freebsd-skq/sys/dev/sound/pcm/vchan.h

71 lines
2.5 KiB
C
Raw Normal View History

/*-
Sound Mega-commit. Expect further cleanup until code freeze. For a slightly thorough explaination, please refer to [1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html . Summary of changes includes: 1 Volume Per-Channel (vpc). Provides private / standalone volume control unique per-stream pcm channel without touching master volume / pcm. Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for backwards compatibility, SOUND_MIXER_PCM through the opened dsp device instead of /dev/mixer. Special "bypass" mode is enabled through /dev/mixer which will automatically detect if the adjustment is made through /dev/mixer and forward its request to this private volume controller. Changes to this volume object will not interfere with other channels. Requirements: - SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which require specific application modifications (preferred). - No modifications required for using bypass mode, so applications like mplayer or xmms should work out of the box. Kernel hints: - hint.pcm.%d.vpc (0 = disable vpc). Kernel sysctls: - hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer bypass mode. - hw.snd.vpc_autoreset (default: 1). By default, closing/opening /dev/dsp will reset the volume back to 0 db gain/attenuation. Setting this to 0 will preserve its settings across device closing/opening. - hw.snd.vpc_reset (default: 0). Panic/reset button to reset all volume settings back to 0 db. - hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value. 2 High quality fixed-point Bandlimited SINC sampling rate converter, based on Julius O'Smith's Digital Audio Resampling - http://ccrma.stanford.edu/~jos/resample/. It includes a filter design script written in awk (the clumsiest joke I've ever written) - 100% 32bit fixed-point, 64bit accumulator. - Possibly among the fastest (if not fastest) of its kind. - Resampling quality is tunable, either runtime or during kernel compilation (FEEDER_RATE_PRESETS). - Quality can be further customized during kernel compilation by defining FEEDER_RATE_PRESETS in /etc/make.conf. Kernel sysctls: - hw.snd.feeder_rate_quality. 0 - Zero-order Hold (ZOH). Fastest, bad quality. 1 - Linear Interpolation (LINEAR). Slightly slower than ZOH, better quality but still does not eliminate aliasing. 2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC quality always start from 2 and above. Rough quality comparisons: - http://people.freebsd.org/~ariff/z_comparison/ 3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be directly fed into the hardware. 4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf. 5 Transparent/Adaptive Virtual Channel. Now you don't have to disable vchans in order to make digital format pass through. It also makes vchans more dynamic by choosing a better format/rate among all the concurrent streams, which means that dev.pcm.X.play.vchanformat/rate becomes sort of optional. 6 Exclusive Stream, with special open() mode O_EXCL. This will "mute" other concurrent vchan streams and only allow a single channel with O_EXCL set to keep producing sound. Other Changes: * most feeder_* stuffs are compilable in userland. Let's not speculate whether we should go all out for it (save that for FreeBSD 16.0-RELEASE). * kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org> * pull out channel mixing logic out of vchan.c and create its own feeder_mixer for world justice. * various refactoring here and there, for good or bad. * activation of few more OSSv4 ioctls() (see [1] above). * opt_snd.h for possible compile time configuration: (mostly for debugging purposes, don't try these at home) SND_DEBUG SND_DIAGNOSTIC SND_FEEDER_MULTIFORMAT SND_FEEDER_FULL_MULTIFORMAT SND_FEEDER_RATE_HP SND_PCM_64 SND_OLDSTEREO Manual page updates are on the way. Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
* Copyright (c) 2005-2009 Ariff Abdullah <ariff@FreeBSD.org>
* Copyright (c) 2001 Cameron Grant <cg@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
Sound Mega-commit. Expect further cleanup until code freeze. For a slightly thorough explaination, please refer to [1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html . Summary of changes includes: 1 Volume Per-Channel (vpc). Provides private / standalone volume control unique per-stream pcm channel without touching master volume / pcm. Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for backwards compatibility, SOUND_MIXER_PCM through the opened dsp device instead of /dev/mixer. Special "bypass" mode is enabled through /dev/mixer which will automatically detect if the adjustment is made through /dev/mixer and forward its request to this private volume controller. Changes to this volume object will not interfere with other channels. Requirements: - SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which require specific application modifications (preferred). - No modifications required for using bypass mode, so applications like mplayer or xmms should work out of the box. Kernel hints: - hint.pcm.%d.vpc (0 = disable vpc). Kernel sysctls: - hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer bypass mode. - hw.snd.vpc_autoreset (default: 1). By default, closing/opening /dev/dsp will reset the volume back to 0 db gain/attenuation. Setting this to 0 will preserve its settings across device closing/opening. - hw.snd.vpc_reset (default: 0). Panic/reset button to reset all volume settings back to 0 db. - hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value. 2 High quality fixed-point Bandlimited SINC sampling rate converter, based on Julius O'Smith's Digital Audio Resampling - http://ccrma.stanford.edu/~jos/resample/. It includes a filter design script written in awk (the clumsiest joke I've ever written) - 100% 32bit fixed-point, 64bit accumulator. - Possibly among the fastest (if not fastest) of its kind. - Resampling quality is tunable, either runtime or during kernel compilation (FEEDER_RATE_PRESETS). - Quality can be further customized during kernel compilation by defining FEEDER_RATE_PRESETS in /etc/make.conf. Kernel sysctls: - hw.snd.feeder_rate_quality. 0 - Zero-order Hold (ZOH). Fastest, bad quality. 1 - Linear Interpolation (LINEAR). Slightly slower than ZOH, better quality but still does not eliminate aliasing. 2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC quality always start from 2 and above. Rough quality comparisons: - http://people.freebsd.org/~ariff/z_comparison/ 3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be directly fed into the hardware. 4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf. 5 Transparent/Adaptive Virtual Channel. Now you don't have to disable vchans in order to make digital format pass through. It also makes vchans more dynamic by choosing a better format/rate among all the concurrent streams, which means that dev.pcm.X.play.vchanformat/rate becomes sort of optional. 6 Exclusive Stream, with special open() mode O_EXCL. This will "mute" other concurrent vchan streams and only allow a single channel with O_EXCL set to keep producing sound. Other Changes: * most feeder_* stuffs are compilable in userland. Let's not speculate whether we should go all out for it (save that for FreeBSD 16.0-RELEASE). * kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org> * pull out channel mixing logic out of vchan.c and create its own feeder_mixer for world justice. * various refactoring here and there, for good or bad. * activation of few more OSSv4 ioctls() (see [1] above). * opt_snd.h for possible compile time configuration: (mostly for debugging purposes, don't try these at home) SND_DEBUG SND_DIAGNOSTIC SND_FEEDER_MULTIFORMAT SND_FEEDER_FULL_MULTIFORMAT SND_FEEDER_RATE_HP SND_PCM_64 SND_OLDSTEREO Manual page updates are on the way. Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
#ifndef _SND_VCHAN_H_
#define _SND_VCHAN_H_
int vchan_create(struct pcm_channel *, int);
int vchan_destroy(struct pcm_channel *);
#ifdef SND_DEBUG
int vchan_passthrough(struct pcm_channel *, const char *);
#define vchan_sync(c) vchan_passthrough(c, __func__)
#else
int vchan_sync(struct pcm_channel *);
#endif
#define VCHAN_SYNC_REQUIRED(c) \
(((c)->flags & CHN_F_VIRTUAL) && (((c)->flags & CHN_F_DIRTY) || \
sndbuf_getfmt((c)->bufhard) != (c)->parentchannel->format || \
sndbuf_getspd((c)->bufhard) != (c)->parentchannel->speed))
void vchan_initsys(device_t);
Last major commit and updates for RELENG_7: - Rework the entire pcm_channel structure: * Remove rarely used link placeholder, instead, make each pcm_channel as head/link of each own/each other. Unlock - Lock sequence due to sleep malloc has been reduced. * Implement "busy" queue which will contain list of busy/active channels. This greatly reduce locking contention for example while servicing interrupt for hardware with many channels or when virtual channels reach its 256 peak channels. - So I heard you like v chan ... O RLY? Welcome to Virtual **Record** Channels (vrec, rec vchans, vchans for recording, Rec-Chan, you decide), the ultimate solutions for your nagging O_RDWR full-duplex wannabe (note: flash plugins) monopolizing single record channel causing EBUSY. Vrec works exactly like Vchans (or, should I rename it to "Vplay" :) , except that it operates on the opposite direction (recording). Up to 256 vrecs (like vchans) are possible. Notes: * Relocate dev.pcm.%d.{vchans,vchanformat,vchanrate} to each of its respective node/direction: dev.pcm.%d.play.* for "play" (cdev = dsp%d.vp%d) dev.pcm.%d.rec.* for "record" (cdev = dsp%d.vr%d) * Don't expect that it will magically give you ability to split "recording source" (eg: 1 channel for cdrom, 1 channel for mic, etc). Just admit that you only have a *single* recording source / channel. Please bug your hardware vendor instead :) - Bump maxautovchans from 4 to 16. For a full-fledged multimedia desktop/workstation with too many soundservers installed (esound, artsd, jackd, pulse/polypaudio, ding-dong pling plong mudkip fuh fuh, etc), 4 seems inadequate. There will be no memory penalty here, since virtual channels are allocate only by demand. - Nuke/Rework the entire statically created cdev entries. Everything is clonable through snd own clone manager which designed to withstand many kind of abusive devfs droids such as: * while : ; do /bin/test -e /dev/dsp ; done * jot 16777216 0 | while read x ; do ls /dev/dsp0.$x ; done * hundreds (could be thousands) concurrent threads/process opening "/dev/dsp" (previously, this might result EBUSY even with just 3 contesting threads/procs). o Reusable clone objects (instead of creating new one like there's no tomorrow) after certain expiration deadline. The clone allocator will decide whether to reuse, share, or creating new clone. o Automatic garbage collector. - Dynamic unit magic allocator. Maximum attached soundcards can be tuned using tunable "hw.snd.maxunit" (Default to 512). Minimum is 16, and maximum is 2048. - ..other fixes, mostly related to concurrency issues. joel@ will do the manpage updates on sound(4). Have fun.
2007-05-31 18:43:33 +00:00
/*
Sound Mega-commit. Expect further cleanup until code freeze. For a slightly thorough explaination, please refer to [1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html . Summary of changes includes: 1 Volume Per-Channel (vpc). Provides private / standalone volume control unique per-stream pcm channel without touching master volume / pcm. Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for backwards compatibility, SOUND_MIXER_PCM through the opened dsp device instead of /dev/mixer. Special "bypass" mode is enabled through /dev/mixer which will automatically detect if the adjustment is made through /dev/mixer and forward its request to this private volume controller. Changes to this volume object will not interfere with other channels. Requirements: - SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which require specific application modifications (preferred). - No modifications required for using bypass mode, so applications like mplayer or xmms should work out of the box. Kernel hints: - hint.pcm.%d.vpc (0 = disable vpc). Kernel sysctls: - hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer bypass mode. - hw.snd.vpc_autoreset (default: 1). By default, closing/opening /dev/dsp will reset the volume back to 0 db gain/attenuation. Setting this to 0 will preserve its settings across device closing/opening. - hw.snd.vpc_reset (default: 0). Panic/reset button to reset all volume settings back to 0 db. - hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value. 2 High quality fixed-point Bandlimited SINC sampling rate converter, based on Julius O'Smith's Digital Audio Resampling - http://ccrma.stanford.edu/~jos/resample/. It includes a filter design script written in awk (the clumsiest joke I've ever written) - 100% 32bit fixed-point, 64bit accumulator. - Possibly among the fastest (if not fastest) of its kind. - Resampling quality is tunable, either runtime or during kernel compilation (FEEDER_RATE_PRESETS). - Quality can be further customized during kernel compilation by defining FEEDER_RATE_PRESETS in /etc/make.conf. Kernel sysctls: - hw.snd.feeder_rate_quality. 0 - Zero-order Hold (ZOH). Fastest, bad quality. 1 - Linear Interpolation (LINEAR). Slightly slower than ZOH, better quality but still does not eliminate aliasing. 2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC quality always start from 2 and above. Rough quality comparisons: - http://people.freebsd.org/~ariff/z_comparison/ 3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be directly fed into the hardware. 4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf. 5 Transparent/Adaptive Virtual Channel. Now you don't have to disable vchans in order to make digital format pass through. It also makes vchans more dynamic by choosing a better format/rate among all the concurrent streams, which means that dev.pcm.X.play.vchanformat/rate becomes sort of optional. 6 Exclusive Stream, with special open() mode O_EXCL. This will "mute" other concurrent vchan streams and only allow a single channel with O_EXCL set to keep producing sound. Other Changes: * most feeder_* stuffs are compilable in userland. Let's not speculate whether we should go all out for it (save that for FreeBSD 16.0-RELEASE). * kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org> * pull out channel mixing logic out of vchan.c and create its own feeder_mixer for world justice. * various refactoring here and there, for good or bad. * activation of few more OSSv4 ioctls() (see [1] above). * opt_snd.h for possible compile time configuration: (mostly for debugging purposes, don't try these at home) SND_DEBUG SND_DIAGNOSTIC SND_FEEDER_MULTIFORMAT SND_FEEDER_FULL_MULTIFORMAT SND_FEEDER_RATE_HP SND_PCM_64 SND_OLDSTEREO Manual page updates are on the way. Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
* Default format / rate
Last major commit and updates for RELENG_7: - Rework the entire pcm_channel structure: * Remove rarely used link placeholder, instead, make each pcm_channel as head/link of each own/each other. Unlock - Lock sequence due to sleep malloc has been reduced. * Implement "busy" queue which will contain list of busy/active channels. This greatly reduce locking contention for example while servicing interrupt for hardware with many channels or when virtual channels reach its 256 peak channels. - So I heard you like v chan ... O RLY? Welcome to Virtual **Record** Channels (vrec, rec vchans, vchans for recording, Rec-Chan, you decide), the ultimate solutions for your nagging O_RDWR full-duplex wannabe (note: flash plugins) monopolizing single record channel causing EBUSY. Vrec works exactly like Vchans (or, should I rename it to "Vplay" :) , except that it operates on the opposite direction (recording). Up to 256 vrecs (like vchans) are possible. Notes: * Relocate dev.pcm.%d.{vchans,vchanformat,vchanrate} to each of its respective node/direction: dev.pcm.%d.play.* for "play" (cdev = dsp%d.vp%d) dev.pcm.%d.rec.* for "record" (cdev = dsp%d.vr%d) * Don't expect that it will magically give you ability to split "recording source" (eg: 1 channel for cdrom, 1 channel for mic, etc). Just admit that you only have a *single* recording source / channel. Please bug your hardware vendor instead :) - Bump maxautovchans from 4 to 16. For a full-fledged multimedia desktop/workstation with too many soundservers installed (esound, artsd, jackd, pulse/polypaudio, ding-dong pling plong mudkip fuh fuh, etc), 4 seems inadequate. There will be no memory penalty here, since virtual channels are allocate only by demand. - Nuke/Rework the entire statically created cdev entries. Everything is clonable through snd own clone manager which designed to withstand many kind of abusive devfs droids such as: * while : ; do /bin/test -e /dev/dsp ; done * jot 16777216 0 | while read x ; do ls /dev/dsp0.$x ; done * hundreds (could be thousands) concurrent threads/process opening "/dev/dsp" (previously, this might result EBUSY even with just 3 contesting threads/procs). o Reusable clone objects (instead of creating new one like there's no tomorrow) after certain expiration deadline. The clone allocator will decide whether to reuse, share, or creating new clone. o Automatic garbage collector. - Dynamic unit magic allocator. Maximum attached soundcards can be tuned using tunable "hw.snd.maxunit" (Default to 512). Minimum is 16, and maximum is 2048. - ..other fixes, mostly related to concurrency issues. joel@ will do the manpage updates on sound(4). Have fun.
2007-05-31 18:43:33 +00:00
*/
Sound Mega-commit. Expect further cleanup until code freeze. For a slightly thorough explaination, please refer to [1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html . Summary of changes includes: 1 Volume Per-Channel (vpc). Provides private / standalone volume control unique per-stream pcm channel without touching master volume / pcm. Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for backwards compatibility, SOUND_MIXER_PCM through the opened dsp device instead of /dev/mixer. Special "bypass" mode is enabled through /dev/mixer which will automatically detect if the adjustment is made through /dev/mixer and forward its request to this private volume controller. Changes to this volume object will not interfere with other channels. Requirements: - SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which require specific application modifications (preferred). - No modifications required for using bypass mode, so applications like mplayer or xmms should work out of the box. Kernel hints: - hint.pcm.%d.vpc (0 = disable vpc). Kernel sysctls: - hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer bypass mode. - hw.snd.vpc_autoreset (default: 1). By default, closing/opening /dev/dsp will reset the volume back to 0 db gain/attenuation. Setting this to 0 will preserve its settings across device closing/opening. - hw.snd.vpc_reset (default: 0). Panic/reset button to reset all volume settings back to 0 db. - hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value. 2 High quality fixed-point Bandlimited SINC sampling rate converter, based on Julius O'Smith's Digital Audio Resampling - http://ccrma.stanford.edu/~jos/resample/. It includes a filter design script written in awk (the clumsiest joke I've ever written) - 100% 32bit fixed-point, 64bit accumulator. - Possibly among the fastest (if not fastest) of its kind. - Resampling quality is tunable, either runtime or during kernel compilation (FEEDER_RATE_PRESETS). - Quality can be further customized during kernel compilation by defining FEEDER_RATE_PRESETS in /etc/make.conf. Kernel sysctls: - hw.snd.feeder_rate_quality. 0 - Zero-order Hold (ZOH). Fastest, bad quality. 1 - Linear Interpolation (LINEAR). Slightly slower than ZOH, better quality but still does not eliminate aliasing. 2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC quality always start from 2 and above. Rough quality comparisons: - http://people.freebsd.org/~ariff/z_comparison/ 3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be directly fed into the hardware. 4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf. 5 Transparent/Adaptive Virtual Channel. Now you don't have to disable vchans in order to make digital format pass through. It also makes vchans more dynamic by choosing a better format/rate among all the concurrent streams, which means that dev.pcm.X.play.vchanformat/rate becomes sort of optional. 6 Exclusive Stream, with special open() mode O_EXCL. This will "mute" other concurrent vchan streams and only allow a single channel with O_EXCL set to keep producing sound. Other Changes: * most feeder_* stuffs are compilable in userland. Let's not speculate whether we should go all out for it (save that for FreeBSD 16.0-RELEASE). * kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org> * pull out channel mixing logic out of vchan.c and create its own feeder_mixer for world justice. * various refactoring here and there, for good or bad. * activation of few more OSSv4 ioctls() (see [1] above). * opt_snd.h for possible compile time configuration: (mostly for debugging purposes, don't try these at home) SND_DEBUG SND_DIAGNOSTIC SND_FEEDER_MULTIFORMAT SND_FEEDER_FULL_MULTIFORMAT SND_FEEDER_RATE_HP SND_PCM_64 SND_OLDSTEREO Manual page updates are on the way. Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
#define VCHAN_DEFAULT_FORMAT SND_FORMAT(AFMT_S16_LE, 2, 0)
#define VCHAN_DEFAULT_RATE 48000
Last major commit and updates for RELENG_7: - Rework the entire pcm_channel structure: * Remove rarely used link placeholder, instead, make each pcm_channel as head/link of each own/each other. Unlock - Lock sequence due to sleep malloc has been reduced. * Implement "busy" queue which will contain list of busy/active channels. This greatly reduce locking contention for example while servicing interrupt for hardware with many channels or when virtual channels reach its 256 peak channels. - So I heard you like v chan ... O RLY? Welcome to Virtual **Record** Channels (vrec, rec vchans, vchans for recording, Rec-Chan, you decide), the ultimate solutions for your nagging O_RDWR full-duplex wannabe (note: flash plugins) monopolizing single record channel causing EBUSY. Vrec works exactly like Vchans (or, should I rename it to "Vplay" :) , except that it operates on the opposite direction (recording). Up to 256 vrecs (like vchans) are possible. Notes: * Relocate dev.pcm.%d.{vchans,vchanformat,vchanrate} to each of its respective node/direction: dev.pcm.%d.play.* for "play" (cdev = dsp%d.vp%d) dev.pcm.%d.rec.* for "record" (cdev = dsp%d.vr%d) * Don't expect that it will magically give you ability to split "recording source" (eg: 1 channel for cdrom, 1 channel for mic, etc). Just admit that you only have a *single* recording source / channel. Please bug your hardware vendor instead :) - Bump maxautovchans from 4 to 16. For a full-fledged multimedia desktop/workstation with too many soundservers installed (esound, artsd, jackd, pulse/polypaudio, ding-dong pling plong mudkip fuh fuh, etc), 4 seems inadequate. There will be no memory penalty here, since virtual channels are allocate only by demand. - Nuke/Rework the entire statically created cdev entries. Everything is clonable through snd own clone manager which designed to withstand many kind of abusive devfs droids such as: * while : ; do /bin/test -e /dev/dsp ; done * jot 16777216 0 | while read x ; do ls /dev/dsp0.$x ; done * hundreds (could be thousands) concurrent threads/process opening "/dev/dsp" (previously, this might result EBUSY even with just 3 contesting threads/procs). o Reusable clone objects (instead of creating new one like there's no tomorrow) after certain expiration deadline. The clone allocator will decide whether to reuse, share, or creating new clone. o Automatic garbage collector. - Dynamic unit magic allocator. Maximum attached soundcards can be tuned using tunable "hw.snd.maxunit" (Default to 512). Minimum is 16, and maximum is 2048. - ..other fixes, mostly related to concurrency issues. joel@ will do the manpage updates on sound(4). Have fun.
2007-05-31 18:43:33 +00:00
#define VCHAN_PLAY 0
#define VCHAN_REC 1
/*
* Offset by +/- 1 so we can distinguish bogus pointer.
*/
#define VCHAN_SYSCTL_DATA(x, y) \
((void *)((intptr_t)(((((x) + 1) & 0xfff) << 2) | \
(((VCHAN_##y) + 1) & 0x3))))
Last major commit and updates for RELENG_7: - Rework the entire pcm_channel structure: * Remove rarely used link placeholder, instead, make each pcm_channel as head/link of each own/each other. Unlock - Lock sequence due to sleep malloc has been reduced. * Implement "busy" queue which will contain list of busy/active channels. This greatly reduce locking contention for example while servicing interrupt for hardware with many channels or when virtual channels reach its 256 peak channels. - So I heard you like v chan ... O RLY? Welcome to Virtual **Record** Channels (vrec, rec vchans, vchans for recording, Rec-Chan, you decide), the ultimate solutions for your nagging O_RDWR full-duplex wannabe (note: flash plugins) monopolizing single record channel causing EBUSY. Vrec works exactly like Vchans (or, should I rename it to "Vplay" :) , except that it operates on the opposite direction (recording). Up to 256 vrecs (like vchans) are possible. Notes: * Relocate dev.pcm.%d.{vchans,vchanformat,vchanrate} to each of its respective node/direction: dev.pcm.%d.play.* for "play" (cdev = dsp%d.vp%d) dev.pcm.%d.rec.* for "record" (cdev = dsp%d.vr%d) * Don't expect that it will magically give you ability to split "recording source" (eg: 1 channel for cdrom, 1 channel for mic, etc). Just admit that you only have a *single* recording source / channel. Please bug your hardware vendor instead :) - Bump maxautovchans from 4 to 16. For a full-fledged multimedia desktop/workstation with too many soundservers installed (esound, artsd, jackd, pulse/polypaudio, ding-dong pling plong mudkip fuh fuh, etc), 4 seems inadequate. There will be no memory penalty here, since virtual channels are allocate only by demand. - Nuke/Rework the entire statically created cdev entries. Everything is clonable through snd own clone manager which designed to withstand many kind of abusive devfs droids such as: * while : ; do /bin/test -e /dev/dsp ; done * jot 16777216 0 | while read x ; do ls /dev/dsp0.$x ; done * hundreds (could be thousands) concurrent threads/process opening "/dev/dsp" (previously, this might result EBUSY even with just 3 contesting threads/procs). o Reusable clone objects (instead of creating new one like there's no tomorrow) after certain expiration deadline. The clone allocator will decide whether to reuse, share, or creating new clone. o Automatic garbage collector. - Dynamic unit magic allocator. Maximum attached soundcards can be tuned using tunable "hw.snd.maxunit" (Default to 512). Minimum is 16, and maximum is 2048. - ..other fixes, mostly related to concurrency issues. joel@ will do the manpage updates on sound(4). Have fun.
2007-05-31 18:43:33 +00:00
#define VCHAN_SYSCTL_DATA_SIZE sizeof(void *)
#define VCHAN_SYSCTL_UNIT(x) ((int)(((intptr_t)(x) >> 2) & 0xfff) - 1)
#define VCHAN_SYSCTL_DIR(x) ((int)((intptr_t)(x) & 0x3) - 1)
Sound Mega-commit. Expect further cleanup until code freeze. For a slightly thorough explaination, please refer to [1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html . Summary of changes includes: 1 Volume Per-Channel (vpc). Provides private / standalone volume control unique per-stream pcm channel without touching master volume / pcm. Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for backwards compatibility, SOUND_MIXER_PCM through the opened dsp device instead of /dev/mixer. Special "bypass" mode is enabled through /dev/mixer which will automatically detect if the adjustment is made through /dev/mixer and forward its request to this private volume controller. Changes to this volume object will not interfere with other channels. Requirements: - SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which require specific application modifications (preferred). - No modifications required for using bypass mode, so applications like mplayer or xmms should work out of the box. Kernel hints: - hint.pcm.%d.vpc (0 = disable vpc). Kernel sysctls: - hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer bypass mode. - hw.snd.vpc_autoreset (default: 1). By default, closing/opening /dev/dsp will reset the volume back to 0 db gain/attenuation. Setting this to 0 will preserve its settings across device closing/opening. - hw.snd.vpc_reset (default: 0). Panic/reset button to reset all volume settings back to 0 db. - hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value. 2 High quality fixed-point Bandlimited SINC sampling rate converter, based on Julius O'Smith's Digital Audio Resampling - http://ccrma.stanford.edu/~jos/resample/. It includes a filter design script written in awk (the clumsiest joke I've ever written) - 100% 32bit fixed-point, 64bit accumulator. - Possibly among the fastest (if not fastest) of its kind. - Resampling quality is tunable, either runtime or during kernel compilation (FEEDER_RATE_PRESETS). - Quality can be further customized during kernel compilation by defining FEEDER_RATE_PRESETS in /etc/make.conf. Kernel sysctls: - hw.snd.feeder_rate_quality. 0 - Zero-order Hold (ZOH). Fastest, bad quality. 1 - Linear Interpolation (LINEAR). Slightly slower than ZOH, better quality but still does not eliminate aliasing. 2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC quality always start from 2 and above. Rough quality comparisons: - http://people.freebsd.org/~ariff/z_comparison/ 3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be directly fed into the hardware. 4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf. 5 Transparent/Adaptive Virtual Channel. Now you don't have to disable vchans in order to make digital format pass through. It also makes vchans more dynamic by choosing a better format/rate among all the concurrent streams, which means that dev.pcm.X.play.vchanformat/rate becomes sort of optional. 6 Exclusive Stream, with special open() mode O_EXCL. This will "mute" other concurrent vchan streams and only allow a single channel with O_EXCL set to keep producing sound. Other Changes: * most feeder_* stuffs are compilable in userland. Let's not speculate whether we should go all out for it (save that for FreeBSD 16.0-RELEASE). * kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org> * pull out channel mixing logic out of vchan.c and create its own feeder_mixer for world justice. * various refactoring here and there, for good or bad. * activation of few more OSSv4 ioctls() (see [1] above). * opt_snd.h for possible compile time configuration: (mostly for debugging purposes, don't try these at home) SND_DEBUG SND_DIAGNOSTIC SND_FEEDER_MULTIFORMAT SND_FEEDER_FULL_MULTIFORMAT SND_FEEDER_RATE_HP SND_PCM_64 SND_OLDSTEREO Manual page updates are on the way. Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00
#endif /* _SND_VCHAN_H_ */