj. Multiboot support must be tested before regular ELF support, since Xen is a multiboot kernel that also uses ELF. After a multiboot kernel is detected, all the other loaded kernels/modules are parsed by the multiboot_obj format. The layout of the loaded objects in memory is the following; first the Xen kernel is loaded as a 32bit ELF into memory (Xen will switch to long mode by itself), after that the FreeBSD kernel is loaded as a RAW file (Xen will parse and load it using it's internal ELF loader), and finally the metadata and the modules are loaded using the native FreeBSD way. After everything is loaded we jump into Xen's entry point using a small trampoline. The order of the multiboot modules passed to Xen is the following, the first module is the RAW FreeBSD kernel, and the second module is the metadata and the FreeBSD modules. Since Xen will relocate the memory position of the second multiboot module (the one that contains the metadata and native FreeBSD modules), we need to stash the original modulep address inside of the metadata itself in order to recalculate its position once booted. This also means the metadata must come before the loaded modules, so after loading the FreeBSD kernel a portion of memory is reserved in order to place the metadata before booting. In order to tell the loader to boot Xen and then the FreeBSD kernel the following has to be added to the /boot/loader.conf file: xen_cmdline="dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga" xen_kernel="/boot/xen" The first argument contains the command line that will be passed to the Xen kernel, while the second argument is the path to the Xen kernel itself. This can also be done manually from the loader command line, by for example typing the following set of commands: OK unload OK load /boot/xen dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga OK load kernel OK load zfs OK load if_tap OK load ... OK boot Sponsored by: Citrix Systems R&D Reviewed by: jhb Differential Revision: https://reviews.freebsd.org/D517 For the Forth bits: Submitted by: Julien Grall <julien.grall AT citrix.com>
2015-01-15 16:27:20 +00:00
#include <machine/metadata.h>
#include <xen/xen-os.h>
#include <xen/hypervisor.h>
#include <xen/xenstore/xenstorevar.h>
#include <xen/xen_pv.h>
msi: add Xen MSI implementation This patch adds support for MSI interrupts when running on Xen. Apart from adding the Xen related code needed in order to register MSI interrupts this patch also makes the msi_init function a hook in init_ops, so different MSI implementations can have different initialization functions. Sponsored by: Citrix Systems R&D xen/interface/physdev.h: - Add the MAP_PIRQ_TYPE_MULTI_MSI to map multi-vector MSI to the Xen public interface. x86/include/init.h: - Add a hook for setting custom msi_init methods. amd64/amd64/machdep.c: i386/i386/machdep.c: - Set the default msi_init hook to point to the native MSI initialization method. x86/xen/pv.c: - Set the Xen MSI init hook when running as a Xen guest. x86/x86/local_apic.c: - Call the msi_init hook instead of directly calling msi_init. xen/xen_intr.h: x86/xen/xen_intr.c: - Introduce support for registering/releasing MSI interrupts with Xen. - The MSI interrupts will use the same PIC as the IO APIC interrupts. xen/xen_msi.h: x86/xen/xen_msi.c: - Introduce a Xen MSI implementation. x86/xen/xen_nexus.c: - Overwrite the default MSI hooks in the Xen Nexus to use the Xen MSI implementation. x86/xen/xen_pci.c: - Introduce a Xen specific PCI bus that inherits from the ACPI PCI bus and overwrites the native MSI methods. - This is needed because when running under Xen the MSI messages used to configure MSI interrupts on PCI devices are written by Xen itself. dev/acpica/acpi_pci.c: - Lower the quality of the ACPI PCI bus so the newly introduced Xen PCI bus can take over when needed. conf/files.i386: conf/files.amd64: - Add the newly created files to the build process.
2014-09-30 16:46:45 +00:00
#include <xen/xen_msi.h>
#include <xen/interface/vcpu.h>
#include <dev/xen/timer/timer.h>
ddb: allow specifying the exact address of the symtab and strtab When the FreeBSD kernel is loaded from Xen the symtab and strtab are not loaded the same way as the native boot loader. This patch adds three new global variables to ddb that can be used to specify the exact position and size of those tables, so they can be directly used as parameters to db_add_symbol_table. A new helper is introduced, so callers that used to set ksym_start and ksym_end can use this helper to set the new variables. It also adds support for loading them from the Xen PVH port, that was previously missing those tables. Sponsored by: Citrix Systems R&D Reviewed by: kib ddb/db_main.c: - Add three new global variables: ksymtab, kstrtab, ksymtab_size that can be used to specify the position and size of the symtab and strtab. - Use those new variables in db_init in order to call db_add_symbol_table. - Move the logic in db_init to db_fetch_symtab in order to set ksymtab, kstrtab, ksymtab_size from ksym_start and ksym_end. ddb/ddb.h: - Add prototype for db_fetch_ksymtab. - Declate the extern variables ksymtab, kstrtab and ksymtab_size. x86/xen/pv.c: - Add support for finding the symtab and strtab when booted as a Xen PVH guest. Since Xen loads the symtab and strtab as NetBSD expects to find them we have to adapt and use the same method. amd64/amd64/machdep.c: arm/arm/machdep.c: i386/i386/machdep.c: mips/mips/machdep.c: pc98/pc98/machdep.c: powerpc/aim/machdep.c: powerpc/booke/machdep.c: sparc64/sparc64/machdep.c: - Use the newly introduced db_fetch_ksymtab in order to set ksymtab, kstrtab and ksymtab_size.
2014-09-25 08:28:10 +00:00
#ifdef DDB
#include <ddb/ddb.h>
#endif
/* Native initial function */
extern u_int64_t hammer_time(u_int64_t, u_int64_t);
/* Xen initial function */
uint64_t hammer_time_xen(start_info_t *, uint64_t);
#define MAX_E820_ENTRIES 128
/*--------------------------- Forward Declarations ---------------------------*/
static caddr_t xen_pv_parse_preload_data(u_int64_t);
static void xen_pv_parse_memmap(caddr_t, vm_paddr_t *, int *);
#ifdef SMP
static int xen_pv_start_all_aps(void);
#endif
/*---------------------------- Extern Declarations ---------------------------*/
#ifdef SMP
/* Variables used by amd64 mp_machdep to start APs */
extern char *doublefault_stack;
extern char *nmi_stack;
#endif
ddb: allow specifying the exact address of the symtab and strtab When the FreeBSD kernel is loaded from Xen the symtab and strtab are not loaded the same way as the native boot loader. This patch adds three new global variables to ddb that can be used to specify the exact position and size of those tables, so they can be directly used as parameters to db_add_symbol_table. A new helper is introduced, so callers that used to set ksym_start and ksym_end can use this helper to set the new variables. It also adds support for loading them from the Xen PVH port, that was previously missing those tables. Sponsored by: Citrix Systems R&D Reviewed by: kib ddb/db_main.c: - Add three new global variables: ksymtab, kstrtab, ksymtab_size that can be used to specify the position and size of the symtab and strtab. - Use those new variables in db_init in order to call db_add_symbol_table. - Move the logic in db_init to db_fetch_symtab in order to set ksymtab, kstrtab, ksymtab_size from ksym_start and ksym_end. ddb/ddb.h: - Add prototype for db_fetch_ksymtab. - Declate the extern variables ksymtab, kstrtab and ksymtab_size. x86/xen/pv.c: - Add support for finding the symtab and strtab when booted as a Xen PVH guest. Since Xen loads the symtab and strtab as NetBSD expects to find them we have to adapt and use the same method. amd64/amd64/machdep.c: arm/arm/machdep.c: i386/i386/machdep.c: mips/mips/machdep.c: pc98/pc98/machdep.c: powerpc/aim/machdep.c: powerpc/booke/machdep.c: sparc64/sparc64/machdep.c: - Use the newly introduced db_fetch_ksymtab in order to set ksymtab, kstrtab and ksymtab_size.
2014-09-25 08:28:10 +00:00
/*
* Placed by the linker at the end of the bss section, which is the last
* section loaded by Xen before loading the symtab and strtab.
*/
extern uint32_t end;
/*-------------------------------- Global Data -------------------------------*/
/* Xen init_ops implementation. */
struct init_ops xen_init_ops = {
.parse_preload_data = xen_pv_parse_preload_data,
.early_clock_source_init = xen_clock_init,
.early_delay = xen_delay,
.parse_memmap = xen_pv_parse_memmap,
#ifdef SMP
.start_all_aps = xen_pv_start_all_aps,
#endif
msi: add Xen MSI implementation This patch adds support for MSI interrupts when running on Xen. Apart from adding the Xen related code needed in order to register MSI interrupts this patch also makes the msi_init function a hook in init_ops, so different MSI implementations can have different initialization functions. Sponsored by: Citrix Systems R&D xen/interface/physdev.h: - Add the MAP_PIRQ_TYPE_MULTI_MSI to map multi-vector MSI to the Xen public interface. x86/include/init.h: - Add a hook for setting custom msi_init methods. amd64/amd64/machdep.c: i386/i386/machdep.c: - Set the default msi_init hook to point to the native MSI initialization method. x86/xen/pv.c: - Set the Xen MSI init hook when running as a Xen guest. x86/x86/local_apic.c: - Call the msi_init hook instead of directly calling msi_init. xen/xen_intr.h: x86/xen/xen_intr.c: - Introduce support for registering/releasing MSI interrupts with Xen. - The MSI interrupts will use the same PIC as the IO APIC interrupts. xen/xen_msi.h: x86/xen/xen_msi.c: - Introduce a Xen MSI implementation. x86/xen/xen_nexus.c: - Overwrite the default MSI hooks in the Xen Nexus to use the Xen MSI implementation. x86/xen/xen_pci.c: - Introduce a Xen specific PCI bus that inherits from the ACPI PCI bus and overwrites the native MSI methods. - This is needed because when running under Xen the MSI messages used to configure MSI interrupts on PCI devices are written by Xen itself. dev/acpica/acpi_pci.c: - Lower the quality of the ACPI PCI bus so the newly introduced Xen PCI bus can take over when needed. conf/files.i386: conf/files.amd64: - Add the newly created files to the build process.
2014-09-30 16:46:45 +00:00
.msi_init = xen_msi_init,
};
static struct bios_smap xen_smap[MAX_E820_ENTRIES];
/*-------------------------------- Xen PV init -------------------------------*/
/*
* First function called by the Xen PVH boot sequence.
*
* Set some Xen global variables and prepare the environment so it is
* as similar as possible to what native FreeBSD init function expects.
*/
uint64_t
hammer_time_xen(start_info_t *si, uint64_t xenstack)
{
uint64_t physfree;
uint64_t *PT4 = (u_int64_t *)xenstack;
uint64_t *PT3 = (u_int64_t *)(xenstack + PAGE_SIZE);
uint64_t *PT2 = (u_int64_t *)(xenstack + 2 * PAGE_SIZE);
int i;
xen_domain_type = XEN_PV_DOMAIN;
vm_guest = VM_GUEST_XEN;
if ((si == NULL) || (xenstack == 0)) {
xc_printf("ERROR: invalid start_info or xen stack, halting\n");
HYPERVISOR_shutdown(SHUTDOWN_crash);
}
xc_printf("FreeBSD PVH running on %s\n", si->magic);
/* We use 3 pages of xen stack for the boot pagetables */
physfree = xenstack + 3 * PAGE_SIZE - KERNBASE;
/* Setup Xen global variables */
HYPERVISOR_start_info = si;
HYPERVISOR_shared_info =
(shared_info_t *)(si->shared_info + KERNBASE);
/*
* Setup some misc global variables for Xen devices
*
* XXX: Devices that need these specific variables should
* be rewritten to fetch this info by themselves from the
* start_info page.
*/
xen_store = (struct xenstore_domain_interface *)
(ptoa(si->store_mfn) + KERNBASE);
console_page = (char *)(ptoa(si->console.domU.mfn) + KERNBASE);
/*
* Use the stack Xen gives us to build the page tables
* as native FreeBSD expects to find them (created
* by the boot trampoline).
*/
for (i = 0; i < (PAGE_SIZE / sizeof(uint64_t)); i++) {
/*
* Each slot of the level 4 pages points
* to the same level 3 page
*/
PT4[i] = ((uint64_t)&PT3[0]) - KERNBASE;
PT4[i] |= PG_V | PG_RW | PG_U;
/*
* Each slot of the level 3 pages points
* to the same level 2 page
*/
PT3[i] = ((uint64_t)&PT2[0]) - KERNBASE;
PT3[i] |= PG_V | PG_RW | PG_U;
/*
* The level 2 page slots are mapped with
* 2MB pages for 1GB.
*/
PT2[i] = i * (2 * 1024 * 1024);
PT2[i] |= PG_V | PG_RW | PG_PS | PG_U;
}
load_cr3(((uint64_t)&PT4[0]) - KERNBASE);
/* Set the hooks for early functions that diverge from bare metal */
init_ops = xen_init_ops;
apic_ops = xen_apic_ops;
/* Now we can jump into the native init function */
return (hammer_time(0, physfree));
}
/*-------------------------------- PV specific -------------------------------*/
#ifdef SMP
static bool
start_xen_ap(int cpu)
{
struct vcpu_guest_context *ctxt;
int ms, cpus = mp_naps;
const size_t stacksize = kstack_pages * PAGE_SIZE;
/* allocate and set up an idle stack data page */
bootstacks[cpu] =
(void *)kmem_malloc(kernel_arena, stacksize, M_WAITOK | M_ZERO);
doublefault_stack =
(char *)kmem_malloc(kernel_arena, PAGE_SIZE, M_WAITOK | M_ZERO);
nmi_stack =
(char *)kmem_malloc(kernel_arena, PAGE_SIZE, M_WAITOK | M_ZERO);
dpcpu =
(void *)kmem_malloc(kernel_arena, DPCPU_SIZE, M_WAITOK | M_ZERO);
bootSTK = (char *)bootstacks[cpu] + kstack_pages * PAGE_SIZE - 8;
bootAP = cpu;
ctxt = malloc(sizeof(*ctxt), M_TEMP, M_WAITOK | M_ZERO);
ctxt->flags = VGCF_IN_KERNEL;
ctxt->user_regs.rip = (unsigned long) init_secondary;
ctxt->user_regs.rsp = (unsigned long) bootSTK;
/* Set the AP to use the same page tables */
ctxt->ctrlreg[3] = KPML4phys;
if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
panic("unable to initialize AP#%d", cpu);
free(ctxt, M_TEMP);
/* Launch the vCPU */
if (HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
panic("unable to start AP#%d", cpu);
/* Wait up to 5 seconds for it to start. */
for (ms = 0; ms < 5000; ms++) {
if (mp_naps > cpus)
return (true);
DELAY(1000);
}
return (false);
}
static int
xen_pv_start_all_aps(void)
{
int cpu;
mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
for (cpu = 1; cpu < mp_ncpus; cpu++) {
/* attempt to start the Application Processor */
if (!start_xen_ap(cpu))
panic("AP #%d failed to start!", cpu);
CPU_SET(cpu, &all_cpus); /* record AP in CPU map */
}
return (mp_naps);
}
#endif /* SMP */
/*
* Functions to convert the "extra" parameters passed by Xen
* into FreeBSD boot options.
*/
static void
xen_pv_set_env(void)
{
char *cmd_line_next, *cmd_line;
size_t env_size;
cmd_line = HYPERVISOR_start_info->cmd_line;
env_size = sizeof(HYPERVISOR_start_info->cmd_line);
/* Skip leading spaces */
for (; isspace(*cmd_line) && (env_size != 0); cmd_line++)
env_size--;
/* Replace ',' with '\0' */
for (cmd_line_next = cmd_line; strsep(&cmd_line_next, ",") != NULL;)
;
Make the 'env' directive described in config(5) work on all architectures, providing compiled-in static environment data that is used instead of any data passed in from a boot loader. Previously 'env' worked only on i386 and arm xscale systems, because it required the MD startup code to examine the global envmode variable and decide whether to use static_env or an environment obtained from the boot loader, and set the global kern_envp accordingly. Most startup code wasn't doing so. Making things even more complex, some mips startup code uses an alternate scheme that involves calling init_static_kenv() to pass an empty buffer and its size, then uses a series of kern_setenv() calls to populate that buffer. Now all MD startup code calls init_static_kenv(), and that routine provides a single point where envmode is checked and the decision is made whether to use the compiled-in static_kenv or the values provided by the MD code. The routine also continues to serve its original purpose for mips; if a non-zero buffer size is passed the routine installs the empty buffer ready to accept kern_setenv() values. Now if the size is zero, the provided buffer full of existing env data is installed. A NULL pointer can be passed if the boot loader provides no env data; this allows the static env to be installed if envmode is set to do so. Most of the work here is a near-mechanical change to call the init function instead of directly setting kern_envp. A notable exception is in xen/pv.c; that code was originally installing a buffer full of preformatted env data along with its non-zero size (like mips code does), which would have allowed kern_setenv() calls to wipe out the preformatted data. Now it passes a zero for the size so that the buffer of data it installs is treated as non-writeable.
2016-01-02 02:53:48 +00:00
init_static_kenv(cmd_line, 0);
}
static void
xen_pv_set_boothowto(void)
{
int i;
char *env;
/* get equivalents from the environment */
for (i = 0; howto_names[i].ev != NULL; i++) {
if ((env = kern_getenv(howto_names[i].ev)) != NULL) {
boothowto |= howto_names[i].mask;
freeenv(env);
}
}
}
ddb: allow specifying the exact address of the symtab and strtab When the FreeBSD kernel is loaded from Xen the symtab and strtab are not loaded the same way as the native boot loader. This patch adds three new global variables to ddb that can be used to specify the exact position and size of those tables, so they can be directly used as parameters to db_add_symbol_table. A new helper is introduced, so callers that used to set ksym_start and ksym_end can use this helper to set the new variables. It also adds support for loading them from the Xen PVH port, that was previously missing those tables. Sponsored by: Citrix Systems R&D Reviewed by: kib ddb/db_main.c: - Add three new global variables: ksymtab, kstrtab, ksymtab_size that can be used to specify the position and size of the symtab and strtab. - Use those new variables in db_init in order to call db_add_symbol_table. - Move the logic in db_init to db_fetch_symtab in order to set ksymtab, kstrtab, ksymtab_size from ksym_start and ksym_end. ddb/ddb.h: - Add prototype for db_fetch_ksymtab. - Declate the extern variables ksymtab, kstrtab and ksymtab_size. x86/xen/pv.c: - Add support for finding the symtab and strtab when booted as a Xen PVH guest. Since Xen loads the symtab and strtab as NetBSD expects to find them we have to adapt and use the same method. amd64/amd64/machdep.c: arm/arm/machdep.c: i386/i386/machdep.c: mips/mips/machdep.c: pc98/pc98/machdep.c: powerpc/aim/machdep.c: powerpc/booke/machdep.c: sparc64/sparc64/machdep.c: - Use the newly introduced db_fetch_ksymtab in order to set ksymtab, kstrtab and ksymtab_size.
2014-09-25 08:28:10 +00:00
#ifdef DDB
/*
* The way Xen loads the symtab is different from the native boot loader,
* because it's tailored for NetBSD. So we have to adapt and use the same
* method as NetBSD. Portions of the code below have been picked from NetBSD:
* sys/kern/kern_ksyms.c CVS Revision 1.71.
*/
static void
xen_pv_parse_symtab(void)
{
Elf_Ehdr *ehdr;
Elf_Shdr *shdr;
vm_offset_t sym_end;
uint32_t size;
int i, j;
size = end;
sym_end = HYPERVISOR_start_info->mod_start != 0 ?
HYPERVISOR_start_info->mod_start :
HYPERVISOR_start_info->mfn_list;
/*
* Make sure the size is right headed, sym_end is just a
* high boundary, but at least allows us to fail earlier.
*/
if ((vm_offset_t)&end + size > sym_end) {
xc_printf("Unable to load ELF symtab: size mismatch\n");
return;
}
ehdr = (Elf_Ehdr *)(&end + 1);
if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) ||
ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
ehdr->e_version > 1) {
xc_printf("Unable to load ELF symtab: invalid symbol table\n");
return;
}
shdr = (Elf_Shdr *)((uint8_t *)ehdr + ehdr->e_shoff);
/* Find the symbol table and the corresponding string table. */
for (i = 1; i < ehdr->e_shnum; i++) {
if (shdr[i].sh_type != SHT_SYMTAB)
continue;
if (shdr[i].sh_offset == 0)
continue;
ksymtab = (uintptr_t)((uint8_t *)ehdr + shdr[i].sh_offset);
ksymtab_size = shdr[i].sh_size;
j = shdr[i].sh_link;
if (shdr[j].sh_offset == 0)
continue; /* Can this happen? */
kstrtab = (uintptr_t)((uint8_t *)ehdr + shdr[j].sh_offset);
break;
}
if (ksymtab == 0 || kstrtab == 0) {
xc_printf(
"Unable to load ELF symtab: could not find symtab or strtab\n");
return;
}
}
#endif
static caddr_t
xen_pv_parse_preload_data(u_int64_t modulep)
{
loader: implement multiboot support for Xen Dom0 Implement a subset of the multiboot specification in order to boot Xen and a FreeBSD Dom0 from the FreeBSD bootloader. This multiboot implementation is tailored to boot Xen and FreeBSD Dom0, and it will most surely fail to boot any other multiboot compilant kernel. In order to detect and boot the Xen microkernel, two new file formats are added to the bootloader, multiboot and multiboot_obj. Multiboot support must be tested before regular ELF support, since Xen is a multiboot kernel that also uses ELF. After a multiboot kernel is detected, all the other loaded kernels/modules are parsed by the multiboot_obj format. The layout of the loaded objects in memory is the following; first the Xen kernel is loaded as a 32bit ELF into memory (Xen will switch to long mode by itself), after that the FreeBSD kernel is loaded as a RAW file (Xen will parse and load it using it's internal ELF loader), and finally the metadata and the modules are loaded using the native FreeBSD way. After everything is loaded we jump into Xen's entry point using a small trampoline. The order of the multiboot modules passed to Xen is the following, the first module is the RAW FreeBSD kernel, and the second module is the metadata and the FreeBSD modules. Since Xen will relocate the memory position of the second multiboot module (the one that contains the metadata and native FreeBSD modules), we need to stash the original modulep address inside of the metadata itself in order to recalculate its position once booted. This also means the metadata must come before the loaded modules, so after loading the FreeBSD kernel a portion of memory is reserved in order to place the metadata before booting. In order to tell the loader to boot Xen and then the FreeBSD kernel the following has to be added to the /boot/loader.conf file: xen_cmdline="dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga" xen_kernel="/boot/xen" The first argument contains the command line that will be passed to the Xen kernel, while the second argument is the path to the Xen kernel itself. This can also be done manually from the loader command line, by for example typing the following set of commands: OK unload OK load /boot/xen dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga OK load kernel OK load zfs OK load if_tap OK load ... OK boot Sponsored by: Citrix Systems R&D Reviewed by: jhb Differential Revision: https://reviews.freebsd.org/D517 For the Forth bits: Submitted by: Julien Grall <julien.grall AT citrix.com>
2015-01-15 16:27:20 +00:00
caddr_t kmdp;
vm_ooffset_t off;
vm_paddr_t metadata;
Make the 'env' directive described in config(5) work on all architectures, providing compiled-in static environment data that is used instead of any data passed in from a boot loader. Previously 'env' worked only on i386 and arm xscale systems, because it required the MD startup code to examine the global envmode variable and decide whether to use static_env or an environment obtained from the boot loader, and set the global kern_envp accordingly. Most startup code wasn't doing so. Making things even more complex, some mips startup code uses an alternate scheme that involves calling init_static_kenv() to pass an empty buffer and its size, then uses a series of kern_setenv() calls to populate that buffer. Now all MD startup code calls init_static_kenv(), and that routine provides a single point where envmode is checked and the decision is made whether to use the compiled-in static_kenv or the values provided by the MD code. The routine also continues to serve its original purpose for mips; if a non-zero buffer size is passed the routine installs the empty buffer ready to accept kern_setenv() values. Now if the size is zero, the provided buffer full of existing env data is installed. A NULL pointer can be passed if the boot loader provides no env data; this allows the static env to be installed if envmode is set to do so. Most of the work here is a near-mechanical change to call the init function instead of directly setting kern_envp. A notable exception is in xen/pv.c; that code was originally installing a buffer full of preformatted env data along with its non-zero size (like mips code does), which would have allowed kern_setenv() calls to wipe out the preformatted data. Now it passes a zero for the size so that the buffer of data it installs is treated as non-writeable.
2016-01-02 02:53:48 +00:00
char *envp;
loader: implement multiboot support for Xen Dom0 Implement a subset of the multiboot specification in order to boot Xen and a FreeBSD Dom0 from the FreeBSD bootloader. This multiboot implementation is tailored to boot Xen and FreeBSD Dom0, and it will most surely fail to boot any other multiboot compilant kernel. In order to detect and boot the Xen microkernel, two new file formats are added to the bootloader, multiboot and multiboot_obj. Multiboot support must be tested before regular ELF support, since Xen is a multiboot kernel that also uses ELF. After a multiboot kernel is detected, all the other loaded kernels/modules are parsed by the multiboot_obj format. The layout of the loaded objects in memory is the following; first the Xen kernel is loaded as a 32bit ELF into memory (Xen will switch to long mode by itself), after that the FreeBSD kernel is loaded as a RAW file (Xen will parse and load it using it's internal ELF loader), and finally the metadata and the modules are loaded using the native FreeBSD way. After everything is loaded we jump into Xen's entry point using a small trampoline. The order of the multiboot modules passed to Xen is the following, the first module is the RAW FreeBSD kernel, and the second module is the metadata and the FreeBSD modules. Since Xen will relocate the memory position of the second multiboot module (the one that contains the metadata and native FreeBSD modules), we need to stash the original modulep address inside of the metadata itself in order to recalculate its position once booted. This also means the metadata must come before the loaded modules, so after loading the FreeBSD kernel a portion of memory is reserved in order to place the metadata before booting. In order to tell the loader to boot Xen and then the FreeBSD kernel the following has to be added to the /boot/loader.conf file: xen_cmdline="dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga" xen_kernel="/boot/xen" The first argument contains the command line that will be passed to the Xen kernel, while the second argument is the path to the Xen kernel itself. This can also be done manually from the loader command line, by for example typing the following set of commands: OK unload OK load /boot/xen dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga OK load kernel OK load zfs OK load if_tap OK load ... OK boot Sponsored by: Citrix Systems R&D Reviewed by: jhb Differential Revision: https://reviews.freebsd.org/D517 For the Forth bits: Submitted by: Julien Grall <julien.grall AT citrix.com>
2015-01-15 16:27:20 +00:00
if (HYPERVISOR_start_info->mod_start != 0) {
preload_metadata = (caddr_t)(HYPERVISOR_start_info->mod_start);
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
KASSERT(kmdp != NULL, ("unable to find kernel"));
/*
* Xen has relocated the metadata and the modules,
* so we need to recalculate it's position. This is
* done by saving the original modulep address and
* then calculating the offset with mod_start,
* which contains the relocated modulep address.
*/
metadata = MD_FETCH(kmdp, MODINFOMD_MODULEP, vm_paddr_t);
loader: implement multiboot support for Xen Dom0 Implement a subset of the multiboot specification in order to boot Xen and a FreeBSD Dom0 from the FreeBSD bootloader. This multiboot implementation is tailored to boot Xen and FreeBSD Dom0, and it will most surely fail to boot any other multiboot compilant kernel. In order to detect and boot the Xen microkernel, two new file formats are added to the bootloader, multiboot and multiboot_obj. Multiboot support must be tested before regular ELF support, since Xen is a multiboot kernel that also uses ELF. After a multiboot kernel is detected, all the other loaded kernels/modules are parsed by the multiboot_obj format. The layout of the loaded objects in memory is the following; first the Xen kernel is loaded as a 32bit ELF into memory (Xen will switch to long mode by itself), after that the FreeBSD kernel is loaded as a RAW file (Xen will parse and load it using it's internal ELF loader), and finally the metadata and the modules are loaded using the native FreeBSD way. After everything is loaded we jump into Xen's entry point using a small trampoline. The order of the multiboot modules passed to Xen is the following, the first module is the RAW FreeBSD kernel, and the second module is the metadata and the FreeBSD modules. Since Xen will relocate the memory position of the second multiboot module (the one that contains the metadata and native FreeBSD modules), we need to stash the original modulep address inside of the metadata itself in order to recalculate its position once booted. This also means the metadata must come before the loaded modules, so after loading the FreeBSD kernel a portion of memory is reserved in order to place the metadata before booting. In order to tell the loader to boot Xen and then the FreeBSD kernel the following has to be added to the /boot/loader.conf file: xen_cmdline="dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga" xen_kernel="/boot/xen" The first argument contains the command line that will be passed to the Xen kernel, while the second argument is the path to the Xen kernel itself. This can also be done manually from the loader command line, by for example typing the following set of commands: OK unload OK load /boot/xen dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga OK load kernel OK load zfs OK load if_tap OK load ... OK boot Sponsored by: Citrix Systems R&D Reviewed by: jhb Differential Revision: https://reviews.freebsd.org/D517 For the Forth bits: Submitted by: Julien Grall <julien.grall AT citrix.com>
2015-01-15 16:27:20 +00:00
off = HYPERVISOR_start_info->mod_start - metadata;
preload_bootstrap_relocate(off);
boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
Make the 'env' directive described in config(5) work on all architectures, providing compiled-in static environment data that is used instead of any data passed in from a boot loader. Previously 'env' worked only on i386 and arm xscale systems, because it required the MD startup code to examine the global envmode variable and decide whether to use static_env or an environment obtained from the boot loader, and set the global kern_envp accordingly. Most startup code wasn't doing so. Making things even more complex, some mips startup code uses an alternate scheme that involves calling init_static_kenv() to pass an empty buffer and its size, then uses a series of kern_setenv() calls to populate that buffer. Now all MD startup code calls init_static_kenv(), and that routine provides a single point where envmode is checked and the decision is made whether to use the compiled-in static_kenv or the values provided by the MD code. The routine also continues to serve its original purpose for mips; if a non-zero buffer size is passed the routine installs the empty buffer ready to accept kern_setenv() values. Now if the size is zero, the provided buffer full of existing env data is installed. A NULL pointer can be passed if the boot loader provides no env data; this allows the static env to be installed if envmode is set to do so. Most of the work here is a near-mechanical change to call the init function instead of directly setting kern_envp. A notable exception is in xen/pv.c; that code was originally installing a buffer full of preformatted env data along with its non-zero size (like mips code does), which would have allowed kern_setenv() calls to wipe out the preformatted data. Now it passes a zero for the size so that the buffer of data it installs is treated as non-writeable.
2016-01-02 02:53:48 +00:00
envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
if (envp != NULL)
envp += off;
init_static_kenv(envp, 0);
loader: implement multiboot support for Xen Dom0 Implement a subset of the multiboot specification in order to boot Xen and a FreeBSD Dom0 from the FreeBSD bootloader. This multiboot implementation is tailored to boot Xen and FreeBSD Dom0, and it will most surely fail to boot any other multiboot compilant kernel. In order to detect and boot the Xen microkernel, two new file formats are added to the bootloader, multiboot and multiboot_obj. Multiboot support must be tested before regular ELF support, since Xen is a multiboot kernel that also uses ELF. After a multiboot kernel is detected, all the other loaded kernels/modules are parsed by the multiboot_obj format. The layout of the loaded objects in memory is the following; first the Xen kernel is loaded as a 32bit ELF into memory (Xen will switch to long mode by itself), after that the FreeBSD kernel is loaded as a RAW file (Xen will parse and load it using it's internal ELF loader), and finally the metadata and the modules are loaded using the native FreeBSD way. After everything is loaded we jump into Xen's entry point using a small trampoline. The order of the multiboot modules passed to Xen is the following, the first module is the RAW FreeBSD kernel, and the second module is the metadata and the FreeBSD modules. Since Xen will relocate the memory position of the second multiboot module (the one that contains the metadata and native FreeBSD modules), we need to stash the original modulep address inside of the metadata itself in order to recalculate its position once booted. This also means the metadata must come before the loaded modules, so after loading the FreeBSD kernel a portion of memory is reserved in order to place the metadata before booting. In order to tell the loader to boot Xen and then the FreeBSD kernel the following has to be added to the /boot/loader.conf file: xen_cmdline="dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga" xen_kernel="/boot/xen" The first argument contains the command line that will be passed to the Xen kernel, while the second argument is the path to the Xen kernel itself. This can also be done manually from the loader command line, by for example typing the following set of commands: OK unload OK load /boot/xen dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga OK load kernel OK load zfs OK load if_tap OK load ... OK boot Sponsored by: Citrix Systems R&D Reviewed by: jhb Differential Revision: https://reviews.freebsd.org/D517 For the Forth bits: Submitted by: Julien Grall <julien.grall AT citrix.com>
2015-01-15 16:27:20 +00:00
} else {
/* Parse the extra boot information given by Xen */
xen_pv_set_env();
xen_pv_set_boothowto();
kmdp = NULL;
}
ddb: allow specifying the exact address of the symtab and strtab When the FreeBSD kernel is loaded from Xen the symtab and strtab are not loaded the same way as the native boot loader. This patch adds three new global variables to ddb that can be used to specify the exact position and size of those tables, so they can be directly used as parameters to db_add_symbol_table. A new helper is introduced, so callers that used to set ksym_start and ksym_end can use this helper to set the new variables. It also adds support for loading them from the Xen PVH port, that was previously missing those tables. Sponsored by: Citrix Systems R&D Reviewed by: kib ddb/db_main.c: - Add three new global variables: ksymtab, kstrtab, ksymtab_size that can be used to specify the position and size of the symtab and strtab. - Use those new variables in db_init in order to call db_add_symbol_table. - Move the logic in db_init to db_fetch_symtab in order to set ksymtab, kstrtab, ksymtab_size from ksym_start and ksym_end. ddb/ddb.h: - Add prototype for db_fetch_ksymtab. - Declate the extern variables ksymtab, kstrtab and ksymtab_size. x86/xen/pv.c: - Add support for finding the symtab and strtab when booted as a Xen PVH guest. Since Xen loads the symtab and strtab as NetBSD expects to find them we have to adapt and use the same method. amd64/amd64/machdep.c: arm/arm/machdep.c: i386/i386/machdep.c: mips/mips/machdep.c: pc98/pc98/machdep.c: powerpc/aim/machdep.c: powerpc/booke/machdep.c: sparc64/sparc64/machdep.c: - Use the newly introduced db_fetch_ksymtab in order to set ksymtab, kstrtab and ksymtab_size.
2014-09-25 08:28:10 +00:00
#ifdef DDB
xen_pv_parse_symtab();
#endif
loader: implement multiboot support for Xen Dom0 Implement a subset of the multiboot specification in order to boot Xen and a FreeBSD Dom0 from the FreeBSD bootloader. This multiboot implementation is tailored to boot Xen and FreeBSD Dom0, and it will most surely fail to boot any other multiboot compilant kernel. In order to detect and boot the Xen microkernel, two new file formats are added to the bootloader, multiboot and multiboot_obj. Multiboot support must be tested before regular ELF support, since Xen is a multiboot kernel that also uses ELF. After a multiboot kernel is detected, all the other loaded kernels/modules are parsed by the multiboot_obj format. The layout of the loaded objects in memory is the following; first the Xen kernel is loaded as a 32bit ELF into memory (Xen will switch to long mode by itself), after that the FreeBSD kernel is loaded as a RAW file (Xen will parse and load it using it's internal ELF loader), and finally the metadata and the modules are loaded using the native FreeBSD way. After everything is loaded we jump into Xen's entry point using a small trampoline. The order of the multiboot modules passed to Xen is the following, the first module is the RAW FreeBSD kernel, and the second module is the metadata and the FreeBSD modules. Since Xen will relocate the memory position of the second multiboot module (the one that contains the metadata and native FreeBSD modules), we need to stash the original modulep address inside of the metadata itself in order to recalculate its position once booted. This also means the metadata must come before the loaded modules, so after loading the FreeBSD kernel a portion of memory is reserved in order to place the metadata before booting. In order to tell the loader to boot Xen and then the FreeBSD kernel the following has to be added to the /boot/loader.conf file: xen_cmdline="dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga" xen_kernel="/boot/xen" The first argument contains the command line that will be passed to the Xen kernel, while the second argument is the path to the Xen kernel itself. This can also be done manually from the loader command line, by for example typing the following set of commands: OK unload OK load /boot/xen dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga OK load kernel OK load zfs OK load if_tap OK load ... OK boot Sponsored by: Citrix Systems R&D Reviewed by: jhb Differential Revision: https://reviews.freebsd.org/D517 For the Forth bits: Submitted by: Julien Grall <julien.grall AT citrix.com>
2015-01-15 16:27:20 +00:00
return (kmdp);
}
static void
xen_pv_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
{
struct xen_memory_map memmap;
u_int32_t size;
int rc;
/* Fetch the E820 map from Xen */
memmap.nr_entries = MAX_E820_ENTRIES;
set_xen_guest_handle(memmap.buffer, xen_smap);
rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
if (rc)
panic("unable to fetch Xen E820 memory map");
size = memmap.nr_entries * sizeof(xen_smap[0]);
bios_add_smap_entries(xen_smap, size, physmap, physmap_idx);
}