with 16-bit ints, since u_short is promoted when it is passed to a
varargs function. gcc now warns about this. We always pass small
integers (this is well obuscated), so there are no conversion problems.
Fixed a related style bug (bogus cast).
-current, since offsetof() is defined a header under /sys so that
system sources don't need to have this wrong include.
This bug was only detected because my version of <stddef.h> has some
spelling fixes (s/field/member/g) and gcc is now sensitive to the spelling
of arg names in macros as required by standards (ISO C90 6.8.3...).
Get rid of the INTERNALSTATICLIB knob and just use plain INTERNALLIB.
INTERNALLIB now means to build static library only and don't install
anything. Added a NOINSTALLLIB knob for libpam/modules. To not
build any library at all, just do not set LIB.
Ipfw processing of frames at layer 2 can be enabled by the sysctl variable
net.link.ether.ipfw=1
Consider this feature experimental, because right now, the firewall
is invoked in the places indicated below, and controlled by the
sysctl variables listed on the right. As a consequence, a packet
can be filtered from 1 to 4 times depending on the path it follows,
which might make a ruleset a bit hard to follow.
I will add an ipfw option to tell if we want a given rule to apply
to ether_demux() and ether_output_frame(), but we have run out of
flags in the struct ip_fw so i need to think a bit on how to implement
this.
to upper layers
| |
+----------->-----------+
^ V
[ip_input] [ip_output] net.inet.ip.fw.enable=1
| |
^ V
[ether_demux] [ether_output_frame] net.link.ether.ipfw=1
| |
+->- [bdg_forward]-->---+ net.link.ether.bridge_ipfw=1
^ V
| |
to devices
several reasons before. Fixing it involved restructuring the generic hash
code to require calling code to handle locking, unlocking, and freeing hashes
on error conditions.
bridged packets only, soon to come also for packets on ordinary
ether_input() and ether_output() paths. The syntax is
ipfw add <action> MAC dst src type
where dst and src can be "any" or a MAC address optionallyfollowed
by a mask, e.g.
10:20:30:40:50
10:20:30:40:50/32
10:20:30:40:50&ff:ff:ff:f0:ff:0f
and type can be a single ethernet type, a range, or a type followed by
a mask (values are always in hexadecimal) e.g.
0800
0800-0806
0800/8
0800&03ff
Note, I am still uncertain on what is the best format for inputting
these values, having the values in hexadecimal is convenient in most
cases but can be confusing sometimes. Suggestions welcome.
Implement suggestion from PR 37778 to allow "not me" on destination
and source IP. The code in the PR was slightly wrong and interfered
with the normal handling of IP addresses. This version hopefully is
correct.
Minor cleanup of the code, in some places moving the indentation to 4
spaces because the code was becoming too deep. Eventually, in a
separate commit, I will move the whole file to 4 space indent.
default of -fguess-branch-probablility causes time optimizations (?)
like rewriting `if (foo) x++;' as
`if (!foo) goto forth; back: ; ...; forth: x++; goto back;". This is
pessimizes space especially well on i386's because one short branch
gets converted to 2 long ones.
Removed -fno-align-foo since it is implied by -Os. Previous commit
messages seem to have overstated the new alignment bugs in gcc. The
only case that affects boot2 is that -fno-align-functions (or
equivalently -falign-functions=1) actually gives -falign-functions=2.
This is caused by FUNCTION_BOUNDARY being 2 (bytes) instead of 1.
The default case where the optimization level is 1 and no alignment
options are given is more broken. All alignments are minimal, modulo
the bug in FUNCTION_BOUNDARY. This is caused by toplev.c setting
defaults too early.
Some hacks in previous commits ar not needed now, but may as well be
kept until gcc is fixed. The previous on in the Makefile saved 96
bytes of text due to the wrong FUNCTION_BOUNDARY and 32 bytes of data
due to unrelated bloat in the alignment of large objects. There aren't
even any options to control alignment of data.
before rev 1.229 (~ 100 ms). According to bde, some (old) broken
hardware could require it. In order to make timing more accurate than
what could be achieved with a loop around DELAY(1), increase loop
timing after the initial ~ 1 ms.
Also, move the declaration of FDSTS_TIMEOUT out from fdreg.h into fd.c
where it actually belongs to.
MFC after: 2 days
function to return the total number of CPUs and not the highest
CPU id.
o Define mp_maxid based on the minimum of the actual number of
CPUs in the system and MAXCPU.
o In cpu_mp_add, when the CPU id of the CPU we're trying to add
is larger than mp_maxid, don't add the CPU. Formerly this was
based on MAXCPU. Don't count CPUs when we add them. We already
know how many CPUs exist.
o Replace MAXCPU with mp_maxid when used in loops that iterate
over the id space. This avoids a couple of useless iterations.
o In cpu_mp_unleash, use the number of CPUs to determine if we
need to launch the CPUs.
o Remove mp_hardware as it's not used anymore.
o Move the IPI vector array from mp_machdep.c to sal.c. We use
the array as a centralized place to collect vector assignments.
Note that we still assign vectors to SMP specific IPIs in
non-SMP configurations. Rename the array from mp_ipi_vector to
ipi_vector.
o Add IPI_MCA_RENDEZ and IPI_MCA_CMCV. These are used by MCA.
Note that IPI_MCA_CMCV is not SMP specific.
o Initialize the ipi_vector array so that we place the IPIs in
sensible priority classes. The classes are relative to where
the AP wake-up vector is located to guarantee that it's the
highest priority (external) interrupt. Class assignment is
as follows:
class IPI notes
x AP wake-up (normally x=15)
x-1 MCA rendezvous
x-2 AST, Rendezvous, stop
x-3 CMCV, test
vm_object_deallocate(), replacing the assertion GIANT_REQUIRED.
o Remove GIANT_REQUIRED from vm_map_protect() and vm_map_simplify_entry().
o Acquire and release Giant around vm_map_protect()'s call to pmap_protect().
Altogether, these changes eliminate the need for mprotect() to acquire
and release Giant.