support. Trying to fix the merged set where dynamic overrode
static was getting more and more complicated by the day.
This should fix the duplicate atkbd, psm, fd* etc in GENERIC. (which
paniced the alpha, but not the i386)
The p_can(...) construct was a premature (and, it turns out,
awkward) abstraction. The individual calls to p_canxxx() better
reflect differences between the inter-process authorization checks,
such as differing checks based on the type of signal. This has
a side effect of improving code readability.
o Replace direct credential authorization checks in ktrace() with
invocation of p_candebug(), while maintaining the special case
check of KTR_ROOT. This allows ktrace() to "play more nicely"
with new mandatory access control schemes, as well as making its
authorization checks consistent with other "debugging class"
checks.
o Eliminate "privused" construct for p_can*() calls which allowed the
caller to determine if privilege was required for successful
evaluation of the access control check. This primitive is currently
unused, and as such, serves only to complicate the API.
Approved by: ({procfs,linprocfs} changes) des
Obtained from: TrustedBSD Project
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
These take an additional mutex argument, which is dropped before any
processes are made runnable. This can avoid contention on the mutex
if the processes would immediately acquire it, and is done in such a
way that wakeups will not be lost.
Reviewed by: jhb
We already did this in the SMP case, and it is now maintained in the UP
case as well, and makes the code slightly more readable. Note that
curproc is always executing, thus the p != curproc test does not need to
be performed if the p_oncpu check is made.
We don't actually need to force a context switch of the current process.
The act of firing the event triggers a context switch to softclock() and
then switching back out again which is equivalent to a preemption, thus
no further work is needed on the local CPU.
allow call-specific authorization.
o Modify the authorization model so that p_can() is used to check
scheduling get/set events, using P_CAN_SEE for gets, and P_CAN_SCHED
for sets. This brings the checks in line with get/setpriority().
Obtained from: TrustedBSD Project
- The sx assertions don't actually need the internal sx mutex lock, so
don't bother doing so.
- Add a new assertion SX_ASSERT_LOCKED() that asserts that either a
shared or exclusive lock should be held. This assertion should be used
instead of SX_ASSERT_SLOCKED() in almost all cases.
- Adjust some KASSERT()'s to include file and line information.
- Use the new witness_assert() function in the WITNESS case for sx slock
asserts to verify that the current thread actually owns a slock.
- Clean up the KTR tracepoints to be slighlty more consistent and useful
- Fix a bug in WITNESS where we would recurse indefinitely and blow the
stack when acquiring Giant after sleeping with a sleepable lock held.
Reported by: tanimura (3)
processes.
- Don't construct fake call args and then call kill(). psignal is not
anymore complicated and is quicker and not prone to locking problems.
Calling psignal() avoids having to do a pfind() since we already have a
proc pointer and also allows us to keep the task leader locked while we
kill all the peer processes so the list is kept coherent.
- When a kthread exits, do a wakeup() on its proc pointers. This can be
used by kernel modules that have kthreads and want to ensure they have
safely exited before completely the MOD_UNLOAD event.
Connectivity provided by: Usenix wireless
may need the clock lock for nanotime().
- Add KTR trace events for lock list manipulations and other witness
operations.
- Use a temporary variable instead of setting the lock list head directly
and then setting up the links to add a new lock list entry to the lock
list. This small race could result in witness "forgetting" about all
the locks held by this process temporarily during an interrupt.
- Close a more fatal race condition when removing a lock from a list.
Removing a lock from the list entails both decrementing the count of
items in this bucket as well as shuffling items in the current bucket up
a notch to replace the gap left by the removed item. Wrap these
operations in a critical section.
class to trace witness events.
- Make the ktr_cpu field of ktr_entry be a standard field rather than one
present only in the KTR_EXTEND case.
- Move the default definition of KTR_ENTRIES from sys/ktr.h to
kern/kern_ktr.c. It has not been needed in the header file since KTR
was un-inlined.
- Minor include cleanup in kern/kern_ktr.c.
- Fiddle with the ktr_cpumask in ktr_tracepoint() to disable KTR events
on the current CPU while we are processing an event.
- Set the current CPU inside of the critical section to ensure we don't
migrate CPU's after the critical section but before we set the CPU.
switch. Count the context switch when preempting the current thread to let
a higher priority thread blocked on a mutex we just released run as an
involuntary context switch.
Reported by: bde