- v_vflag is protected by the vnode lock and is used when synchronization
with VOP calls is needed.
- v_iflag is protected by interlock and is used for dealing with vnode
management issues. These flags include X/O LOCK, FREE, DOOMED, etc.
- All accesses to v_iflag and v_vflag have either been locked or marked with
mp_fixme's.
- Many ASSERT_VOP_LOCKED calls have been added where the locking was not
clear.
- Many functions in vfs_subr.c were restructured to provide for stronger
locking.
Idea stolen from: BSD/OS
when VM_ALLOC_WIRED is specified: set the PG_MAPPED bit in flags.
o In both vm_page_wire() and vm_page_allocate() add a comment saying
that setting PG_MAPPED does not belong there.
to return a wired page.
o Use VM_ALLOC_WIRED within Alpha's pmap_growkernel(). Also, because
Alpha's pmap_growkernel() calls vm_page_alloc() from within a critical
section, specify VM_ALLOC_INTERRUPT instead of VM_ALLOC_SYSTEM. (Only
VM_ALLOC_INTERRUPT is implemented entirely with a spin mutex.)
o Assert that the page queues mutex is held in vm_page_wire()
on Alpha, just like the other platforms.
o Assert that the page queues lock is held in vm_page_unwire().
o Make vm_page_lock_queues() and vm_page_unlock_queues() visible
to kernel loadable modules.
queue lock (revision 1.33 of vm/vm_page.c removed them).
o Make the free queue lock a spin lock because it's sometimes acquired
inside of a critical section.
MAKEDEV: Add MAKEDEV glue for the ti(4) device nodes.
ti.4: Update the ti(4) man page to include information on the
TI_JUMBO_HDRSPLIT and TI_PRIVATE_JUMBOS kernel options,
and also include information about the new character
device interface and the associated ioctls.
man9/Makefile: Add jumbo.9 and zero_copy.9 man pages and associated
links.
jumbo.9: New man page describing the jumbo buffer allocator
interface and operation.
zero_copy.9: New man page describing the general characteristics of
the zero copy send and receive code, and what an
application author should do to take advantage of the
zero copy functionality.
NOTES: Add entries for ZERO_COPY_SOCKETS, TI_PRIVATE_JUMBOS,
TI_JUMBO_HDRSPLIT, MSIZE, and MCLSHIFT.
conf/files: Add uipc_jumbo.c and uipc_cow.c.
conf/options: Add the 5 options mentioned above.
kern_subr.c: Receive side zero copy implementation. This takes
"disposable" pages attached to an mbuf, gives them to
a user process, and then recycles the user's page.
This is only active when ZERO_COPY_SOCKETS is turned on
and the kern.ipc.zero_copy.receive sysctl variable is
set to 1.
uipc_cow.c: Send side zero copy functions. Takes a page written
by the user and maps it copy on write and assigns it
kernel virtual address space. Removes copy on write
mapping once the buffer has been freed by the network
stack.
uipc_jumbo.c: Jumbo disposable page allocator code. This allocates
(optionally) disposable pages for network drivers that
want to give the user the option of doing zero copy
receive.
uipc_socket.c: Add kern.ipc.zero_copy.{send,receive} sysctls that are
enabled if ZERO_COPY_SOCKETS is turned on.
Add zero copy send support to sosend() -- pages get
mapped into the kernel instead of getting copied if
they meet size and alignment restrictions.
uipc_syscalls.c:Un-staticize some of the sf* functions so that they
can be used elsewhere. (uipc_cow.c)
if_media.c: In the SIOCGIFMEDIA ioctl in ifmedia_ioctl(), avoid
calling malloc() with M_WAITOK. Return an error if
the M_NOWAIT malloc fails.
The ti(4) driver and the wi(4) driver, at least, call
this with a mutex held. This causes witness warnings
for 'ifconfig -a' with a wi(4) or ti(4) board in the
system. (I've only verified for ti(4)).
ip_output.c: Fragment large datagrams so that each segment contains
a multiple of PAGE_SIZE amount of data plus headers.
This allows the receiver to potentially do page
flipping on receives.
if_ti.c: Add zero copy receive support to the ti(4) driver. If
TI_PRIVATE_JUMBOS is not defined, it now uses the
jumbo(9) buffer allocator for jumbo receive buffers.
Add a new character device interface for the ti(4)
driver for the new debugging interface. This allows
(a patched version of) gdb to talk to the Tigon board
and debug the firmware. There are also a few additional
debugging ioctls available through this interface.
Add header splitting support to the ti(4) driver.
Tweak some of the default interrupt coalescing
parameters to more useful defaults.
Add hooks for supporting transmit flow control, but
leave it turned off with a comment describing why it
is turned off.
if_tireg.h: Change the firmware rev to 12.4.11, since we're really
at 12.4.11 plus fixes from 12.4.13.
Add defines needed for debugging.
Remove the ti_stats structure, it is now defined in
sys/tiio.h.
ti_fw.h: 12.4.11 firmware.
ti_fw2.h: 12.4.11 firmware, plus selected fixes from 12.4.13,
and my header splitting patches. Revision 12.4.13
doesn't handle 10/100 negotiation properly. (This
firmware is the same as what was in the tree previously,
with the addition of header splitting support.)
sys/jumbo.h: Jumbo buffer allocator interface.
sys/mbuf.h: Add a new external mbuf type, EXT_DISPOSABLE, to
indicate that the payload buffer can be thrown away /
flipped to a userland process.
socketvar.h: Add prototype for socow_setup.
tiio.h: ioctl interface to the character portion of the ti(4)
driver, plus associated structure/type definitions.
uio.h: Change prototype for uiomoveco() so that we'll know
whether the source page is disposable.
ufs_readwrite.c:Update for new prototype of uiomoveco().
vm_fault.c: In vm_fault(), check to see whether we need to do a page
based copy on write fault.
vm_object.c: Add a new function, vm_object_allocate_wait(). This
does the same thing that vm_object allocate does, except
that it gives the caller the opportunity to specify whether
it should wait on the uma_zalloc() of the object structre.
This allows vm objects to be allocated while holding a
mutex. (Without generating WITNESS warnings.)
vm_object_allocate() is implemented as a call to
vm_object_allocate_wait() with the malloc flag set to
M_WAITOK.
vm_object.h: Add prototype for vm_object_allocate_wait().
vm_page.c: Add page-based copy on write setup, clear and fault
routines.
vm_page.h: Add page based COW function prototypes and variable in
the vm_page structure.
Many thanks to Drew Gallatin, who wrote the zero copy send and receive
code, and to all the other folks who have tested and reviewed this code
over the years.
and pmap_copy_page(). This gets rid of a couple more physical addresses
in upper layers, with the eventual aim of supporting PAE and dealing with
the physical addressing mostly within pmap. (We will need either 64 bit
physical addresses or page indexes, possibly both depending on the
circumstances. Leaving this to pmap itself gives more flexibilitly.)
Reviewed by: jake
Tested on: i386, ia64 and (I believe) sparc64. (my alpha was hosed)
most cases NULL is passed, but in some cases such as network driver locks
(which use the MTX_NETWORK_LOCK macro) and UMA zone locks, a name is used.
Tested on: i386, alpha, sparc64
memory in phys_avail will fit in 'int', use vm_size_t. This fixes booting
on sparc64 machines with more than 2 gigs of ram.
Thanks to Jan Chrillesen for providing me with access to a 4 gig machine.
style(9)
- Minor space adjustment in cases where we have "( ", " )", if(), return(),
while(), for(), etc.
- Add /* SYMBOL */ after a few #endifs.
Reviewed by: alc
and again in vm_page.c and vm_pageq.c.
o Delete unusused prototypes. (Mainly a result of the earlier renaming
of various functions from vm_page_*() to vm_pageq_*().)
count that would otherwise be on one of the free queues. This eliminates a
panic when broken programs unmap memory that still has pending IO from raw
devices.
Reviewed by: dillon, alc
- Allow the OOM killer to target processes currently locked in
memory. These very often are the ones doing the memory hogging.
- Drop the wakeup priority of processes currently sleeping while
waiting for their page fault to complete. In order for the OOM
killer to work well, the killed process and other system processes
waiting on memory must be allowed to wakeup first.
Reviewed by: dillon
MFC after: 1 week
commit by Kirk also fixed a softupdates bug that could easily be triggered
by server side NFS.
* An edge case with shared R+W mmap()'s and truncate whereby
the system would inappropriately clear the dirty bits on
still-dirty data. (applicable to all filesystems)
THIS FIX TEMPORARILY DISABLED PENDING FURTHER TESTING.
see vm/vm_page.c line 1641
* The straddle case for VM pages and buffer cache buffers when
truncating. (applicable to NFS client side)
* Possible SMP database corruption due to vm_pager_unmap_page()
not clearing the TLB for the other cpu's. (applicable to NFS
client side but could effect all filesystems). Note: not
considered serious since the corruption occurs beyond the file
EOF.
* When flusing a dirty buffer due to B_CACHE getting cleared,
we were accidently setting B_CACHE again (that is, bwrite() sets
B_CACHE), when we really want it to stay clear after the write
is complete. This resulted in a corrupt buffer. (applicable
to all filesystems but probably only triggered by NFS)
* We have to call vtruncbuf() when ftruncate()ing to remove
any buffer cache buffers. This is still tentitive, I may
be able to remove it due to the second bug fix. (applicable
to NFS client side)
* vnode_pager_setsize() race against nfs_vinvalbuf()... we have
to set n_size before calling nfs_vinvalbuf or the NFS code
may recursively vnode_pager_setsize() to the original value
before the truncate. This is what was causing the user mmap
bus faults in the nfs tester program. (applicable to NFS
client side)
* Fix to softupdates (see ufs/ffs/ffs_inode.c 1.73, commit made
by Kirk).
Testing program written by: Avadis Tevanian, Jr.
Testing program supplied by: jkh / Apple (see Dec2001 posting to freebsd-hackers with Subject 'NFS: How to make FreeBS fall on its face in one easy step')
MFC after: 1 week
real effect.
Optimize vfs_msync(). Avoid having to continually drop and re-obtain
mutexes when scanning the vnode list. Improves looping case by 500%.
Optimize ffs_sync(). Avoid having to continually drop and re-obtain
mutexes when scanning the vnode list. This makes a couple of assumptions,
which I believe are ok, in regards to vnode stability when the mount list
mutex is held. Improves looping case by 500%.
(more optimization work is needed on top of these fixes)
MFC after: 1 week
on and off since John Dyson left his work-in-progress.
It is off by default for now. sysctl vm.zeroidle_enable=1 to turn it on.
There are some hacks here to deal with the present lack of preemption - we
yield after doing a small number of pages since we wont preempt otherwise.
This is basically Matt's algorithm [with hysteresis] with an idle process
to call it in a similar way it used to be called from the idle loop.
I cleaned up the includes a fair bit here too.
- Callers of asleep() and await() have been converted to calling tsleep().
The only caller outside of M_ASLEEP was the ata driver, which called both
asleep() and await() with spl-raised, so there was no need for the
asleep() and await() pair. M_ASLEEP was unused.
Reviewed by: jasone, peter
Also removed some spl's and added some VM mutexes, but they are not actually
used yet, so this commit does not really make any operational changes
to the system.
vm_page.c relates to vm_page_t manipulation, including high level deactivation,
activation, etc... vm_pageq.c relates to finding free pages and aquiring
exclusive access to a page queue (exclusivity part not yet implemented).
And the world still builds... :-)
most of these inlines had been bloated in -current far beyond their
original intent. Normalize prototypes and function declarations to be ANSI
only (half already were). And do some general cleanup.
(kernel size also reduced by 50-100K, but that isn't the prime intent)
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
Tor created a while ago, removes the raw I/O piece (that has cache coherency
problems), and adds a buffer cache / VM freeing piece.
Essentially this patch causes O_DIRECT I/O to not be left in the cache, but
does not prevent it from going through the cache, hence the 80%. For
the last 20% we need a method by which the I/O can be issued directly to
buffer supplied by the user process and bypass the buffer cache entirely,
but still maintain cache coherency.
I also have the code working under -stable but the changes made to sys/file.h
may not be MFCable, so an MFC is not on the table yet.
Submitted by: tegge, dillon
vm_mtx does not recurse and is required for most low level
vm operations.
faults can not be taken without holding Giant.
Memory subsystems can now call the base page allocators safely.
Almost all atomic ops were removed as they are covered under the
vm mutex.
Alpha and ia64 now need to catch up to i386's trap handlers.
FFS and NFS have been tested, other filesystems will need minor
changes (grabbing the vm lock when twiddling page properties).
Reviewed (partially) by: jake, jhb
other "system" header files.
Also help the deprecation of lockmgr.h by making it a sub-include of
sys/lock.h and removing sys/lockmgr.h form kernel .c files.
Sort sys/*.h includes where possible in affected files.
OK'ed by: bde (with reservations)