assembler source for libcompiler_rt as not needed executable stack. This
is done with a hammer instead of properly marking each assembly file
with section .note.GNU-stack to avoid modifying contributed source.
Discussed with: ed
- Add flags CVWAIT_ABSTIME and CVWAIT_CLOCKID for umtx kernel based
condition variable, this should eliminate an extra system call to get
current time.
- Add sub-function UMTX_OP_NWAKE_PRIVATE to wake up N channels in single
system call. Create userland sleep queue for condition variable, in most
cases, thread will wait in the queue, the pthread_cond_signal will defer
thread wakeup until the mutex is unlocked, it tries to avoid an extra
system call and a extra context switch in time window of pthread_cond_signal
and pthread_mutex_unlock.
The changes are part of process-shared mutex project.
in crt1.o. On other architectures crtbrand.c is included from crt1.c,
but that's not a C source code file on ia64. Instead it is compiled
separately and included in crt1.o using incremental linking.
Tested by: dim (previous version)
Approved by: kib (mentor)
the existing file descriptor. Instead, let dup2() atomically close the
old file descriptor when assigning the newly opened file to the same
descriptor. This closes a race in a multithreaded application where a
concurrent open() could allocate the existing file descriptor in between
the calls to close() and dup2().
PR: threads/79887
Submitted by: Dmitrij Tejblum tejblum of yandex-team.ru
Reviewed by: davidxu
MFC after: 1 week
In particular, this check avoids a warning when
extracting directory entries from certain GNU tar
archives that store directory contents.
MFC after: 3 days
implementing accurate logarithms in different bases. This is based
on an approach bde coded up years ago.
This function should always be inlined; it will be used in only a few
places, and rudimentary tests show a 40% performance improvement in
implementations of log2() and log10() on amd64.
The kernel takes a reduced argument x and returns the same polynomial
approximation as e_log.c, but omitting the low-order term. The low-order
term is much larger than the rest of the approximation, so the caller of
the kernel function can scale it to the appropriate base in extra precision
and obtain a much more accurate answer than by using log(x)/log(b).
This includes support in the kernel, camcontrol(8), libcam and the mps(4)
driver for SMP passthrough.
The CAM SCSI probe code has been modified to fetch Inquiry VPD page 0x00
to determine supported pages, and will now fetch page 0x83 in addition to
page 0x80 if supported.
Add two new CAM CCBs, XPT_SMP_IO, and XPT_GDEV_ADVINFO. The SMP CCB is
intended for SMP requests and responses. The ADVINFO is currently used to
fetch cached VPD page 0x83 data from the transport layer, but is intended
to be extensible to fetch other types of device-specific data.
SMP-only devices are not currently represented in the CAM topology, and so
the current semantics are that the SIM will route SMP CCBs to either the
addressed device, if it contains an SMP target, or its parent, if it
contains an SMP target. (This is noted in cam_ccb.h, since it will change
later once we have the ability to have SMP-only devices in CAM's topology.)
smp_all.c,
smp_all.h: New helper routines for SMP. This includes
SMP request building routines, response parsing
routines, error decoding routines, and structure
definitions for a number of SMP commands.
libcam/Makefile: Add smp_all.c to libcam, so that SMP functionality
is available to userland applications.
camcontrol.8,
camcontrol.c: Add smp passthrough support to camcontrol. Several
new subcommands are now available:
'smpcmd' functions much like 'cmd', except that it
allows the user to send generic SMP commands.
'smprg' sends the SMP report general command, and
displays the decoded output. It will automatically
fetch extended output if it is available.
'smppc' sends the SMP phy control command, with any
number of potential options. Among other things,
this allows the user to reset a phy on a SAS
expander, or disable a phy on an expander.
'smpmaninfo' sends the SMP report manufacturer
information and displays the decoded output.
'smpphylist' displays a list of phys on an
expander, and the CAM devices attached to those
phys, if any.
cam.h,
cam.c: Add a status value for SMP errors
(CAM_SMP_STATUS_ERROR).
Add a missing description for CAM_SCSI_IT_NEXUS_LOST.
Add support for SMP commands to cam_error_string().
cam_ccb.h: Rename the CAM_DIR_RESV flag to CAM_DIR_BOTH. SMP
commands are by nature bi-directional, and we may
need to support bi-directional SCSI commands later.
Add the XPT_SMP_IO CCB. Since SMP commands are
bi-directional, there are pointers for both the
request and response.
Add a fill routine for SMP CCBs.
Add the XPT_GDEV_ADVINFO CCB. This is currently
used to fetch cached page 0x83 data from the
transport later, but is extensible to fetch many
other types of data.
cam_periph.c: Add support in cam_periph_mapmem() for XPT_SMP_IO
and XPT_GDEV_ADVINFO CCBs.
cam_xpt.c: Add support for executing XPT_SMP_IO CCBs.
cam_xpt_internal.h: Add fields for VPD pages 0x00 and 0x83 in struct
cam_ed.
scsi_all.c: Add scsi_get_sas_addr(), a function that parses
VPD page 0x83 data and pulls out a SAS address.
scsi_all.h: Add VPD page 0x00 and 0x83 structures, and a
prototype for scsi_get_sas_addr().
scsi_pass.c: Add support for mapping buffers in XPT_SMP_IO and
XPT_GDEV_ADVINFO CCBs.
scsi_xpt.c: In the SCSI probe code, first ask the device for
VPD page 0x00. If any VPD pages are supported,
that page is required to be implemented. Based on
the response, we may probe for the serial number
(page 0x80) or device id (page 0x83).
Add support for the XPT_GDEV_ADVINFO CCB.
sys/conf/files: Add smp_all.c.
mps.c: Add support for passing in a uio in mps_map_command(),
so we can map a S/G list at once.
Add support for SMP passthrough commands in
mps_data_cb(). SMP is a special case, because the
first buffer in the S/G list is outbound and the
second buffer is inbound.
Add support for warning the user if the busdma code
comes back with more buffers than will work for the
command. This will, for example, help the user
determine why an SMP command failed if busdma comes
back with three buffers.
mps_pci.c: Add sys/uio.h.
mps_sas.c: Add the SAS address and the parent handle to the
list of fields we pull from device page 0 and cache
in struct mpssas_target. These are needed for SMP
passthrough.
Add support for the XPT_SMP_IO CCB. For now, this
CCB is routed to the addressed device if it supports
SMP, or to its parent if it does not and the parent
does. This is necessary because CAM does not
currently support SMP-only nodes in the topology.
Make SMP passthrough support conditional on
__FreeBSD_version >= 900026. This will make it
easier to MFC this change to the driver without
MFCing the CAM changes as well.
mps_user.c: Un-staticize mpi_init_sge() so we can use it for
the SMP passthrough code.
mpsvar.h: Add a uio and iovecs into struct mps_command for
SMP passthrough commands.
Add a cm_max_segs field to struct mps_command so
that we can warn the user if busdma comes back with
too many segments.
Clear the cm_reply when a command gets freed. If
it is not cleared, reply frames will eventually get
freed into the pool multiple times and corrupt the
pool. (This fix is from scottl.)
Add a prototype for mpi_init_sge().
sys/param.h: Bump __FreeBSD_version to 900026 for the for the
inclusion of the XPT_GDEV_ADVINFO and XPT_SMP_IO
CAM CCBs.
1) We need to allow the USB callback to free the USB transfer itself.
2) The USB transfer buffer should only be automatically freed when
freeing the USB transfer.
Fixed by: hselasky
Submitted by: Gustau Perez i Querol
Approved by: thompsa (mentor)
Explanation by Steve:
jn[f](n,x) for certain ranges of x uses downward recursion to compute
the value of the function. The recursion sequence that is generated is
proportional to the actual desired value, so a normalization step is
taken. This normalization is j0[f](x) divided by the zeroth sequence
member. As Bruce notes, near the zeros of j0[f](x) the computed value
can have giga-ULP inaccuracy. I found for the 1st zero of j0f(x) only
the leading decimal digit is correct. The solution to the issue is
fairly straight forward. The zeros of j0(x) and j1(x) never coincide,
so as j0(x) approaches a zero, the normalization constant switches to
j1[f](x) divided by the 2nd sequence member. The expectation is that
j1[f](x) is a more accurately computed value.
PR: bin/144306
Submitted by: Steven G. Kargl <kargl@troutmask.apl.washington.edu>
Reviewed by: bde
MFC after: 7 days