freebsd-skq/lib/msun/tests/csqrt_test.c

296 lines
6.9 KiB
C
Raw Normal View History

2007-12-15 09:16:26 +00:00
/*-
* Copyright (c) 2007 David Schultz <das@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Tests for csqrt{,f}()
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
2007-12-15 09:16:26 +00:00
#include <assert.h>
#include <complex.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include "test-utils.h"
2007-12-15 09:16:26 +00:00
/*
2008-03-30 20:09:51 +00:00
* This is a test hook that can point to csqrtl(), _csqrt(), or to _csqrtf().
* The latter two convert to float or double, respectively, and test csqrtf()
* and csqrt() with the same arguments.
2007-12-15 09:16:26 +00:00
*/
2008-03-30 20:09:51 +00:00
long double complex (*t_csqrt)(long double complex);
2007-12-15 09:16:26 +00:00
2008-03-30 20:09:51 +00:00
static long double complex
_csqrtf(long double complex d)
2007-12-15 09:16:26 +00:00
{
return (csqrtf((float complex)d));
}
2008-03-30 20:09:51 +00:00
static long double complex
_csqrt(long double complex d)
{
return (csqrt((double complex)d));
}
#pragma STDC CX_LIMITED_RANGE OFF
2007-12-15 09:16:26 +00:00
/*
* Compare d1 and d2 using special rules: NaN == NaN and +0 != -0.
* Fail an assertion if they differ.
*/
static void
2008-03-30 20:09:51 +00:00
assert_equal(long double complex d1, long double complex d2)
2007-12-15 09:16:26 +00:00
{
assert(cfpequal(d1, d2));
2007-12-15 09:16:26 +00:00
}
/*
* Test csqrt for some finite arguments where the answer is exact.
* (We do not test if it produces correctly rounded answers when the
* result is inexact, nor do we check whether it throws spurious
* exceptions.)
*/
static void
test_finite()
{
static const double tests[] = {
/* csqrt(a + bI) = x + yI */
/* a b x y */
0, 8, 2, 2,
0, -8, 2, -2,
4, 0, 2, 0,
-4, 0, 0, 2,
3, 4, 2, 1,
3, -4, 2, -1,
-3, 4, 1, 2,
-3, -4, 1, -2,
5, 12, 3, 2,
7, 24, 4, 3,
9, 40, 5, 4,
11, 60, 6, 5,
13, 84, 7, 6,
33, 56, 7, 4,
39, 80, 8, 5,
65, 72, 9, 4,
987, 9916, 74, 67,
5289, 6640, 83, 40,
460766389075.0, 16762287900.0, 678910, 12345
};
/*
* We also test some multiples of the above arguments. This
* array defines which multiples we use. Note that these have
* to be small enough to not cause overflow for float precision
* with all of the constants in the above table.
*/
static const double mults[] = {
1,
2,
3,
13,
16,
0x1.p30,
0x1.p-30,
};
double a, b;
double x, y;
int i, j;
for (i = 0; i < nitems(tests); i += 4) {
for (j = 0; j < nitems(mults); j++) {
2007-12-15 09:16:26 +00:00
a = tests[i] * mults[j] * mults[j];
b = tests[i + 1] * mults[j] * mults[j];
x = tests[i + 2] * mults[j];
y = tests[i + 3] * mults[j];
assert(t_csqrt(CMPLXL(a, b)) == CMPLXL(x, y));
2007-12-15 09:16:26 +00:00
}
}
}
/*
* Test the handling of +/- 0.
*/
static void
test_zeros()
{
assert_equal(t_csqrt(CMPLXL(0.0, 0.0)), CMPLXL(0.0, 0.0));
assert_equal(t_csqrt(CMPLXL(-0.0, 0.0)), CMPLXL(0.0, 0.0));
assert_equal(t_csqrt(CMPLXL(0.0, -0.0)), CMPLXL(0.0, -0.0));
assert_equal(t_csqrt(CMPLXL(-0.0, -0.0)), CMPLXL(0.0, -0.0));
2007-12-15 09:16:26 +00:00
}
/*
* Test the handling of infinities when the other argument is not NaN.
*/
static void
test_infinities()
{
static const double vals[] = {
0.0,
-0.0,
42.0,
-42.0,
INFINITY,
-INFINITY,
};
int i;
for (i = 0; i < nitems(vals); i++) {
2007-12-15 09:16:26 +00:00
if (isfinite(vals[i])) {
assert_equal(t_csqrt(CMPLXL(-INFINITY, vals[i])),
CMPLXL(0.0, copysignl(INFINITY, vals[i])));
assert_equal(t_csqrt(CMPLXL(INFINITY, vals[i])),
CMPLXL(INFINITY, copysignl(0.0, vals[i])));
2007-12-15 09:16:26 +00:00
}
assert_equal(t_csqrt(CMPLXL(vals[i], INFINITY)),
CMPLXL(INFINITY, INFINITY));
assert_equal(t_csqrt(CMPLXL(vals[i], -INFINITY)),
CMPLXL(INFINITY, -INFINITY));
2007-12-15 09:16:26 +00:00
}
}
/*
* Test the handling of NaNs.
*/
static void
test_nans()
{
assert(creall(t_csqrt(CMPLXL(INFINITY, NAN))) == INFINITY);
assert(isnan(cimagl(t_csqrt(CMPLXL(INFINITY, NAN)))));
assert(isnan(creall(t_csqrt(CMPLXL(-INFINITY, NAN)))));
assert(isinf(cimagl(t_csqrt(CMPLXL(-INFINITY, NAN)))));
assert_equal(t_csqrt(CMPLXL(NAN, INFINITY)),
CMPLXL(INFINITY, INFINITY));
assert_equal(t_csqrt(CMPLXL(NAN, -INFINITY)),
CMPLXL(INFINITY, -INFINITY));
assert_equal(t_csqrt(CMPLXL(0.0, NAN)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(-0.0, NAN)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(42.0, NAN)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(-42.0, NAN)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(NAN, 0.0)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(NAN, -0.0)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(NAN, 42.0)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(NAN, -42.0)), CMPLXL(NAN, NAN));
assert_equal(t_csqrt(CMPLXL(NAN, NAN)), CMPLXL(NAN, NAN));
2007-12-15 09:16:26 +00:00
}
/*
* Test whether csqrt(a + bi) works for inputs that are large enough to
* cause overflow in hypot(a, b) + a. In this case we are using
* csqrt(115 + 252*I) == 14 + 9*I
* scaled up to near MAX_EXP.
*/
static void
test_overflow(int maxexp)
{
2008-03-30 20:09:51 +00:00
long double a, b;
long double complex result;
a = ldexpl(115 * 0x1p-8, maxexp);
b = ldexpl(252 * 0x1p-8, maxexp);
result = t_csqrt(CMPLXL(a, b));
2008-03-30 20:09:51 +00:00
assert(creall(result) == ldexpl(14 * 0x1p-4, maxexp / 2));
assert(cimagl(result) == ldexpl(9 * 0x1p-4, maxexp / 2));
2007-12-15 09:16:26 +00:00
}
int
main(int argc, char *argv[])
{
2008-03-30 20:09:51 +00:00
printf("1..15\n");
2007-12-15 09:16:26 +00:00
/* Test csqrt() */
2008-03-30 20:09:51 +00:00
t_csqrt = _csqrt;
2007-12-15 09:16:26 +00:00
test_finite();
printf("ok 1 - csqrt\n");
test_zeros();
printf("ok 2 - csqrt\n");
test_infinities();
printf("ok 3 - csqrt\n");
test_nans();
printf("ok 4 - csqrt\n");
test_overflow(DBL_MAX_EXP);
printf("ok 5 - csqrt\n");
/* Now test csqrtf() */
t_csqrt = _csqrtf;
test_finite();
printf("ok 6 - csqrt\n");
test_zeros();
printf("ok 7 - csqrt\n");
test_infinities();
printf("ok 8 - csqrt\n");
test_nans();
printf("ok 9 - csqrt\n");
test_overflow(FLT_MAX_EXP);
printf("ok 10 - csqrt\n");
2008-03-30 20:09:51 +00:00
/* Now test csqrtl() */
t_csqrt = csqrtl;
test_finite();
printf("ok 11 - csqrt\n");
test_zeros();
printf("ok 12 - csqrt\n");
test_infinities();
printf("ok 13 - csqrt\n");
test_nans();
printf("ok 14 - csqrt\n");
test_overflow(LDBL_MAX_EXP);
printf("ok 15 - csqrt\n");
2007-12-15 09:16:26 +00:00
return (0);
}