1581 lines
34 KiB
C
Raw Normal View History

Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
/*-
* Copyright (c) 1999-2002 Robert N. M. Watson
* Copyright (c) 2001-2005 McAfee, Inc.
* Copyright (c) 2005 SPARTA, Inc.
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
* All rights reserved.
*
* This software was developed by Robert Watson for the TrustedBSD Project.
*
* This software was developed for the FreeBSD Project in part by McAfee
* Research, the Security Research Division of McAfee, Inc. under
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
* CHATS research program.
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
*
* This software was enhanced by SPARTA ISSO under SPAWAR contract
* N66001-04-C-6019 ("SEFOS").
*
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Developed by the TrustedBSD Project.
*
* Stub module that implements a NOOP for most (if not all) MAC Framework
* policy entry points.
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/acl.h>
#include <sys/conf.h>
#include <sys/extattr.h>
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
#include <sys/kernel.h>
#include <sys/mac.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/sysent.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/pipe.h>
#include <sys/sysctl.h>
#include <sys/msg.h>
#include <sys/sem.h>
#include <sys/shm.h>
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
#include <posix4/ksem.h>
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
#include <fs/devfs/devfs.h>
#include <net/bpfdesc.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <netinet/in.h>
#include <netinet/in_pcb.h>
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
#include <netinet/ip_var.h>
#include <vm/vm.h>
#include <sys/mac_policy.h>
SYSCTL_DECL(_security_mac);
SYSCTL_NODE(_security_mac, OID_AUTO, stub, CTLFLAG_RW, 0,
"TrustedBSD mac_stub policy controls");
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int stub_enabled = 1;
SYSCTL_INT(_security_mac_stub, OID_AUTO, enabled, CTLFLAG_RW,
&stub_enabled, 0, "Enforce mac_stub policy");
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
/*
* Policy module operations.
*/
static void
stub_destroy(struct mac_policy_conf *conf)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
}
static void
stub_init(struct mac_policy_conf *conf)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
}
static int
stub_syscall(struct thread *td, int call, void *arg)
{
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
/*
* Label operations.
*/
static void
stub_init_label(struct label *label)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
}
static int
stub_init_label_waitcheck(struct label *label, int flag)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static void
stub_destroy_label(struct label *label)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
}
static void
stub_copy_label(struct label *src, struct label *dest)
{
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
stub_externalize_label(struct label *label, char *element_name,
struct sbuf *sb, int *claimed)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_internalize_label(struct label *label, char *element_name,
char *element_data, int *claimed)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
/*
* Labeling event operations: file system objects, and things that look
* a lot like file system objects.
*/
static void
stub_associate_vnode_devfs(struct mount *mp, struct label *fslabel,
struct devfs_dirent *de, struct label *delabel, struct vnode *vp,
struct label *vlabel)
{
}
static int
stub_associate_vnode_extattr(struct mount *mp, struct label *fslabel,
struct vnode *vp, struct label *vlabel)
{
return (0);
}
static void
stub_associate_vnode_singlelabel(struct mount *mp,
struct label *fslabel, struct vnode *vp, struct label *vlabel)
{
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static void
When devfs cloning takes place, provide access to the credential of the process that caused the clone event to take place for the device driver creating the device. This allows cloned device drivers to adapt the device node based on security aspects of the process, such as the uid, gid, and MAC label. - Add a cred reference to struct cdev, so that when a device node is instantiated as a vnode, the cloning credential can be exposed to MAC. - Add make_dev_cred(), a version of make_dev() that additionally accepts the credential to stick in the struct cdev. Implement it and make_dev() in terms of a back-end make_dev_credv(). - Add a new event handler, dev_clone_cred, which can be registered to receive the credential instead of dev_clone, if desired. - Modify the MAC entry point mac_create_devfs_device() to accept an optional credential pointer (may be NULL), so that MAC policies can inspect and act on the label or other elements of the credential when initializing the skeleton device protections. - Modify tty_pty.c to register clone_dev_cred and invoke make_dev_cred(), so that the pty clone credential is exposed to the MAC Framework. While currently primarily focussed on MAC policies, this change is also a prerequisite for changes to allow ptys to be instantiated with the UID of the process looking up the pty. This requires further changes to the pty driver -- in particular, to immediately recycle pty nodes on last close so that the credential-related state can be recreated on next lookup. Submitted by: Andrew Reisse <andrew.reisse@sparta.com> Obtained from: TrustedBSD Project Sponsored by: SPAWAR, SPARTA MFC after: 1 week MFC note: Merge to 6.x, but not 5.x for ABI reasons
2005-07-14 10:22:09 +00:00
stub_create_devfs_device(struct ucred *cred, struct mount *mp,
struct cdev *dev, struct devfs_dirent *devfs_dirent, struct label *label)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
}
static void
stub_create_devfs_directory(struct mount *mp, char *dirname,
int dirnamelen, struct devfs_dirent *devfs_dirent, struct label *label)
{
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static void
stub_create_devfs_symlink(struct ucred *cred, struct mount *mp,
struct devfs_dirent *dd, struct label *ddlabel, struct devfs_dirent *de,
struct label *delabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
}
static int
stub_create_vnode_extattr(struct ucred *cred, struct mount *mp,
struct label *fslabel, struct vnode *dvp, struct label *dlabel,
struct vnode *vp, struct label *vlabel, struct componentname *cnp)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
}
static void
stub_create_mount(struct ucred *cred, struct mount *mp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *mntlabel, struct label *fslabel)
{
}
static void
stub_relabel_vnode(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *vnodelabel, struct label *label)
{
}
static int
stub_setlabel_vnode_extattr(struct ucred *cred, struct vnode *vp,
struct label *vlabel, struct label *intlabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static void
stub_update_devfsdirent(struct mount *mp,
struct devfs_dirent *devfs_dirent, struct label *direntlabel,
struct vnode *vp, struct label *vnodelabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
}
/*
* Labeling event operations: IPC object.
*/
static void
stub_create_mbuf_from_socket(struct socket *so, struct label *socketlabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct mbuf *m, struct label *mbuflabel)
{
}
static void
stub_create_socket(struct ucred *cred, struct socket *socket,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *socketlabel)
{
}
static void
stub_create_pipe(struct ucred *cred, struct pipepair *pp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *pipelabel)
{
}
static void
stub_create_posix_sem(struct ucred *cred, struct ksem *ksemptr,
struct label *ks_label)
{
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static void
stub_create_socket_from_socket(struct socket *oldsocket,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *oldsocketlabel, struct socket *newsocket,
struct label *newsocketlabel)
{
}
static void
stub_relabel_socket(struct ucred *cred, struct socket *socket,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *socketlabel, struct label *newlabel)
{
}
static void
stub_relabel_pipe(struct ucred *cred, struct pipepair *pp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *pipelabel, struct label *newlabel)
{
}
static void
stub_set_socket_peer_from_mbuf(struct mbuf *mbuf, struct label *mbuflabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct socket *socket, struct label *socketpeerlabel)
{
}
static void
stub_set_socket_peer_from_socket(struct socket *oldsocket,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *oldsocketlabel, struct socket *newsocket,
struct label *newsocketpeerlabel)
{
}
/*
* Labeling event operations: network objects.
*/
static void
stub_create_bpfdesc(struct ucred *cred, struct bpf_d *bpf_d,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *bpflabel)
{
}
static void
stub_create_datagram_from_ipq(struct ipq *ipq, struct label *ipqlabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct mbuf *datagram, struct label *datagramlabel)
{
}
static void
stub_create_fragment(struct mbuf *datagram, struct label *datagramlabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct mbuf *fragment, struct label *fragmentlabel)
{
}
static void
stub_create_ifnet(struct ifnet *ifnet, struct label *ifnetlabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
}
static void
stub_create_inpcb_from_socket(struct socket *so, struct label *solabel,
struct inpcb *inp, struct label *inplabel)
{
}
static void
stub_create_sysv_msgmsg(struct ucred *cred, struct msqid_kernel *msqkptr,
struct label *msqlabel, struct msg *msgptr, struct label *msglabel)
{
}
static void
stub_create_sysv_msgqueue(struct ucred *cred, struct msqid_kernel *msqkptr,
struct label *msqlabel)
{
}
static void
stub_create_sysv_sem(struct ucred *cred, struct semid_kernel *semakptr,
struct label *semalabel)
{
}
static void
stub_create_sysv_shm(struct ucred *cred, struct shmid_kernel *shmsegptr,
struct label *shmalabel)
{
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static void
stub_create_ipq(struct mbuf *fragment, struct label *fragmentlabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct ipq *ipq, struct label *ipqlabel)
{
}
static void
stub_create_mbuf_from_inpcb(struct inpcb *inp, struct label *inplabel,
struct mbuf *m, struct label *mlabel)
{
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static void
stub_create_mbuf_linklayer(struct ifnet *ifnet, struct label *ifnetlabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct mbuf *mbuf, struct label *mbuflabel)
{
}
static void
stub_create_mbuf_from_bpfdesc(struct bpf_d *bpf_d, struct label *bpflabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct mbuf *mbuf, struct label *mbuflabel)
{
}
static void
stub_create_mbuf_from_ifnet(struct ifnet *ifnet, struct label *ifnetlabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct mbuf *m, struct label *mbuflabel)
{
}
static void
stub_create_mbuf_multicast_encap(struct mbuf *oldmbuf,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *oldmbuflabel, struct ifnet *ifnet, struct label *ifnetlabel,
struct mbuf *newmbuf, struct label *newmbuflabel)
{
}
static void
stub_create_mbuf_netlayer(struct mbuf *oldmbuf,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *oldmbuflabel, struct mbuf *newmbuf, struct label *newmbuflabel)
{
}
static int
stub_fragment_match(struct mbuf *fragment, struct label *fragmentlabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct ipq *ipq, struct label *ipqlabel)
{
return (1);
}
static void
stub_reflect_mbuf_icmp(struct mbuf *m, struct label *mlabel)
{
}
static void
stub_reflect_mbuf_tcp(struct mbuf *m, struct label *mlabel)
{
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static void
stub_relabel_ifnet(struct ucred *cred, struct ifnet *ifnet,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *ifnetlabel, struct label *newlabel)
{
}
static void
stub_update_ipq(struct mbuf *fragment, struct label *fragmentlabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct ipq *ipq, struct label *ipqlabel)
{
}
static void
stub_inpcb_sosetlabel(struct socket *so, struct label *solabel,
struct inpcb *inp, struct label *inplabel)
{
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
/*
* Labeling event operations: processes.
*/
static void
stub_execve_transition(struct ucred *old, struct ucred *new,
struct vnode *vp, struct label *vnodelabel,
struct label *interpvnodelabel, struct image_params *imgp,
struct label *execlabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
}
static int
stub_execve_will_transition(struct ucred *old, struct vnode *vp,
struct label *vnodelabel, struct label *interpvnodelabel,
struct image_params *imgp, struct label *execlabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static void
stub_create_proc0(struct ucred *cred)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
}
static void
stub_create_proc1(struct ucred *cred)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
}
static void
stub_relabel_cred(struct ucred *cred, struct label *newlabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
}
static void
stub_thread_userret(struct thread *td)
{
}
/*
* Label cleanup/flush operations
*/
static void
stub_cleanup_sysv_msgmsg(struct label *msglabel)
{
}
static void
stub_cleanup_sysv_msgqueue(struct label *msqlabel)
{
}
static void
stub_cleanup_sysv_sem(struct label *semalabel)
{
}
static void
stub_cleanup_sysv_shm(struct label *shmlabel)
{
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
/*
* Access control checks.
*/
static int
stub_check_bpfdesc_receive(struct bpf_d *bpf_d, struct label *bpflabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct ifnet *ifnet, struct label *ifnet_label)
{
return (0);
}
static int
stub_check_cred_relabel(struct ucred *cred, struct label *newlabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_cred_visible(struct ucred *u1, struct ucred *u2)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_ifnet_relabel(struct ucred *cred, struct ifnet *ifnet,
struct label *ifnetlabel, struct label *newlabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_ifnet_transmit(struct ifnet *ifnet, struct label *ifnetlabel,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct mbuf *m, struct label *mbuflabel)
{
return (0);
}
static int
stub_check_inpcb_deliver(struct inpcb *inp, struct label *inplabel,
struct mbuf *m, struct label *mlabel)
{
return (0);
}
static int
stub_check_sysv_msgmsq(struct ucred *cred, struct msg *msgptr,
struct label *msglabel, struct msqid_kernel *msqkptr,
struct label *msqklabel)
{
return (0);
}
static int
stub_check_sysv_msgrcv(struct ucred *cred, struct msg *msgptr,
struct label *msglabel)
{
return (0);
}
static int
stub_check_sysv_msgrmid(struct ucred *cred, struct msg *msgptr,
struct label *msglabel)
{
return (0);
}
static int
stub_check_sysv_msqget(struct ucred *cred, struct msqid_kernel *msqkptr,
struct label *msqklabel)
{
return (0);
}
static int
stub_check_sysv_msqsnd(struct ucred *cred, struct msqid_kernel *msqkptr,
struct label *msqklabel)
{
return (0);
}
static int
stub_check_sysv_msqrcv(struct ucred *cred, struct msqid_kernel *msqkptr,
struct label *msqklabel)
{
return (0);
}
static int
stub_check_sysv_msqctl(struct ucred *cred, struct msqid_kernel *msqkptr,
struct label *msqklabel, int cmd)
{
return (0);
}
static int
stub_check_sysv_semctl(struct ucred *cred, struct semid_kernel *semakptr,
struct label *semaklabel, int cmd)
{
return (0);
}
static int
stub_check_sysv_semget(struct ucred *cred, struct semid_kernel *semakptr,
struct label *semaklabel)
{
return (0);
}
static int
stub_check_sysv_semop(struct ucred *cred, struct semid_kernel *semakptr,
struct label *semaklabel, size_t accesstype)
{
return (0);
}
static int
stub_check_sysv_shmat(struct ucred *cred, struct shmid_kernel *shmsegptr,
struct label *shmseglabel, int shmflg)
{
return (0);
}
static int
stub_check_sysv_shmctl(struct ucred *cred, struct shmid_kernel *shmsegptr,
struct label *shmseglabel, int cmd)
{
return (0);
}
static int
stub_check_sysv_shmdt(struct ucred *cred, struct shmid_kernel *shmsegptr,
struct label *shmseglabel)
{
return (0);
}
static int
stub_check_sysv_shmget(struct ucred *cred, struct shmid_kernel *shmsegptr,
struct label *shmseglabel, int shmflg)
{
return (0);
}
static int
stub_check_kenv_dump(struct ucred *cred)
{
return (0);
}
static int
stub_check_kenv_get(struct ucred *cred, char *name)
{
return (0);
}
static int
stub_check_kenv_set(struct ucred *cred, char *name, char *value)
{
return (0);
}
static int
stub_check_kenv_unset(struct ucred *cred, char *name)
{
return (0);
}
static int
stub_check_kld_load(struct ucred *cred, struct vnode *vp,
struct label *vlabel)
{
return (0);
}
static int
stub_check_kld_stat(struct ucred *cred)
{
return (0);
}
static int
stub_check_kld_unload(struct ucred *cred)
{
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
stub_check_mount_stat(struct ucred *cred, struct mount *mp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *mntlabel)
{
return (0);
}
static int
stub_check_pipe_ioctl(struct ucred *cred, struct pipepair *pp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *pipelabel, unsigned long cmd, void /* caddr_t */ *data)
{
return (0);
}
static int
stub_check_pipe_poll(struct ucred *cred, struct pipepair *pp,
struct label *pipelabel)
{
return (0);
}
static int
stub_check_pipe_read(struct ucred *cred, struct pipepair *pp,
struct label *pipelabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_pipe_relabel(struct ucred *cred, struct pipepair *pp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *pipelabel, struct label *newlabel)
{
return (0);
}
static int
stub_check_pipe_stat(struct ucred *cred, struct pipepair *pp,
struct label *pipelabel)
{
return (0);
}
static int
stub_check_pipe_write(struct ucred *cred, struct pipepair *pp,
struct label *pipelabel)
{
return (0);
}
static int
stub_check_posix_sem_destroy(struct ucred *cred, struct ksem *ksemptr,
struct label *ks_label)
{
return (0);
}
static int
stub_check_posix_sem_getvalue(struct ucred *cred, struct ksem *ksemptr,
struct label *ks_label)
{
return (0);
}
static int
stub_check_posix_sem_open(struct ucred *cred, struct ksem *ksemptr,
struct label *ks_label)
{
return (0);
}
static int
stub_check_posix_sem_post(struct ucred *cred, struct ksem *ksemptr,
struct label *ks_label)
{
return (0);
}
static int
stub_check_posix_sem_unlink(struct ucred *cred, struct ksem *ksemptr,
struct label *ks_label)
{
return (0);
}
static int
stub_check_posix_sem_wait(struct ucred *cred, struct ksem *ksemptr,
struct label *ks_label)
{
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
stub_check_proc_debug(struct ucred *cred, struct proc *proc)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_proc_sched(struct ucred *cred, struct proc *proc)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_proc_signal(struct ucred *cred, struct proc *proc, int signum)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_proc_wait(struct ucred *cred, struct proc *proc)
{
return (0);
}
static int
stub_check_proc_setuid(struct ucred *cred, uid_t uid)
{
return (0);
}
static int
stub_check_proc_seteuid(struct ucred *cred, uid_t euid)
{
return (0);
}
static int
stub_check_proc_setgid(struct ucred *cred, gid_t gid)
{
return (0);
}
static int
stub_check_proc_setegid(struct ucred *cred, gid_t egid)
{
return (0);
}
static int
stub_check_proc_setgroups(struct ucred *cred, int ngroups,
gid_t *gidset)
{
return (0);
}
static int
stub_check_proc_setreuid(struct ucred *cred, uid_t ruid, uid_t euid)
{
return (0);
}
static int
stub_check_proc_setregid(struct ucred *cred, gid_t rgid, gid_t egid)
{
return (0);
}
static int
stub_check_proc_setresuid(struct ucred *cred, uid_t ruid, uid_t euid,
uid_t suid)
{
return (0);
}
static int
stub_check_proc_setresgid(struct ucred *cred, gid_t rgid, gid_t egid,
gid_t sgid)
{
return (0);
}
static int
stub_check_socket_accept(struct ucred *cred, struct socket *socket,
struct label *socketlabel)
{
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
stub_check_socket_bind(struct ucred *cred, struct socket *socket,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *socketlabel, struct sockaddr *sockaddr)
{
return (0);
}
static int
stub_check_socket_connect(struct ucred *cred, struct socket *socket,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *socketlabel, struct sockaddr *sockaddr)
{
return (0);
}
static int
stub_check_socket_create(struct ucred *cred, int domain, int type,
int protocol)
{
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
stub_check_socket_deliver(struct socket *so, struct label *socketlabel,
struct mbuf *m, struct label *mbuflabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_socket_listen(struct ucred *cred, struct socket *so,
struct label *socketlabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_socket_poll(struct ucred *cred, struct socket *so,
struct label *socketlabel)
{
return (0);
}
static int
stub_check_socket_receive(struct ucred *cred, struct socket *so,
struct label *socketlabel)
{
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
stub_check_socket_relabel(struct ucred *cred, struct socket *socket,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *socketlabel, struct label *newlabel)
{
return (0);
}
static int
stub_check_socket_send(struct ucred *cred, struct socket *so,
struct label *socketlabel)
{
return (0);
}
static int
stub_check_socket_stat(struct ucred *cred, struct socket *so,
struct label *socketlabel)
{
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
stub_check_socket_visible(struct ucred *cred, struct socket *socket,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *socketlabel)
{
return (0);
}
static int
stub_check_sysarch_ioperm(struct ucred *cred)
{
return (0);
}
static int
stub_check_system_acct(struct ucred *cred, struct vnode *vp,
struct label *vlabel)
{
return (0);
}
static int
stub_check_system_reboot(struct ucred *cred, int how)
{
return (0);
}
static int
stub_check_system_settime(struct ucred *cred)
{
return (0);
}
static int
stub_check_system_swapon(struct ucred *cred, struct vnode *vp,
struct label *label)
{
return (0);
}
static int
stub_check_system_swapoff(struct ucred *cred, struct vnode *vp,
struct label *label)
{
return (0);
}
static int
stub_check_system_sysctl(struct ucred *cred, struct sysctl_oid *oidp,
void *arg1, int arg2, struct sysctl_req *req)
{
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
stub_check_vnode_access(struct ucred *cred, struct vnode *vp,
struct label *label, int acc_mode)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_vnode_chdir(struct ucred *cred, struct vnode *dvp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *dlabel)
{
return (0);
}
static int
stub_check_vnode_chroot(struct ucred *cred, struct vnode *dvp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *dlabel)
{
return (0);
}
static int
stub_check_vnode_create(struct ucred *cred, struct vnode *dvp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *dlabel, struct componentname *cnp, struct vattr *vap)
{
return (0);
}
static int
stub_check_vnode_delete(struct ucred *cred, struct vnode *dvp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *dlabel, struct vnode *vp, struct label *label,
struct componentname *cnp)
{
return (0);
}
static int
stub_check_vnode_deleteacl(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *label, acl_type_t type)
{
return (0);
}
static int
stub_check_vnode_deleteextattr(struct ucred *cred, struct vnode *vp,
struct label *label, int attrnamespace, const char *name)
{
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
stub_check_vnode_exec(struct ucred *cred, struct vnode *vp,
struct label *label, struct image_params *imgp,
struct label *execlabel)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_vnode_getacl(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *label, acl_type_t type)
{
return (0);
}
static int
stub_check_vnode_getextattr(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *label, int attrnamespace, const char *name, struct uio *uio)
{
return (0);
}
static int
stub_check_vnode_link(struct ucred *cred, struct vnode *dvp,
struct label *dlabel, struct vnode *vp, struct label *label,
struct componentname *cnp)
{
return (0);
}
static int
stub_check_vnode_listextattr(struct ucred *cred, struct vnode *vp,
struct label *label, int attrnamespace)
{
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
stub_check_vnode_lookup(struct ucred *cred, struct vnode *dvp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *dlabel, struct componentname *cnp)
{
return (0);
}
static int
stub_check_vnode_mmap(struct ucred *cred, struct vnode *vp,
struct label *label, int prot, int flags)
{
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
stub_check_vnode_open(struct ucred *cred, struct vnode *vp,
struct label *filelabel, int acc_mode)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_vnode_poll(struct ucred *active_cred, struct ucred *file_cred,
struct vnode *vp, struct label *label)
{
return (0);
}
static int
stub_check_vnode_read(struct ucred *active_cred, struct ucred *file_cred,
struct vnode *vp, struct label *label)
{
return (0);
}
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
static int
stub_check_vnode_readdir(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *dlabel)
{
return (0);
}
static int
stub_check_vnode_readlink(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *vnodelabel)
{
return (0);
}
static int
stub_check_vnode_relabel(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *vnodelabel, struct label *newlabel)
{
return (0);
}
static int
stub_check_vnode_rename_from(struct ucred *cred, struct vnode *dvp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *dlabel, struct vnode *vp, struct label *label,
struct componentname *cnp)
{
return (0);
}
static int
stub_check_vnode_rename_to(struct ucred *cred, struct vnode *dvp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *dlabel, struct vnode *vp, struct label *label, int samedir,
struct componentname *cnp)
{
return (0);
}
static int
stub_check_vnode_revoke(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *label)
{
return (0);
}
static int
stub_check_vnode_setacl(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *label, acl_type_t type, struct acl *acl)
{
return (0);
}
static int
stub_check_vnode_setextattr(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *label, int attrnamespace, const char *name, struct uio *uio)
{
return (0);
}
static int
stub_check_vnode_setflags(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *label, u_long flags)
{
return (0);
}
static int
stub_check_vnode_setmode(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *label, mode_t mode)
{
return (0);
}
static int
stub_check_vnode_setowner(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *label, uid_t uid, gid_t gid)
{
return (0);
}
static int
stub_check_vnode_setutimes(struct ucred *cred, struct vnode *vp,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
struct label *label, struct timespec atime, struct timespec mtime)
{
return (0);
}
static int
stub_check_vnode_stat(struct ucred *active_cred, struct ucred *file_cred,
struct vnode *vp, struct label *label)
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
{
return (0);
}
static int
stub_check_vnode_write(struct ucred *active_cred,
struct ucred *file_cred, struct vnode *vp, struct label *label)
{
return (0);
}
static struct mac_policy_ops mac_stub_ops =
{
.mpo_destroy = stub_destroy,
.mpo_init = stub_init,
.mpo_syscall = stub_syscall,
.mpo_init_bpfdesc_label = stub_init_label,
.mpo_init_cred_label = stub_init_label,
.mpo_init_devfsdirent_label = stub_init_label,
.mpo_init_ifnet_label = stub_init_label,
.mpo_init_inpcb_label = stub_init_label_waitcheck,
.mpo_init_sysv_msgmsg_label = stub_init_label,
.mpo_init_sysv_msgqueue_label = stub_init_label,
.mpo_init_sysv_sem_label = stub_init_label,
.mpo_init_sysv_shm_label = stub_init_label,
.mpo_init_ipq_label = stub_init_label_waitcheck,
.mpo_init_mbuf_label = stub_init_label_waitcheck,
.mpo_init_mount_label = stub_init_label,
.mpo_init_mount_fs_label = stub_init_label,
.mpo_init_pipe_label = stub_init_label,
.mpo_init_posix_sem_label = stub_init_label,
.mpo_init_socket_label = stub_init_label_waitcheck,
.mpo_init_socket_peer_label = stub_init_label_waitcheck,
.mpo_init_vnode_label = stub_init_label,
.mpo_destroy_bpfdesc_label = stub_destroy_label,
.mpo_destroy_cred_label = stub_destroy_label,
.mpo_destroy_devfsdirent_label = stub_destroy_label,
.mpo_destroy_ifnet_label = stub_destroy_label,
.mpo_destroy_inpcb_label = stub_destroy_label,
.mpo_destroy_sysv_msgmsg_label = stub_destroy_label,
.mpo_destroy_sysv_msgqueue_label = stub_destroy_label,
.mpo_destroy_sysv_sem_label = stub_destroy_label,
.mpo_destroy_sysv_shm_label = stub_destroy_label,
.mpo_destroy_ipq_label = stub_destroy_label,
.mpo_destroy_mbuf_label = stub_destroy_label,
.mpo_destroy_mount_label = stub_destroy_label,
.mpo_destroy_mount_fs_label = stub_destroy_label,
.mpo_destroy_pipe_label = stub_destroy_label,
.mpo_destroy_posix_sem_label = stub_destroy_label,
.mpo_destroy_socket_label = stub_destroy_label,
.mpo_destroy_socket_peer_label = stub_destroy_label,
.mpo_destroy_vnode_label = stub_destroy_label,
.mpo_copy_cred_label = stub_copy_label,
.mpo_copy_ifnet_label = stub_copy_label,
.mpo_copy_mbuf_label = stub_copy_label,
.mpo_copy_pipe_label = stub_copy_label,
.mpo_copy_socket_label = stub_copy_label,
.mpo_copy_vnode_label = stub_copy_label,
.mpo_externalize_cred_label = stub_externalize_label,
.mpo_externalize_ifnet_label = stub_externalize_label,
.mpo_externalize_pipe_label = stub_externalize_label,
.mpo_externalize_socket_label = stub_externalize_label,
.mpo_externalize_socket_peer_label = stub_externalize_label,
.mpo_externalize_vnode_label = stub_externalize_label,
.mpo_internalize_cred_label = stub_internalize_label,
.mpo_internalize_ifnet_label = stub_internalize_label,
.mpo_internalize_pipe_label = stub_internalize_label,
.mpo_internalize_socket_label = stub_internalize_label,
.mpo_internalize_vnode_label = stub_internalize_label,
.mpo_associate_vnode_devfs = stub_associate_vnode_devfs,
.mpo_associate_vnode_extattr = stub_associate_vnode_extattr,
.mpo_associate_vnode_singlelabel = stub_associate_vnode_singlelabel,
.mpo_create_devfs_device = stub_create_devfs_device,
.mpo_create_devfs_directory = stub_create_devfs_directory,
.mpo_create_devfs_symlink = stub_create_devfs_symlink,
.mpo_create_sysv_msgmsg = stub_create_sysv_msgmsg,
.mpo_create_sysv_msgqueue = stub_create_sysv_msgqueue,
.mpo_create_sysv_sem = stub_create_sysv_sem,
.mpo_create_sysv_shm = stub_create_sysv_shm,
.mpo_create_vnode_extattr = stub_create_vnode_extattr,
.mpo_create_mount = stub_create_mount,
.mpo_relabel_vnode = stub_relabel_vnode,
.mpo_setlabel_vnode_extattr = stub_setlabel_vnode_extattr,
.mpo_update_devfsdirent = stub_update_devfsdirent,
.mpo_create_mbuf_from_socket = stub_create_mbuf_from_socket,
.mpo_create_pipe = stub_create_pipe,
.mpo_create_posix_sem = stub_create_posix_sem,
.mpo_create_socket = stub_create_socket,
.mpo_create_socket_from_socket = stub_create_socket_from_socket,
.mpo_relabel_pipe = stub_relabel_pipe,
.mpo_relabel_socket = stub_relabel_socket,
.mpo_set_socket_peer_from_mbuf = stub_set_socket_peer_from_mbuf,
.mpo_set_socket_peer_from_socket = stub_set_socket_peer_from_socket,
.mpo_create_bpfdesc = stub_create_bpfdesc,
.mpo_create_ifnet = stub_create_ifnet,
.mpo_create_inpcb_from_socket = stub_create_inpcb_from_socket,
.mpo_create_ipq = stub_create_ipq,
.mpo_create_datagram_from_ipq = stub_create_datagram_from_ipq,
.mpo_create_fragment = stub_create_fragment,
.mpo_create_mbuf_from_inpcb = stub_create_mbuf_from_inpcb,
.mpo_create_mbuf_linklayer = stub_create_mbuf_linklayer,
.mpo_create_mbuf_from_bpfdesc = stub_create_mbuf_from_bpfdesc,
.mpo_create_mbuf_from_ifnet = stub_create_mbuf_from_ifnet,
.mpo_create_mbuf_multicast_encap = stub_create_mbuf_multicast_encap,
.mpo_create_mbuf_netlayer = stub_create_mbuf_netlayer,
.mpo_fragment_match = stub_fragment_match,
.mpo_reflect_mbuf_icmp = stub_reflect_mbuf_icmp,
.mpo_reflect_mbuf_tcp = stub_reflect_mbuf_tcp,
.mpo_relabel_ifnet = stub_relabel_ifnet,
.mpo_update_ipq = stub_update_ipq,
.mpo_inpcb_sosetlabel = stub_inpcb_sosetlabel,
.mpo_execve_transition = stub_execve_transition,
.mpo_execve_will_transition = stub_execve_will_transition,
.mpo_create_proc0 = stub_create_proc0,
.mpo_create_proc1 = stub_create_proc1,
.mpo_relabel_cred = stub_relabel_cred,
.mpo_thread_userret = stub_thread_userret,
.mpo_cleanup_sysv_msgmsg = stub_cleanup_sysv_msgmsg,
.mpo_cleanup_sysv_msgqueue = stub_cleanup_sysv_msgqueue,
.mpo_cleanup_sysv_sem = stub_cleanup_sysv_sem,
.mpo_cleanup_sysv_shm = stub_cleanup_sysv_shm,
.mpo_check_bpfdesc_receive = stub_check_bpfdesc_receive,
.mpo_check_cred_relabel = stub_check_cred_relabel,
.mpo_check_cred_visible = stub_check_cred_visible,
.mpo_check_ifnet_relabel = stub_check_ifnet_relabel,
.mpo_check_ifnet_transmit = stub_check_ifnet_transmit,
.mpo_check_inpcb_deliver = stub_check_inpcb_deliver,
.mpo_check_sysv_msgmsq = stub_check_sysv_msgmsq,
.mpo_check_sysv_msgrcv = stub_check_sysv_msgrcv,
.mpo_check_sysv_msgrmid = stub_check_sysv_msgrmid,
.mpo_check_sysv_msqget = stub_check_sysv_msqget,
.mpo_check_sysv_msqsnd = stub_check_sysv_msqsnd,
.mpo_check_sysv_msqrcv = stub_check_sysv_msqrcv,
.mpo_check_sysv_msqctl = stub_check_sysv_msqctl,
.mpo_check_sysv_semctl = stub_check_sysv_semctl,
.mpo_check_sysv_semget = stub_check_sysv_semget,
.mpo_check_sysv_semop = stub_check_sysv_semop,
.mpo_check_sysv_shmat = stub_check_sysv_shmat,
.mpo_check_sysv_shmctl = stub_check_sysv_shmctl,
.mpo_check_sysv_shmdt = stub_check_sysv_shmdt,
.mpo_check_sysv_shmget = stub_check_sysv_shmget,
.mpo_check_kenv_dump = stub_check_kenv_dump,
.mpo_check_kenv_get = stub_check_kenv_get,
.mpo_check_kenv_set = stub_check_kenv_set,
.mpo_check_kenv_unset = stub_check_kenv_unset,
.mpo_check_kld_load = stub_check_kld_load,
.mpo_check_kld_stat = stub_check_kld_stat,
.mpo_check_kld_unload = stub_check_kld_unload,
.mpo_check_mount_stat = stub_check_mount_stat,
.mpo_check_pipe_ioctl = stub_check_pipe_ioctl,
.mpo_check_pipe_poll = stub_check_pipe_poll,
.mpo_check_pipe_read = stub_check_pipe_read,
.mpo_check_pipe_relabel = stub_check_pipe_relabel,
.mpo_check_pipe_stat = stub_check_pipe_stat,
.mpo_check_pipe_write = stub_check_pipe_write,
.mpo_check_posix_sem_destroy = stub_check_posix_sem_destroy,
.mpo_check_posix_sem_getvalue = stub_check_posix_sem_getvalue,
.mpo_check_posix_sem_open = stub_check_posix_sem_open,
.mpo_check_posix_sem_post = stub_check_posix_sem_post,
.mpo_check_posix_sem_unlink = stub_check_posix_sem_unlink,
.mpo_check_posix_sem_wait = stub_check_posix_sem_wait,
.mpo_check_proc_debug = stub_check_proc_debug,
.mpo_check_proc_sched = stub_check_proc_sched,
.mpo_check_proc_setuid = stub_check_proc_setuid,
.mpo_check_proc_seteuid = stub_check_proc_seteuid,
.mpo_check_proc_setgid = stub_check_proc_setgid,
.mpo_check_proc_setegid = stub_check_proc_setegid,
.mpo_check_proc_setgroups = stub_check_proc_setgroups,
.mpo_check_proc_setreuid = stub_check_proc_setreuid,
.mpo_check_proc_setregid = stub_check_proc_setregid,
.mpo_check_proc_setresuid = stub_check_proc_setresuid,
.mpo_check_proc_setresgid = stub_check_proc_setresgid,
.mpo_check_proc_signal = stub_check_proc_signal,
.mpo_check_proc_wait = stub_check_proc_wait,
.mpo_check_socket_accept = stub_check_socket_accept,
.mpo_check_socket_bind = stub_check_socket_bind,
.mpo_check_socket_connect = stub_check_socket_connect,
.mpo_check_socket_create = stub_check_socket_create,
.mpo_check_socket_deliver = stub_check_socket_deliver,
.mpo_check_socket_listen = stub_check_socket_listen,
.mpo_check_socket_poll = stub_check_socket_poll,
.mpo_check_socket_receive = stub_check_socket_receive,
.mpo_check_socket_relabel = stub_check_socket_relabel,
.mpo_check_socket_send = stub_check_socket_send,
.mpo_check_socket_stat = stub_check_socket_stat,
.mpo_check_socket_visible = stub_check_socket_visible,
.mpo_check_sysarch_ioperm = stub_check_sysarch_ioperm,
.mpo_check_system_acct = stub_check_system_acct,
.mpo_check_system_reboot = stub_check_system_reboot,
.mpo_check_system_settime = stub_check_system_settime,
.mpo_check_system_swapon = stub_check_system_swapon,
.mpo_check_system_swapoff = stub_check_system_swapoff,
.mpo_check_system_sysctl = stub_check_system_sysctl,
.mpo_check_vnode_access = stub_check_vnode_access,
.mpo_check_vnode_chdir = stub_check_vnode_chdir,
.mpo_check_vnode_chroot = stub_check_vnode_chroot,
.mpo_check_vnode_create = stub_check_vnode_create,
.mpo_check_vnode_delete = stub_check_vnode_delete,
.mpo_check_vnode_deleteacl = stub_check_vnode_deleteacl,
.mpo_check_vnode_deleteextattr = stub_check_vnode_deleteextattr,
.mpo_check_vnode_exec = stub_check_vnode_exec,
.mpo_check_vnode_getacl = stub_check_vnode_getacl,
.mpo_check_vnode_getextattr = stub_check_vnode_getextattr,
.mpo_check_vnode_link = stub_check_vnode_link,
.mpo_check_vnode_listextattr = stub_check_vnode_listextattr,
.mpo_check_vnode_lookup = stub_check_vnode_lookup,
.mpo_check_vnode_mmap = stub_check_vnode_mmap,
.mpo_check_vnode_open = stub_check_vnode_open,
.mpo_check_vnode_poll = stub_check_vnode_poll,
.mpo_check_vnode_read = stub_check_vnode_read,
.mpo_check_vnode_readdir = stub_check_vnode_readdir,
.mpo_check_vnode_readlink = stub_check_vnode_readlink,
.mpo_check_vnode_relabel = stub_check_vnode_relabel,
.mpo_check_vnode_rename_from = stub_check_vnode_rename_from,
.mpo_check_vnode_rename_to = stub_check_vnode_rename_to,
.mpo_check_vnode_revoke = stub_check_vnode_revoke,
.mpo_check_vnode_setacl = stub_check_vnode_setacl,
.mpo_check_vnode_setextattr = stub_check_vnode_setextattr,
.mpo_check_vnode_setflags = stub_check_vnode_setflags,
.mpo_check_vnode_setmode = stub_check_vnode_setmode,
.mpo_check_vnode_setowner = stub_check_vnode_setowner,
.mpo_check_vnode_setutimes = stub_check_vnode_setutimes,
.mpo_check_vnode_stat = stub_check_vnode_stat,
.mpo_check_vnode_write = stub_check_vnode_write,
Introduce support for Mandatory Access Control and extensible kernel access control. Provide implementations of some sample operating system security policy extensions. These are not yet hooked up to the build as other infrastructure is still being committed. Most of these work fairly well and are in daily use in our development and (limited) production environments. Some are not yet in their final form, and a number of the labeled policies waste a lot of kernel memory and will be fixed over the next month or so to be more conservative. They do give good examples of the flexibility of the MAC framework for implementing a variety of security policies. mac_biba: Implementation of fixed-label Biba integrity policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned integrity levels, and information flow is controlled based on a read-up, write-down policy. Currently, purely hierarchal. mac_bsdextended: Implementation of a "file system firewall", which allows the administrator to specify a series of rules limiting access by users and groups to objects owned by other users and groups. This policy is unlabeled, relying on existing system security labeling (file permissions/ownership, process credentials). mac_ifoff: Secure interface silencing. Special-purpose module to limit inappropriate out-going network traffic for silent monitoring scenarios. Prevents the various network stacks from generating any output despite an interface being live for reception. mac_mls: Implementation of fixed-label Multi-Level Security confidentiality policy, similar to those found in a number of commercial trusted operating systems. All subjects and objects are assigned confidentiality levels, and information flow is controlled based on a write-up, read-down policy. Currently, purely hiearchal, although non-hierarchal support is in the works. mac_none: Policy module implementing all MAC policy entry points with empty stubs. A good place to start if you want all the prototypes types in for you, and don't mind a bit of pruning. Can be loaded, but has no access control impact. Useful also for performance measurements. mac_seeotheruids: Policy module implementing a security service similar to security.bsd.seeotheruids, only a slightly more detailed policy involving exceptions for members of specific groups, etc. This policy is unlabeled, relying on existing system security labeling (process credentials). mac_test: Policy module implementing basic sanity tests for label handling. Attempts to ensure that labels are not freed multiple times, etc, etc. Obtained from: TrustedBSD Project Sponsored by: DARPA, NAI Labs
2002-07-31 18:07:45 +00:00
};
MAC_POLICY_SET(&mac_stub_ops, mac_stub, "TrustedBSD MAC/Stub",
MPC_LOADTIME_FLAG_UNLOADOK, NULL);