Sgtty is a programming interface that has been replaced by termios over
the years. In June we already removed <sgtty.h>, which exposes the
ioctl()'s that are implemented by this interface. The importance of this
flag is overrated right now.
module; the ath module now brings in the hal support. Kernel
config files are almost backwards compatible; supplying
device ath_hal
gives you the same chip support that the binary hal did but you
must also include
options AH_SUPPORT_AR5416
to enable the extended format descriptors used by 11n parts.
It is now possible to control the chip support included in a
build by specifying exactly which chips are to be supported
in the config file; consult ath_hal(4) for information.
controller. The controller is also known as L1E(AR8121) and
L2E(AR8113/AR8114). Unlike its predecessor Attansic L1,
AR8121/AR8113/AR8114 uses completely different Rx logic such that
it requires separate driver. Datasheet for AR81xx is not available
to open source driver writers but it shares large part of Tx and
PHY logic of L1. I still don't understand some part of register
meaning and some MAC statistics counters but the driver seems to
have no critical issues for performance and stability.
The AR81xx requires copy operation to pass received frames to upper
stack such that ale(4) consumes a lot of CPU cycles than that of
other controller. A couple of silicon bugs also adds more CPU
cycles to address the known hardware bug. However, if you have fast
CPU you can still saturate the link.
Currently ale(4) supports the following hardware features.
- MSI.
- TCP Segmentation offload.
- Hardware VLAN tag insertion/stripping with checksum offload.
- Tx TCP/UDP checksum offload and Rx IP/TCP/UDP checksum offload.
- Tx/Rx interrupt moderation.
- Hardware statistics counters.
- Jumbo frame.
- WOL.
AR81xx PCIe ethernet controllers are mainly found on ASUS EeePC or
P5Q series of ASUS motherboards. Special thanks to Jeremy Chadwick
who sent the hardware to me. Without his donation writing a driver
for AR81xx would never have been possible. Big thanks to all people
who reported feedback or tested patches.
HW donated by: koitsu
Tested by: bsam, Joao Barros <joao.barros <> gmail DOT com >
Jan Henrik Sylvester <me <> janh DOT de >
Ivan Brawley < ivan <> brawley DOT id DOT au >,
CURRENT ML
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
features of CPUs like reading/writing machine-specific registers,
retrieving cpuid data, and updating microcode.
- Add cpucontrol(8) utility, that provides userland access to
the features of cpuctl(4).
- Add subsequent manpages.
The cpuctl(4) device operates as follows. The pseudo-device node cpuctlX
is created for each cpu present in the systems. The pseudo-device minor
number corresponds to the cpu number in the system. The cpuctl(4) pseudo-
device allows a number of ioctl to be preformed, namely RDMSR/WRMSR/CPUID
and UPDATE. The first pair alows the caller to read/write machine-specific
registers from the correspondent CPU. cpuid data could be retrieved using
the CPUID call, and microcode updates are applied via UPDATE.
The permissions are inforced based on the pseudo-device file permissions.
RDMSR/CPUID will be allowed when the caller has read access to the device
node, while WRMSR/UPDATE will be granted only when the node is opened
for writing. There're also a number of priv(9) checks.
The cpucontrol(8) utility is intened to provide userland access to
the cpuctl(4) device features. The utility also allows one to apply
cpu microcode updates.
Currently only Intel and AMD cpus are supported and were tested.
Approved by: kib
Reviewed by: rpaulo, cokane, Peter Jeremy
MFC after: 1 month
As clearly mentioned on the mailing lists, there is a list of drivers
that have not been ported to the MPSAFE TTY layer yet. Remove them from
the kernel configuration files. This means people can now still use
these drivers if they explicitly put them in their kernel configuration
file, which is good.
People should keep in mind that after August 10, these drivers will not
work anymore. Even though owners of the hardware are capable of getting
these drivers working again, I will see if I can at least get them to a
compilable state (if time permits).
The uart(4) driver has the advantage of supporting a wider variety of
hardware on a greater amount of platforms. This driver has already been
the standard on platforms such as ia64, powerpc and sparc64.
I've decided not to change anything on pc98. I'd rather let people from
the pc98 team look at this.
Approved by: philip (mentor), marcel
parts relied on the now removed NET_NEEDS_GIANT.
Most of I4B has been disconnected from the build
since July 2007 in HEAD/RELENG_7.
This is what was removed:
- configuration in /etc/isdn
- examples
- man pages
- kernel configuration
- sys/i4b (drivers, layers, include files)
- user space tools
- i4b support from ppp
- further documentation
Discussed with: rwatson, re
Note this includes changes to all drivers and moves some device firmware
loading to use firmware(9) and a separate module (e.g. ral). Also there
no longer are separate wlan_scan* modules; this functionality is now
bundled into the wlan module.
Supported by: Hobnob and Marvell
Reviewed by: many
Obtained from: Atheros (some bits)
to detect (or load) kernel NLM support in rpc.lockd. Remove the '-k'
option to rpc.lockd and make kernel NLM the default. A user can still
force the use of the old user NLM by building a kernel without NFSLOCKD
and/or removing the nfslockd.ko module.
frequency generation and what frequency the generated was anyones
guess.
In general the 32.768kHz RTC clock x-tal was the best, because that
was a regular wrist-watch Xtal, whereas the X-tal generating the
ISA bus frequency was much lower quality, often costing as much as
several cents a piece, so it made good sense to check the ISA bus
frequency against the RTC clock.
The other relevant property of those machines, is that they
typically had no more than 16MB RAM.
These days, CPU chips croak if their clocks are not tightly within
specs and all necessary frequencies are derived from the master
crystal by means if PLL's.
Considering that it takes on average 1.5 second to calibrate the
frequency of the i8254 counter, that more likely than not, we will
not actually use the result of the calibration, and as the final
clincher, we seldom use the i8254 for anything besides BEL in
syscons anyway, it has become time to drop the calibration code.
If you need to tell the system what frequency your i8254 runs,
you can do so from the loader using hw.i8254.freq or using the
sysctl kern.timecounter.tc.i8254.frequency.
While the KSE project was quite successful in bringing threading to
FreeBSD, the M:N approach taken by the kse library was never developed
to its full potential. Backwards compatibility will be provided via
libmap.conf for dynamically linked binaries and static binaries will
be broken.
cards:
o RocketRAID 172x series
o RocketRAID 174x series
o RocketRAID 2210
o RocketRAID 222x series
o RocketRAID 2240
o RocketRAID 230x series
o RocketRAID 231x series
o RocketRAID 232x series
o RocketRAID 2340
o RocketRAID 2522
Many thanks to Highpoint for their continued support of FreeBSD.
Submitted by: Highpoint
- Introduce per-architecture stack_machdep.c to hold stack_save(9).
- Introduce per-architecture machine/stack.h to capture any common
definitions required between db_trace.c and stack_machdep.c.
- Add new kernel option "options STACK"; we will build in stack(9) if it is
defined, or also if "options DDB" is defined to provide compatibility
with existing users of stack(9).
Add new stack_save_td(9) function, which allows the capture of a stacktrace
of another thread rather than the current thread, which the existing
stack_save(9) was limited to. It requires that the thread be neither
swapped out nor running, which is the responsibility of the consumer to
enforce.
Update stack(9) man page.
Build tested: amd64, arm, i386, ia64, powerpc, sparc64, sun4v
Runtime tested: amd64 (rwatson), arm (cognet), i386 (rwatson)
Currently, Giant is not too much contented so that it is ok to treact it
like any other mutexes.
Please don't forget to update your own custom config kernel files.
Approved by: cognet, marcel (maintainers of arches where option is
not enabled at the moment)
This includes:
o mtree (for legal/intel_wpi)
o manpage for i386/amd64 archs
o module for i386/amd64 archs
o NOTES for i386/amd64 archs
Approved by: mlaier (comentor)
refactored it to be a generic device.
Instead of being part of the standard kernel, there is now a 'nvram' device
for i386/amd64. It is in DEFAULTS like io and mem, and can be turned off
with 'nodevice nvram'. This matches the previous behavior when it was
first committed.
and newer CPUs (including Core 2 and Core / Core 2 based Xeons). The
driver attaches to each cpu device and creates a sysctl node in that
device's sysctl context (dev.cpu.N.temperature). When invoked, the
handler binds to the appropriate CPU to ensure a correct reading.
Submitted by: Rui Paulo <rpaulo@fnop.net>
Sponsored by: Google Summer of Code 2007
Tested by: des, marcus, Constantine A. Murenin, Ian FREISLICH
Approved by: re (kensmith)
MFC after: 3 weeks
the 7.0 timeframe.
This is needed because I4B is not locked and NET_NEEDS_GIANT goes away.
The plan is to lock I4B and bring everything back for 7.1.
Approved by: re (kensmith)
more exposure. The current state of SCTP implementation is
considered to be ready for 32-bit platforms, but still need some
work/testing on 64-bit platforms.
Approved by: re (kensmith)
Discussed with: rrs