freebsd-skq/sys/dev/sound/pci/hdspe-pcm.c

773 lines
16 KiB
C
Raw Normal View History

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
2016-12-07 13:19:19 +00:00
* Copyright (c) 2012-2016 Ruslan Bukin <br@bsdpad.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* RME HDSPe driver for FreeBSD (pcm-part).
* Supported cards: AIO, RayDAT.
*/
#include <dev/sound/pcm/sound.h>
#include <dev/sound/pci/hdspe.h>
#include <dev/sound/chip.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <mixer_if.h>
SND_DECLARE_FILE("$FreeBSD$");
struct hdspe_latency {
uint32_t n;
uint32_t period;
float ms;
};
static struct hdspe_latency latency_map[] = {
{ 7, 32, 0.7 },
{ 0, 64, 1.5 },
{ 1, 128, 3 },
{ 2, 256, 6 },
{ 3, 512, 12 },
{ 4, 1024, 23 },
{ 5, 2048, 46 },
{ 6, 4096, 93 },
{ 0, 0, 0 },
};
struct hdspe_rate {
uint32_t speed;
uint32_t reg;
};
static struct hdspe_rate rate_map[] = {
{ 32000, (HDSPE_FREQ_32000) },
{ 44100, (HDSPE_FREQ_44100) },
{ 48000, (HDSPE_FREQ_48000) },
{ 64000, (HDSPE_FREQ_32000 | HDSPE_FREQ_DOUBLE) },
{ 88200, (HDSPE_FREQ_44100 | HDSPE_FREQ_DOUBLE) },
{ 96000, (HDSPE_FREQ_48000 | HDSPE_FREQ_DOUBLE) },
{ 128000, (HDSPE_FREQ_32000 | HDSPE_FREQ_QUAD) },
{ 176400, (HDSPE_FREQ_44100 | HDSPE_FREQ_QUAD) },
{ 192000, (HDSPE_FREQ_48000 | HDSPE_FREQ_QUAD) },
{ 0, 0 },
};
static int
hdspe_hw_mixer(struct sc_chinfo *ch, unsigned int dst,
unsigned int src, unsigned short data)
{
2016-12-07 13:19:19 +00:00
struct sc_pcminfo *scp;
struct sc_info *sc;
int offs;
2016-12-07 13:19:19 +00:00
scp = ch->parent;
sc = scp->sc;
offs = 0;
if (ch->dir == PCMDIR_PLAY)
offs = 64;
hdspe_write_4(sc, HDSPE_MIXER_BASE +
((offs + src + 128 * dst) * sizeof(uint32_t)),
data & 0xFFFF);
2016-12-07 13:19:19 +00:00
return (0);
};
static int
hdspechan_setgain(struct sc_chinfo *ch)
{
hdspe_hw_mixer(ch, ch->lslot, ch->lslot,
ch->lvol * HDSPE_MAX_GAIN / 100);
hdspe_hw_mixer(ch, ch->rslot, ch->rslot,
ch->rvol * HDSPE_MAX_GAIN / 100);
2016-12-07 13:19:19 +00:00
return (0);
}
static int
hdspemixer_init(struct snd_mixer *m)
{
2016-12-07 13:19:19 +00:00
struct sc_pcminfo *scp;
struct sc_info *sc;
int mask;
2016-12-07 13:19:19 +00:00
scp = mix_getdevinfo(m);
sc = scp->sc;
if (sc == NULL)
2016-12-07 13:19:19 +00:00
return (-1);
mask = SOUND_MASK_PCM;
if (scp->hc->play)
mask |= SOUND_MASK_VOLUME;
if (scp->hc->rec)
mask |= SOUND_MASK_RECLEV;
snd_mtxlock(sc->lock);
pcm_setflags(scp->dev, pcm_getflags(scp->dev) | SD_F_SOFTPCMVOL);
mix_setdevs(m, mask);
snd_mtxunlock(sc->lock);
2016-12-07 13:19:19 +00:00
return (0);
}
static int
hdspemixer_set(struct snd_mixer *m, unsigned dev,
unsigned left, unsigned right)
{
2016-12-07 13:19:19 +00:00
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
int i;
2016-12-07 13:19:19 +00:00
scp = mix_getdevinfo(m);
#if 0
device_printf(scp->dev, "hdspemixer_set() %d %d\n",
2016-12-07 13:19:19 +00:00
left, right);
#endif
for (i = 0; i < scp->chnum; i++) {
ch = &scp->chan[i];
if ((dev == SOUND_MIXER_VOLUME && ch->dir == PCMDIR_PLAY) ||
(dev == SOUND_MIXER_RECLEV && ch->dir == PCMDIR_REC)) {
ch->lvol = left;
ch->rvol = right;
if (ch->run)
hdspechan_setgain(ch);
}
}
2016-12-07 13:19:19 +00:00
return (0);
}
static kobj_method_t hdspemixer_methods[] = {
KOBJMETHOD(mixer_init, hdspemixer_init),
KOBJMETHOD(mixer_set, hdspemixer_set),
KOBJMETHOD_END
};
MIXER_DECLARE(hdspemixer);
static void
hdspechan_enable(struct sc_chinfo *ch, int value)
{
2016-12-07 13:19:19 +00:00
struct sc_pcminfo *scp;
struct sc_info *sc;
int reg;
2016-12-07 13:19:19 +00:00
scp = ch->parent;
sc = scp->sc;
if (ch->dir == PCMDIR_PLAY)
reg = HDSPE_OUT_ENABLE_BASE;
else
reg = HDSPE_IN_ENABLE_BASE;
ch->run = value;
hdspe_write_1(sc, reg + (4 * ch->lslot), value);
hdspe_write_1(sc, reg + (4 * ch->rslot), value);
}
static int
hdspe_running(struct sc_info *sc)
{
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
device_t *devlist;
2016-12-07 13:19:19 +00:00
int devcount;
int i, j;
int err;
if ((err = device_get_children(sc->dev, &devlist, &devcount)) != 0)
goto bad;
for (i = 0; i < devcount; i++) {
scp = device_get_ivars(devlist[i]);
for (j = 0; j < scp->chnum; j++) {
ch = &scp->chan[j];
if (ch->run)
goto bad;
}
}
2012-09-30 09:21:10 +00:00
free(devlist, M_TEMP);
2016-12-07 13:19:19 +00:00
return (0);
bad:
#if 0
2016-12-07 13:19:19 +00:00
device_printf(sc->dev, "hdspe is running\n");
#endif
2012-09-30 09:21:10 +00:00
free(devlist, M_TEMP);
2016-12-07 13:19:19 +00:00
return (1);
}
static void
hdspe_start_audio(struct sc_info *sc)
{
sc->ctrl_register |= (HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE);
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
}
static void
hdspe_stop_audio(struct sc_info *sc)
{
if (hdspe_running(sc) == 1)
return;
sc->ctrl_register &= ~(HDSPE_AUDIO_INT_ENABLE | HDSPE_ENABLE);
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
}
/* Multiplex / demultiplex: 2.0 <-> 2 x 1.0. */
static void
buffer_copy(struct sc_chinfo *ch)
{
2016-12-07 13:19:19 +00:00
struct sc_pcminfo *scp;
struct sc_info *sc;
int ssize, dsize;
2016-12-07 13:19:19 +00:00
int src, dst;
int length;
int i;
2016-12-07 13:19:19 +00:00
scp = ch->parent;
sc = scp->sc;
length = sndbuf_getready(ch->buffer) /
(4 /* Bytes per sample. */ * 2 /* channels */);
if (ch->dir == PCMDIR_PLAY) {
src = sndbuf_getreadyptr(ch->buffer);
} else {
src = sndbuf_getfreeptr(ch->buffer);
}
src /= 4; /* Bytes per sample. */
dst = src / 2; /* Destination buffer twice smaller. */
ssize = ch->size / 4;
dsize = ch->size / 8;
/*
* Use two fragment buffer to avoid sound clipping.
*/
for (i = 0; i < sc->period * 2 /* fragments */; i++) {
if (ch->dir == PCMDIR_PLAY) {
sc->pbuf[dst + HDSPE_CHANBUF_SAMPLES * ch->lslot] =
ch->data[src];
sc->pbuf[dst + HDSPE_CHANBUF_SAMPLES * ch->rslot] =
ch->data[src + 1];
} else {
ch->data[src] =
sc->rbuf[dst + HDSPE_CHANBUF_SAMPLES * ch->lslot];
ch->data[src+1] =
sc->rbuf[dst + HDSPE_CHANBUF_SAMPLES * ch->rslot];
}
dst+=1;
dst %= dsize;
src+=2;
src %= ssize;
}
}
static int
2016-12-07 13:19:19 +00:00
clean(struct sc_chinfo *ch)
{
struct sc_pcminfo *scp;
struct sc_info *sc;
uint32_t *buf;
scp = ch->parent;
sc = scp->sc;
buf = sc->rbuf;
if (ch->dir == PCMDIR_PLAY) {
buf = sc->pbuf;
}
bzero(buf + HDSPE_CHANBUF_SAMPLES * ch->lslot, HDSPE_CHANBUF_SIZE);
bzero(buf + HDSPE_CHANBUF_SAMPLES * ch->rslot, HDSPE_CHANBUF_SIZE);
2016-12-07 13:19:19 +00:00
return (0);
}
/* Channel interface. */
static void *
hdspechan_init(kobj_t obj, void *devinfo, struct snd_dbuf *b,
2016-12-07 13:19:19 +00:00
struct pcm_channel *c, int dir)
{
2016-12-07 13:19:19 +00:00
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
2016-12-07 13:19:19 +00:00
struct sc_info *sc;
int num;
2016-12-07 13:19:19 +00:00
scp = devinfo;
sc = scp->sc;
snd_mtxlock(sc->lock);
num = scp->chnum;
ch = &scp->chan[num];
ch->lslot = scp->hc->left;
ch->rslot = scp->hc->right;
ch->run = 0;
ch->lvol = 0;
ch->rvol = 0;
ch->size = HDSPE_CHANBUF_SIZE * 2 /* slots */;
ch->data = malloc(ch->size, M_HDSPE, M_NOWAIT);
ch->buffer = b;
ch->channel = c;
ch->parent = scp;
ch->dir = dir;
snd_mtxunlock(sc->lock);
if (sndbuf_setup(ch->buffer, ch->data, ch->size) != 0) {
device_printf(scp->dev, "Can't setup sndbuf.\n");
2016-12-07 13:19:19 +00:00
return (NULL);
}
2016-12-07 13:19:19 +00:00
return (ch);
}
static int
hdspechan_trigger(kobj_t obj, void *data, int go)
{
2016-12-07 13:19:19 +00:00
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
ch = data;
scp = ch->parent;
sc = scp->sc;
snd_mtxlock(sc->lock);
switch (go) {
case PCMTRIG_START:
#if 0
device_printf(scp->dev, "hdspechan_trigger(): start\n");
#endif
hdspechan_enable(ch, 1);
hdspechan_setgain(ch);
hdspe_start_audio(sc);
break;
case PCMTRIG_STOP:
case PCMTRIG_ABORT:
#if 0
device_printf(scp->dev, "hdspechan_trigger(): stop or abort\n");
#endif
clean(ch);
hdspechan_enable(ch, 0);
hdspe_stop_audio(sc);
break;
case PCMTRIG_EMLDMAWR:
case PCMTRIG_EMLDMARD:
if(ch->run)
buffer_copy(ch);
break;
}
snd_mtxunlock(sc->lock);
2016-12-07 13:19:19 +00:00
return (0);
}
static uint32_t
hdspechan_getptr(kobj_t obj, void *data)
{
2016-12-07 13:19:19 +00:00
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
uint32_t ret, pos;
2016-12-07 13:19:19 +00:00
ch = data;
scp = ch->parent;
sc = scp->sc;
snd_mtxlock(sc->lock);
ret = hdspe_read_2(sc, HDSPE_STATUS_REG);
snd_mtxunlock(sc->lock);
pos = ret & HDSPE_BUF_POSITION_MASK;
pos *= 2; /* Hardbuf twice bigger. */
2016-12-07 13:19:19 +00:00
return (pos);
}
static int
hdspechan_free(kobj_t obj, void *data)
{
2016-12-07 13:19:19 +00:00
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
ch = data;
scp = ch->parent;
sc = scp->sc;
#if 0
device_printf(scp->dev, "hdspechan_free()\n");
#endif
2016-12-07 13:19:19 +00:00
snd_mtxlock(sc->lock);
if (ch->data != NULL) {
free(ch->data, M_HDSPE);
ch->data = NULL;
}
snd_mtxunlock(sc->lock);
2016-12-07 13:19:19 +00:00
return (0);
}
static int
hdspechan_setformat(kobj_t obj, void *data, uint32_t format)
{
2016-12-07 13:19:19 +00:00
struct sc_chinfo *ch;
ch = data;
#if 0
struct sc_pcminfo *scp = ch->parent;
device_printf(scp->dev, "hdspechan_setformat(%d)\n", format);
#endif
ch->format = format;
2016-12-07 13:19:19 +00:00
return (0);
}
static uint32_t
hdspechan_setspeed(kobj_t obj, void *data, uint32_t speed)
{
2016-12-07 13:19:19 +00:00
struct sc_pcminfo *scp;
struct hdspe_rate *hr;
struct sc_chinfo *ch;
struct sc_info *sc;
long long period;
int threshold;
int i;
2016-12-07 13:19:19 +00:00
ch = data;
scp = ch->parent;
sc = scp->sc;
hr = NULL;
#if 0
device_printf(scp->dev, "hdspechan_setspeed(%d)\n", speed);
#endif
if (hdspe_running(sc) == 1)
goto end;
/* First look for equal frequency. */
for (i = 0; rate_map[i].speed != 0; i++) {
if (rate_map[i].speed == speed)
hr = &rate_map[i];
}
/* If no match, just find nearest. */
if (hr == NULL) {
for (i = 0; rate_map[i].speed != 0; i++) {
hr = &rate_map[i];
threshold = hr->speed + ((rate_map[i + 1].speed != 0) ?
((rate_map[i + 1].speed - hr->speed) >> 1) : 0);
if (speed < threshold)
break;
}
}
switch (sc->type) {
case RAYDAT:
case AIO:
period = HDSPE_FREQ_AIO;
break;
default:
/* Unsupported card. */
goto end;
}
/* Write frequency on the device. */
sc->ctrl_register &= ~HDSPE_FREQ_MASK;
sc->ctrl_register |= hr->reg;
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
speed = hr->speed;
if (speed > 96000)
speed /= 4;
else if (speed > 48000)
speed /= 2;
/* Set DDS value. */
period /= speed;
hdspe_write_4(sc, HDSPE_FREQ_REG, period);
sc->speed = hr->speed;
end:
2016-12-07 13:19:19 +00:00
return (sc->speed);
}
static uint32_t
hdspechan_setblocksize(kobj_t obj, void *data, uint32_t blocksize)
{
2016-12-07 13:19:19 +00:00
struct hdspe_latency *hl;
struct sc_pcminfo *scp;
struct sc_chinfo *ch;
struct sc_info *sc;
int threshold;
int i;
2016-12-07 13:19:19 +00:00
ch = data;
scp = ch->parent;
sc = scp->sc;
hl = NULL;
#if 0
device_printf(scp->dev, "hdspechan_setblocksize(%d)\n", blocksize);
#endif
if (hdspe_running(sc) == 1)
goto end;
if (blocksize > HDSPE_LAT_BYTES_MAX)
blocksize = HDSPE_LAT_BYTES_MAX;
else if (blocksize < HDSPE_LAT_BYTES_MIN)
blocksize = HDSPE_LAT_BYTES_MIN;
blocksize /= 4 /* samples */;
/* First look for equal latency. */
for (i = 0; latency_map[i].period != 0; i++) {
if (latency_map[i].period == blocksize) {
hl = &latency_map[i];
}
}
/* If no match, just find nearest. */
if (hl == NULL) {
for (i = 0; latency_map[i].period != 0; i++) {
hl = &latency_map[i];
threshold = hl->period + ((latency_map[i + 1].period != 0) ?
((latency_map[i + 1].period - hl->period) >> 1) : 0);
if (blocksize < threshold)
break;
}
}
snd_mtxlock(sc->lock);
sc->ctrl_register &= ~HDSPE_LAT_MASK;
sc->ctrl_register |= hdspe_encode_latency(hl->n);
hdspe_write_4(sc, HDSPE_CONTROL_REG, sc->ctrl_register);
sc->period = hl->period;
snd_mtxunlock(sc->lock);
#if 0
device_printf(scp->dev, "New period=%d\n", sc->period);
#endif
sndbuf_resize(ch->buffer, (HDSPE_CHANBUF_SIZE * 2) / (sc->period * 4),
(sc->period * 4));
end:
2016-12-07 13:19:19 +00:00
return (sndbuf_getblksz(ch->buffer));
}
static uint32_t hdspe_rfmt[] = {
SND_FORMAT(AFMT_S32_LE, 2, 0),
0
};
static struct pcmchan_caps hdspe_rcaps = {32000, 192000, hdspe_rfmt, 0};
static uint32_t hdspe_pfmt[] = {
SND_FORMAT(AFMT_S32_LE, 2, 0),
0
};
static struct pcmchan_caps hdspe_pcaps = {32000, 192000, hdspe_pfmt, 0};
static struct pcmchan_caps *
hdspechan_getcaps(kobj_t obj, void *data)
{
2016-12-07 13:19:19 +00:00
struct sc_chinfo *ch;
ch = data;
#if 0
struct sc_pcminfo *scl = ch->parent;
device_printf(scp->dev, "hdspechan_getcaps()\n");
#endif
2016-12-07 13:19:19 +00:00
return ((ch->dir == PCMDIR_PLAY) ?
&hdspe_pcaps : &hdspe_rcaps);
}
static kobj_method_t hdspechan_methods[] = {
KOBJMETHOD(channel_init, hdspechan_init),
KOBJMETHOD(channel_free, hdspechan_free),
KOBJMETHOD(channel_setformat, hdspechan_setformat),
KOBJMETHOD(channel_setspeed, hdspechan_setspeed),
KOBJMETHOD(channel_setblocksize, hdspechan_setblocksize),
KOBJMETHOD(channel_trigger, hdspechan_trigger),
KOBJMETHOD(channel_getptr, hdspechan_getptr),
KOBJMETHOD(channel_getcaps, hdspechan_getcaps),
KOBJMETHOD_END
};
CHANNEL_DECLARE(hdspechan);
static int
hdspe_pcm_probe(device_t dev)
{
#if 0
device_printf(dev,"hdspe_pcm_probe()\n");
#endif
2016-12-07 13:19:19 +00:00
return (0);
}
static uint32_t
2016-12-07 13:19:19 +00:00
hdspe_pcm_intr(struct sc_pcminfo *scp)
{
struct sc_chinfo *ch;
2016-12-07 13:19:19 +00:00
struct sc_info *sc;
int i;
2016-12-07 13:19:19 +00:00
sc = scp->sc;
for (i = 0; i < scp->chnum; i++) {
ch = &scp->chan[i];
snd_mtxunlock(sc->lock);
chn_intr(ch->channel);
snd_mtxlock(sc->lock);
}
2016-12-07 13:19:19 +00:00
return (0);
}
static int
hdspe_pcm_attach(device_t dev)
{
char status[SND_STATUSLEN];
2016-12-07 13:19:19 +00:00
struct sc_pcminfo *scp;
char desc[64];
int i, err;
scp = device_get_ivars(dev);
scp->ih = &hdspe_pcm_intr;
bzero(desc, sizeof(desc));
snprintf(desc, sizeof(desc), "HDSPe AIO [%s]", scp->hc->descr);
device_set_desc_copy(dev, desc);
/*
* We don't register interrupt handler with snd_setup_intr
* in pcm device. Mark pcm device as MPSAFE manually.
*/
pcm_setflags(dev, pcm_getflags(dev) | SD_F_MPSAFE);
err = pcm_register(dev, scp, scp->hc->play, scp->hc->rec);
if (err) {
device_printf(dev, "Can't register pcm.\n");
2016-12-07 13:19:19 +00:00
return (ENXIO);
}
scp->chnum = 0;
for (i = 0; i < scp->hc->play; i++) {
pcm_addchan(dev, PCMDIR_PLAY, &hdspechan_class, scp);
scp->chnum++;
}
for (i = 0; i < scp->hc->rec; i++) {
pcm_addchan(dev, PCMDIR_REC, &hdspechan_class, scp);
scp->chnum++;
}
Use uintmax_t (typedef'd to rman_res_t type) for rman ranges. On some architectures, u_long isn't large enough for resource definitions. Particularly, powerpc and arm allow 36-bit (or larger) physical addresses, but type `long' is only 32-bit. This extends rman's resources to uintmax_t. With this change, any resource can feasibly be placed anywhere in physical memory (within the constraints of the driver). Why uintmax_t and not something machine dependent, or uint64_t? Though it's possible for uintmax_t to grow, it's highly unlikely it will become 128-bit on 32-bit architectures. 64-bit architectures should have plenty of RAM to absorb the increase on resource sizes if and when this occurs, and the number of resources on memory-constrained systems should be sufficiently small as to not pose a drastic overhead. That being said, uintmax_t was chosen for source clarity. If it's specified as uint64_t, all printf()-like calls would either need casts to uintmax_t, or be littered with PRI*64 macros. Casts to uintmax_t aren't horrible, but it would also bake into the API for resource_list_print_type() either a hidden assumption that entries get cast to uintmax_t for printing, or these calls would need the PRI*64 macros. Since source code is meant to be read more often than written, I chose the clearest path of simply using uintmax_t. Tested on a PowerPC p5020-based board, which places all device resources in 0xfxxxxxxxx, and has 8GB RAM. Regression tested on qemu-system-i386 Regression tested on qemu-system-mips (malta profile) Tested PAE and devinfo on virtualbox (live CD) Special thanks to bz for his testing on ARM. Reviewed By: bz, jhb (previous) Relnotes: Yes Sponsored by: Alex Perez/Inertial Computing Differential Revision: https://reviews.freebsd.org/D4544
2016-03-18 01:28:41 +00:00
snprintf(status, SND_STATUSLEN, "at io 0x%jx irq %jd %s",
rman_get_start(scp->sc->cs),
rman_get_start(scp->sc->irq),
PCM_KLDSTRING(snd_hdspe));
pcm_setstatus(dev, status);
mixer_init(dev, &hdspemixer_class, scp);
2016-12-07 13:19:19 +00:00
return (0);
}
static int
hdspe_pcm_detach(device_t dev)
{
int err;
err = pcm_unregister(dev);
if (err) {
device_printf(dev, "Can't unregister device.\n");
2016-12-07 13:19:19 +00:00
return (err);
}
2016-12-07 13:19:19 +00:00
return (0);
}
static device_method_t hdspe_pcm_methods[] = {
DEVMETHOD(device_probe, hdspe_pcm_probe),
DEVMETHOD(device_attach, hdspe_pcm_attach),
DEVMETHOD(device_detach, hdspe_pcm_detach),
{ 0, 0 }
};
static driver_t hdspe_pcm_driver = {
"pcm",
hdspe_pcm_methods,
PCM_SOFTC_SIZE,
};
DRIVER_MODULE(snd_hdspe_pcm, hdspe, hdspe_pcm_driver, pcm_devclass, 0, 0);
MODULE_DEPEND(snd_hdspe, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(snd_hdspe, 1);