MFC r259750, r260245: Add PPS support to the am335x timer driver.

This commit is contained in:
ian 2014-05-12 22:33:22 +00:00
parent 6c09b7134e
commit 2a67370d69

View File

@ -30,17 +30,22 @@ __FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/rman.h>
#include <sys/taskqueue.h>
#include <sys/timeet.h>
#include <sys/timepps.h>
#include <sys/timetc.h>
#include <sys/watchdog.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include "opt_ntp.h"
#include <dev/fdt/fdt_common.h>
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
@ -50,6 +55,7 @@ __FBSDID("$FreeBSD$");
#include <machine/fdt.h>
#include <arm/ti/ti_prcm.h>
#include <arm/ti/ti_scm.h>
#define AM335X_NUM_TIMERS 8
@ -62,9 +68,9 @@ __FBSDID("$FreeBSD$");
#define DMT_IRQENABLE_SET 0x2c /* IRQSTATUS Set Reg */
#define DMT_IRQENABLE_CLR 0x30 /* IRQSTATUS Clear Reg */
#define DMT_IRQWAKEEN 0x34 /* IRQ Wakeup Enable Reg */
#define DMT_IRQ_TCAR (1 << 0) /* IRQ: Capture */
#define DMT_IRQ_MAT (1 << 0) /* IRQ: Match */
#define DMT_IRQ_OVF (1 << 1) /* IRQ: Overflow */
#define DMT_IRQ_MAT (1 << 2) /* IRQ: Match */
#define DMT_IRQ_TCAR (1 << 2) /* IRQ: Capture */
#define DMT_IRQ_MASK (DMT_IRQ_TCAR | DMT_IRQ_OVF | DMT_IRQ_MAT)
#define DMT_TCLR 0x38 /* Control Register */
#define DMT_TCLR_START (1 << 0) /* Start timer */
@ -92,17 +98,32 @@ __FBSDID("$FreeBSD$");
#define DMT_TMAR 0x4C /* Match Reg */
#define DMT_TCAR1 0x50 /* Capture Reg */
#define DMT_TSICR 0x54 /* Synchr. Interface Ctrl Reg */
#define DMT_TSICR_RESET 0x02 /* TSICR perform soft reset */
#define DMT_TSICR_RESET (1 << 1) /* TSICR perform soft reset */
#define DMT_TCAR2 0x48 /* Capture Reg */
/*
* Use timer 2 for the eventtimer. When PPS support is not compiled in, there's
* no need to use a timer that has an associated capture-input pin, so use timer
* 3 for timecounter. When PPS is compiled in we ignore the default and use
* whichever of timers 4-7 have the capture pin configured.
*/
#define DEFAULT_ET_TIMER 2
#define DEFAULT_TC_TIMER 3
struct am335x_dmtimer_softc {
struct resource * tmr_mem_res[AM335X_NUM_TIMERS];
struct resource * tmr_irq_res[AM335X_NUM_TIMERS];
uint32_t sysclk_freq;
uint32_t tc_num; /* Which timer number is tc. */
uint32_t et_num; /* Which timer number is et. */
uint32_t tc_tclr; /* Cached tc TCLR register. */
struct resource * tc_memres; /* Resources for tc timer. */
uint32_t et_num; /* Which timer number is et. */
uint32_t et_tclr; /* Cached et TCLR register. */
struct resource * et_memres; /* Resources for et timer. */
int pps_curmode; /* Edge mode now set in hw. */
struct task pps_task; /* For pps_event handling. */
struct cdev * pps_cdev;
struct pps_state pps;
struct timecounter tc;
struct eventtimer et;
};
@ -162,6 +183,255 @@ am335x_dmtimer_et_write_4(struct am335x_dmtimer_softc *sc, uint32_t reg,
bus_write_4(sc->et_memres, reg, val);
}
/*
* PPS driver routines, included when the kernel is built with option PPS_SYNC.
*
* Note that this PPS driver does not use an interrupt. Instead it uses the
* hardware's ability to latch the timer's count register in response to a
* signal on an IO pin. Each of timers 4-7 have an associated pin, and this
* code allows any one of those to be used.
*
* The timecounter routines in kern_tc.c call the pps poll routine periodically
* to see if a new counter value has been latched. When a new value has been
* latched, the only processing done in the poll routine is to capture the
* current set of timecounter timehands (done with pps_capture()) and the
* latched value from the timer. The remaining work (done by pps_event()) is
* scheduled to be done later in a non-interrupt context.
*/
#ifdef PPS_SYNC
#define PPS_CDEV_NAME "pps"
static void
am335x_dmtimer_set_capture_mode(struct am335x_dmtimer_softc *sc, bool force_off)
{
int newmode;
if (force_off)
newmode = 0;
else
newmode = sc->pps.ppsparam.mode & PPS_CAPTUREBOTH;
if (newmode == sc->pps_curmode)
return;
sc->pps_curmode = newmode;
sc->tc_tclr &= ~DMT_TCLR_CAPTRAN_MASK;
switch (newmode) {
case PPS_CAPTUREASSERT:
sc->tc_tclr |= DMT_TCLR_CAPTRAN_LOHI;
break;
case PPS_CAPTURECLEAR:
sc->tc_tclr |= DMT_TCLR_CAPTRAN_HILO;
break;
default:
/* It can't be BOTH, so it's disabled. */
break;
}
am335x_dmtimer_tc_write_4(sc, DMT_TCLR, sc->tc_tclr);
}
static void
am335x_dmtimer_tc_poll_pps(struct timecounter *tc)
{
struct am335x_dmtimer_softc *sc;
sc = tc->tc_priv;
/*
* Note that we don't have the TCAR interrupt enabled, but the hardware
* still provides the status bits in the "RAW" status register even when
* they're masked from generating an irq. However, when clearing the
* TCAR status to re-arm the capture for the next second, we have to
* write to the IRQ status register, not the RAW register. Quirky.
*/
if (am335x_dmtimer_tc_read_4(sc, DMT_IRQSTATUS_RAW) & DMT_IRQ_TCAR) {
pps_capture(&sc->pps);
sc->pps.capcount = am335x_dmtimer_tc_read_4(sc, DMT_TCAR1);
am335x_dmtimer_tc_write_4(sc, DMT_IRQSTATUS, DMT_IRQ_TCAR);
taskqueue_enqueue_fast(taskqueue_fast, &sc->pps_task);
}
}
static void
am335x_dmtimer_process_pps_event(void *arg, int pending)
{
struct am335x_dmtimer_softc *sc;
sc = arg;
/* This is the task function that gets enqueued by poll_pps. Once the
* time has been captured in the hw interrupt context, the remaining
* (more expensive) work to process the event is done later in a
* non-fast-interrupt context.
*
* We only support capture of the rising or falling edge, not both at
* once; tell the kernel to process whichever mode is currently active.
*/
pps_event(&sc->pps, sc->pps.ppsparam.mode & PPS_CAPTUREBOTH);
}
static int
am335x_dmtimer_pps_open(struct cdev *dev, int flags, int fmt,
struct thread *td)
{
struct am335x_dmtimer_softc *sc;
sc = dev->si_drv1;
/* Enable capture on open. Harmless if already open. */
am335x_dmtimer_set_capture_mode(sc, 0);
return 0;
}
static int
am335x_dmtimer_pps_close(struct cdev *dev, int flags, int fmt,
struct thread *td)
{
struct am335x_dmtimer_softc *sc;
sc = dev->si_drv1;
/*
* Disable capture on last close. Use the force-off flag to override
* the configured mode and turn off the hardware capture.
*/
am335x_dmtimer_set_capture_mode(sc, 1);
return 0;
}
static int
am335x_dmtimer_pps_ioctl(struct cdev *dev, u_long cmd, caddr_t data,
int flags, struct thread *td)
{
struct am335x_dmtimer_softc *sc;
int err;
sc = dev->si_drv1;
/*
* The hardware has a "capture both edges" mode, but we can't do
* anything useful with it in terms of PPS capture, so don't even try.
*/
if ((sc->pps.ppsparam.mode & PPS_CAPTUREBOTH) == PPS_CAPTUREBOTH)
return (EINVAL);
/* Let the kernel do the heavy lifting for ioctl. */
err = pps_ioctl(cmd, data, &sc->pps);
if (err != 0)
return (err);
/*
* The capture mode could have changed, set the hardware to whatever
* mode is now current. Effectively a no-op if nothing changed.
*/
am335x_dmtimer_set_capture_mode(sc, 0);
return (err);
}
static struct cdevsw am335x_dmtimer_pps_cdevsw = {
.d_version = D_VERSION,
.d_open = am335x_dmtimer_pps_open,
.d_close = am335x_dmtimer_pps_close,
.d_ioctl = am335x_dmtimer_pps_ioctl,
.d_name = PPS_CDEV_NAME,
};
/*
* Set up the PPS cdev and the the kernel timepps stuff.
*
* Note that this routine cannot touch the hardware, because bus space resources
* are not fully set up yet when this is called.
*/
static int
am335x_dmtimer_pps_init(device_t dev, struct am335x_dmtimer_softc *sc)
{
int i, timer_num, unit;
unsigned int padstate;
const char * padmux;
struct padinfo {
char * ballname;
char * muxname;
int timer_num;
} padinfo[] = {
{"GPMC_ADVn_ALE", "timer4", 4},
{"GPMC_BEn0_CLE", "timer5", 5},
{"GPMC_WEn", "timer6", 6},
{"GPMC_OEn_REn", "timer7", 7},
};
/*
* Figure out which pin the user has set up for pps. We'll use the
* first timer that has an external caputure pin configured as input.
*
* XXX The hieroglyphic "(padstate & (0x01 << 5)))" checks that the pin
* is configured for input. The right symbolic values aren't exported
* yet from ti_scm.h.
*/
timer_num = 0;
for (i = 0; i < nitems(padinfo) && timer_num == 0; ++i) {
if (ti_scm_padconf_get(padinfo[i].ballname, &padmux,
&padstate) == 0) {
if (strcasecmp(padinfo[i].muxname, padmux) == 0 &&
(padstate & (0x01 << 5)))
timer_num = padinfo[i].timer_num;
}
}
if (timer_num == 0) {
device_printf(dev, "No DMTimer found with capture pin "
"configured as input; PPS driver disabled.\n");
return (DEFAULT_TC_TIMER);
}
/*
* Indicate our capabilities (pretty much just capture of either edge).
* Have the kernel init its part of the pps_state struct and add its
* capabilities.
*/
sc->pps.ppscap = PPS_CAPTUREBOTH;
pps_init(&sc->pps);
/*
* Set up to capture the PPS via timecounter polling, and init the task
* that does deferred pps_event() processing after capture.
*/
sc->tc.tc_poll_pps = am335x_dmtimer_tc_poll_pps;
TASK_INIT(&sc->pps_task, 0, am335x_dmtimer_process_pps_event, sc);
/* Create the PPS cdev. */
unit = device_get_unit(dev);
sc->pps_cdev = make_dev(&am335x_dmtimer_pps_cdevsw, unit,
UID_ROOT, GID_WHEEL, 0600, PPS_CDEV_NAME "%d", unit);
sc->pps_cdev->si_drv1 = sc;
device_printf(dev, "Using DMTimer%d for PPS device /dev/%s%d\n",
timer_num, PPS_CDEV_NAME, unit);
return (timer_num);
}
#else /* PPS_SYNC */
static int
am335x_dmtimer_pps_init(device_t dev, struct am335x_dmtimer_softc *sc)
{
/*
* When PPS support is not compiled in, there's no need to use a timer
* that has an associated capture-input pin, so use the default.
*/
return (DEFAULT_TC_TIMER);
}
#endif /* PPS_SYNC */
/*
* End of PPS driver code.
*/
static unsigned
am335x_dmtimer_tc_get_timecount(struct timecounter *tc)
{
@ -176,43 +446,50 @@ static int
am335x_dmtimer_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
{
struct am335x_dmtimer_softc *sc;
uint32_t count, load, tclr;
uint32_t initial_count, reload_count;
sc = et->et_priv;
tclr = 0;
/*
* Stop the timer before changing it. This routine will often be called
* while the timer is still running, to either lengthen or shorten the
* current event time. We need to ensure the timer doesn't expire while
* we're working with it.
*
* Also clear any pending interrupt status, because it's at least
* theoretically possible that we're running in a primary interrupt
* context now, and a timer interrupt could be pending even before we
* stopped the timer. The more likely case is that we're being called
* from the et_event_cb() routine dispatched from our own handler, but
* it's not clear to me that that's the only case possible.
*/
sc->et_tclr &= ~(DMT_TCLR_START | DMT_TCLR_AUTOLOAD);
am335x_dmtimer_et_write_4(sc, DMT_TCLR, sc->et_tclr);
am335x_dmtimer_et_write_4(sc, DMT_IRQSTATUS, DMT_IRQ_OVF);
if (period != 0) {
load = ((uint32_t)et->et_frequency * period) >> 32;
tclr |= DMT_TCLR_AUTOLOAD;
panic("periodic timer not implemented\n");
reload_count = ((uint32_t)et->et_frequency * period) >> 32;
sc->et_tclr |= DMT_TCLR_AUTOLOAD;
} else {
load = 0;
reload_count = 0;
}
if (first != 0)
count = ((uint32_t)et->et_frequency * first) >> 32;
initial_count = ((uint32_t)et->et_frequency * first) >> 32;
else
count = load;
initial_count = reload_count;
/* Reset Timer */
am335x_dmtimer_et_write_4(sc, DMT_TSICR, DMT_TSICR_RESET);
/*
* Set auto-reload and current-count values. This timer hardware counts
* up from the initial/reload value and interrupts on the zero rollover.
*/
am335x_dmtimer_et_write_4(sc, DMT_TLDR, 0xFFFFFFFF - reload_count);
am335x_dmtimer_et_write_4(sc, DMT_TCRR, 0xFFFFFFFF - initial_count);
/* Wait for reset to complete */
while (am335x_dmtimer_et_read_4(sc, DMT_TIOCP_CFG) & DMT_TIOCP_RESET)
continue;
/* set load value */
am335x_dmtimer_et_write_4(sc, DMT_TLDR, 0xFFFFFFFE - load);
/* set counter value */
am335x_dmtimer_et_write_4(sc, DMT_TCRR, 0xFFFFFFFE - count);
/* enable overflow interrupt */
/* Enable overflow interrupt, and start the timer. */
am335x_dmtimer_et_write_4(sc, DMT_IRQENABLE_SET, DMT_IRQ_OVF);
/* start timer(ST) */
tclr |= DMT_TCLR_START;
am335x_dmtimer_et_write_4(sc, DMT_TCLR, tclr);
sc->et_tclr |= DMT_TCLR_START;
am335x_dmtimer_et_write_4(sc, DMT_TCLR, sc->et_tclr);
return (0);
}
@ -224,12 +501,11 @@ am335x_dmtimer_stop(struct eventtimer *et)
sc = et->et_priv;
/* Disable all interrupts */
am335x_dmtimer_et_write_4(sc, DMT_IRQENABLE_CLR, DMT_IRQ_MASK);
/* Stop Timer */
am335x_dmtimer_et_write_4(sc, DMT_TCLR, 0);
/* Stop timer, disable and clear interrupt. */
sc->et_tclr &= ~(DMT_TCLR_START | DMT_TCLR_AUTOLOAD);
am335x_dmtimer_et_write_4(sc, DMT_TCLR, sc->et_tclr);
am335x_dmtimer_et_write_4(sc, DMT_IRQENABLE_CLR, DMT_IRQ_OVF);
am335x_dmtimer_et_write_4(sc, DMT_IRQSTATUS, DMT_IRQ_OVF);
return (0);
}
@ -239,7 +515,8 @@ am335x_dmtimer_intr(void *arg)
struct am335x_dmtimer_softc *sc;
sc = arg;
/* Ack interrupt */
/* Ack the interrupt, and invoke the callback if it's still enabled. */
am335x_dmtimer_et_write_4(sc, DMT_IRQSTATUS, DMT_IRQ_OVF);
if (sc->et.et_active)
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
@ -300,51 +577,53 @@ am335x_dmtimer_attach(device_t dev)
return (ENXIO);
}
/* Configure DMTimer3 as eventtimer and DMTimer4 as timecounter. */
sc->et_num = 3;
sc->tc_num = 2;
/*
* Use the default eventtimer. Let the PPS init routine decide which
* timer to use for the timecounter.
*/
sc->et_num = DEFAULT_ET_TIMER;
sc->tc_num = am335x_dmtimer_pps_init(dev, sc);
sc->et_memres = sc->tmr_mem_res[sc->et_num];
sc->tc_memres = sc->tmr_mem_res[sc->tc_num];
/* Enable clocks and power on the chosen devices. */
err = ti_prcm_clk_set_source(DMTIMER0_CLK + sc->et_num, SYSCLK_CLK);
err |= ti_prcm_clk_enable(DMTIMER0_CLK + sc->et_num);
err |= ti_prcm_clk_set_source(DMTIMER0_CLK + sc->tc_num, SYSCLK_CLK);
err |= ti_prcm_clk_enable(DMTIMER0_CLK + sc->tc_num);
if (err) {
device_printf(dev, "Error: could not setup timer clock\n");
device_printf(dev, "Error: could not enable timer clock\n");
return (ENXIO);
}
/* Set up timecounter; register tc. */
/* Setup eventtimer interrupt handler. */
if (bus_setup_intr(dev, sc->tmr_irq_res[sc->et_num], INTR_TYPE_CLK,
am335x_dmtimer_intr, NULL, sc, &ihl) != 0) {
device_printf(dev, "Unable to setup the clock irq handler.\n");
return (ENXIO);
}
/* Set up timecounter, start it, register it. */
am335x_dmtimer_tc_write_4(sc, DMT_TSICR, DMT_TSICR_RESET);
while (am335x_dmtimer_tc_read_4(sc, DMT_TIOCP_CFG) & DMT_TIOCP_RESET)
continue;
sc->tc_tclr |= DMT_TCLR_START | DMT_TCLR_AUTOLOAD;
am335x_dmtimer_tc_write_4(sc, DMT_TLDR, 0);
am335x_dmtimer_tc_write_4(sc, DMT_TCRR, 0);
am335x_dmtimer_tc_write_4(sc, DMT_TCLR,
DMT_TCLR_START | DMT_TCLR_AUTOLOAD);
am335x_dmtimer_tc_write_4(sc, DMT_TCLR, sc->tc_tclr);
sc->tc.tc_name = "AM335x Timecounter";
sc->tc.tc_get_timecount = am335x_dmtimer_tc_get_timecount;
sc->tc.tc_poll_pps = NULL;
sc->tc.tc_counter_mask = ~0u;
sc->tc.tc_frequency = sc->sysclk_freq;
sc->tc.tc_quality = 1000;
sc->tc.tc_priv = sc;
tc_init(&sc->tc);
/* Setup eventtimer; register et. */
if (bus_setup_intr(dev, sc->tmr_irq_res[sc->et_num], INTR_TYPE_CLK,
am335x_dmtimer_intr, NULL, sc, &ihl) != 0) {
bus_release_resources(dev, am335x_dmtimer_irq_spec,
sc->tmr_irq_res);
device_printf(dev, "Unable to setup the clock irq handler.\n");
return (ENXIO);
}
sc->et.et_name = "AM335x Eventtimer";
sc->et.et_flags = ET_FLAGS_ONESHOT;
sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT;
sc->et.et_quality = 1000;
sc->et.et_frequency = sc->sysclk_freq;
sc->et.et_min_period =