is not defined, so that the module will get the
compatibility options from the current kernel configuration
if built with the latter, not with the world.
[Some other modules seem in need of fixing WRT this, too.]
Add more compatibility options found in GENERIC to the default
opt_compat.h. While not all of them are used in the procfs code,
we can't tell for sure if the system .h files don't need them either,
so let's stay on the safe side.
Submitted by: kensmith
Reviewed by: ru
the procfs module by creating opt_compat.h with
appropriate compatibility options: COMPAT_43 on all
arch's and COMPAT_IA32 in addition on amd64.
Pointy hat to: peter
MFC after: 3 days
It creates very huge provider (41PB) /dev/gzero.
On BIO_READ request it zero-fills bio_data and on BIO_WRITE it does nothing.
You can also set kern.geom.zero.clear sysctl to 0 to do nothing even for
BIO_READ.
I'm using it for performance testing where it is very helpful.
MFC after: 3 days
default:
- TULIP_NEED_FASTTIMEOUT - tulip_fasttimeout() wasn't called anywhere
- BIG_PACKET - only worked on i386 anyway
- TULIP_USE_SOFTINTR - doesn't compile and was never updated to handle
new netisr registration
- non-FreeBSD code
by Vladimir Dergachev for inclusion in DRM CVS, with minor modifications for
FreeBSD CVS and the appropriate license from Nicolai Haehnle on r300_reg.h.
Fixes hangs when using r300.sf.net userland, tested on a Radeon 9600 on amd64.
o Add minimal kbdmux(4) man page to the source tree (more details to follow);
o Hook up kbdmux(4) to the build.
This concludes the first part of the kbdmux(4) keyboard multiplexer
integration. It now should be possible to use kbdmux(4), however one
must configure kbdmux(4) by hand (i.e. load kbdmux(4) module and use
kbdcontrol(1) to add/remove slave keyboards to/from kbdmux(4)).
MFC after: 1 week
o Add sys/dev/kbdmux/kbdmux.c to the source tree
o Add sys/modules/kbdmux/Makefile to the source tree
These are not yet connected to the build. Man page and other changes to follow.
MFC after: 1 week
after sys/dev/sound/pcm/channel.c rev. 1.99, i.e. when there's no
existing KERNBUILDDIR with an opt_isa.h defined.
- Sync with sys/dev/sound/pcm/channel.c rev. 1.99 (sort of), i.e.
never compile in isadma support on sparc64 as we just never need
it there. This allows to use the "generic" module with a custom
kernel that is built without isa(4).
Reviewed by: ru
Approved by: re (scottl)
a problem with one particular switch module. Create a kernel option
BGE_FAKE_AUTONEG that restores the 5.4 behavior, which should make the DNLK
switch module work. IBM/Intel blades with Intel or AD switch modules should
work without patching or kernel options with this commit.
Hardware for testing provided by several folks, including
Danny Braniss <danny@cs.huji.ac.il>, Achim Patzner <ap@bnc.net>,
and OffMyServer.
Approved by: re
- Implement sampling modes and logging support in hwpmc(4).
- Separate MI and MD parts of hwpmc(4) and allow sharing of
PMC implementations across different architectures.
Add support for P4 (EMT64) style PMCs to the amd64 code.
- New pmcstat(8) options: -E (exit time counts) -W (counts
every context switch), -R (print log file).
- pmc(3) API changes, improve our ability to keep ABI compatibility
in the future. Add more 'alias' names for commonly used events.
- bug fixes & documentation.
front-end and the LSI64854 and NCR53C9x code in case one of these
functions fails. Add detach functions to these parts and make esp(4)
detachable.
- Revert rev. 1.7 of esp_sbus.c, since rev. 1.34 of sbus.c the clockfreq
IVAR defaults to the per-child values.
- Merge ncr53c9x.c rev. 1.111 from NetBSD (partial):
On reset, clear state flags and the msgout queue.
In NetBSD code to notify the upper layer (i.e. CAM in FreeBSD) on reset
was also added with this revision. This is believed to be not necessary
in FreeBSD and was not merged.
This makes ncr53c9x.c to be in sync with NetBSD up to rev. 1.114.
- Conditionalize the LSI64854 support on sbus(4) only instead of sbus(4)
and esp(4) as it's also required for the 'dma', 'espdma' and 'ledma'
busses/devices as well as the 'SUNW,bpp' device (printer port) which
all hang off of sbus(4).
- Add a driver for the 'dma', 'espdma' and 'ledma' (pseudo-)busses/
devices. These busses and devices actually represent the LSI64854 DMA
engines for the ESP SCSI and LANCE Ethernet controllers found on the
SBus of Ultra 1 and SBus add-on cards. With 'espdma' and 'ledma' the
'esp' and 'le' devices hang off of the respective DMA bus instead of
directly from the SBus. The 'dma' devices are either also used in this
manner or on some add-on cards also as a companion device to an 'esp'
device which also hangs off directly from the SBus. With the latter
variant it's a bit tricky to glue the DMA engine to the core logic of
the respective 'esp' device. With rev. 1.35 of sbus.c we are however
guaranteed that such a 'dma' device is probed before the respective
'esp' device which simplifies things a lot. [1]
- In the esp(4) SBus front-end read the part-unique ID code of Fast-SCSI
capable chips the right way. This fixes erroneously detecting some
chips as FAS366 when in fact they are not. Add explicit checks for the
FAS100A, FAS216 and FAS236 variants instead treating all of these as
ESP200. That way we can correctly set the respective Fast-SCSI config
bits instead of driving them out of specs. This includes adding the
FAS100A and FAS236 variants to the NCR53C9x core code. We probably
still subsume some chip variants as ESP200 while in fact they are
another variant which however shouldn't really matter as this will
only happen when these chips are driven at 25MHz or less which implies
not being able to run Fast-SCSI. [3]
- Add a workaround to the NCR53C9x interrupt handler which ignores the
stray interrupt generated by FAS100A when doing path inquiry during
boot and which otherwiese would trigger a panic.
- Add support for the 'esp' devices hanging off of a 'dma' or 'espdma'
busses or which are companions of 'dma' devices to esp(4). In case of
the variants that hang off of a DMA device this is a bit hackish as
esp(4) then directly uses the softc of the respective parent to talk
to the DMA engine. It might make sense to add an interface for this
in order to implement this in a cleaner way however it's not yet clear
how the requirements for the LANCE Ethernet controllers are and the
hack works for now. [2]
This effectively adds support for the onboard SCSI controller in
Ultra 1 as well as most of the ESP-based SBus add-on cards to esp(4).
With this the code for supporting the Performance Technologies SBS430
SBus SCSI add-on cards is also largely in place the remaining bits
were however omitted as it's unclear from the NetBSD how to couple
the DMA engine and the core logic together for these cards.
Obtained from: OpenBSD [1]
Obtained from: NetBSD [2]
Clue from: BSD/OS [3]
Reviewed by: scottl (earlier version)
Tested with: FSBE/S add-on card (FAS236), SSHA add-on card (ESP100A),
Ultra 1 (onboard FAS100A), Ultra 2 (onboard FAS366)
- Move MD files into <arch>/<arch>.
- Move bus dependent files into <arch>/<bus>.
Rename some files to more suitable names.
Repo-copied by: peter
Discussed with: imp
access to POSIX Semaphores:
mac_init_posix_sem() Initialize label for POSIX semaphore
mac_create_posix_sem() Create POSIX semaphore
mac_destroy_posix_sem() Destroy POSIX semaphore
mac_check_posix_sem_destroy() Check whether semaphore may be destroyed
mac_check_posix_sem_getvalue() Check whether semaphore may be queried
mac_check_possix_sem_open() Check whether semaphore may be opened
mac_check_posix_sem_post() Check whether semaphore may be posted to
mac_check_posix_sem_unlink() Check whether semaphore may be unlinked
mac_check_posix_sem_wait() Check whether may wait on semaphore
Update Biba, MLS, Stub, and Test policies to implement these entry points.
For information flow policies, most semaphore operations are effectively
read/write.
Submitted by: Dandekar Hrishikesh <rishi_dandekar at sbcglobal dot net>
Sponsored by: DARPA, McAfee, SPARTA
Obtained from: TrustedBSD Project
here on in, if_ndis.ko will be pre-built as a module, and can be built
into a static kernel (though it's not part of GENERIC). Drivers are
created using the new ndisgen(8) script, which uses ndiscvt(8) under
the covers, along with a few other tools. The result is a driver module
that can be kldloaded into the kernel.
A driver with foo.inf and foo.sys files will be converted into
foo_sys.ko (and foo_sys.o, for those who want/need to make static
kernels). This module contains all of the necessary info from the
.INF file and the driver binary image, converted into an ELF module.
You can kldload this module (or add it to /boot/loader.conf) to have
it loaded automatically. Any required firmware files can be bundled
into the module as well (or converted/loaded separately).
Also, add a workaround for a problem in NdisMSleep(). During system
bootstrap (cold == 1), msleep() always returns 0 without actually
sleeping. The Intel 2200BG driver uses NdisMSleep() to wait for
the NIC's firmware to come to life, and fails to load if NdisMSleep()
doesn't actually delay. As a workaround, if msleep() (and hence
ndis_thsuspend()) returns 0, use a hard DELAY() to sleep instead).
This is not really the right thing to do, but we can't really do much
else. At the very least, this makes the Intel driver happy.
There are probably other drivers that fail in this way during bootstrap.
Unfortunately, the only workaround for those is to avoid pre-loading
them and kldload them once the system is running instead.
instead of assuming fixed offsets within the GDT. The hard-coded
values here have been incorrect since Peter's GDT rearranging around
10 days ago, causing ACPI resume problems.
Reviewed by: peter
settings and is an older version of the same design used for ICH SpeedStep.
It is only known to be available on PIIX4 chipsets.
Many thanks to Bruno Ducrot for writing the driver and Jon Noack for
testing.
Submitted by: Bruno Ducrot
- Split core DRM routines back into their own module, rather than using the
nasty templated system like before.
- Development-class R300 support in radeon driver (requires userland pieces, of
course).
- Mach64 driver (haven't tested in a while -- my mach64s no longer fit in the
testbox). Covers Rage Pros, Rage Mobility P/M, Rage XL, and some others.
- i915 driver files, which just need to get drm_drv.c fixed to allow attachment
to the drmsub device. Covers i830 through i915 integrated graphics.
- savage driver files, which should require minimal changes to work. Covers the
Savage3D, Savage IX/MX, Savage 4, ProSavage.
- Support for color and texture tiling and HyperZ features of Radeon.
Thanks to: scottl (much p4 handholding)
Jung-uk Kim (helpful prodding)
PR: [1] kern/76879, [2] kern/72548
Submitted by: [1] Alex, lesha at intercaf dot ru
[2] Shaun Jurrens, shaun at shamz dot net
Enhanced SpeedStep (that is, a follow-up of it called Foxton). Until
we actually have support for that, we build to catch regressions in
the framework.
Triggered by: njl
3ware's 9xxx series controllers. This corresponds to
the 9.2 release (for FreeBSD 5.2.1) on the 3ware website.
Highlights of this release are:
1. The driver has been re-architected to use a "Common Layer"
(all tw_cl* files), which is a consolidation of all OS-independent
parts of the driver. The FreeBSD OS specific portions of the
driver go into an "OS Layer" (all tw_osl* files).
This re-architecture is to achieve better maintainability, consistency
of behavior across OS's, and better portability to new OS's (drivers
for new OS's can be written by just adding an OS Layer that's specific
to the OS, by complying to a "Common Layer Programming Interface" API.
2. The driver takes advantage of multiple processors.
3. The driver has a new firmware image bundled, the new features of which
include Online Capacity Expansion and multi-lun support, among others.
More details about 3ware's 9.2 release can be found here:
http://www.3ware.com/download/Escalade9000Series/9.2/9.2_Release_Notes_Web.pdf
Since the Common Layer is used across OS's, the FreeBSD specific include
path for header files (/sys/dev/twa) is not part of the #include pre-processor
directive in any of the source files. For being able to integrate twa into
the kernel despite this, Makefile.<arch> has been changed to add the include
path to CFLAGS.
Reviewed by: scottl
layer, but with a twist.
The twist has to do with the fact that Microsoft supports structured
exception handling in kernel mode. On the i386 arch, exception handling
is implemented by hanging an exception registration list off the
Thread Environment Block (TEB), and the TEB is accessed via the %fs
register. The problem is, we use %fs as a pointer to the pcpu stucture,
which means any driver that tries to write through %fs:0 will overwrite
the curthread pointer and make a serious mess of things.
To get around this, Project Evil now creates a special entry in
the GDT on each processor. When we call into Windows code, a context
switch routine will fix up %fs so it points to our new descriptor,
which in turn points to a fake TEB. When the Windows code returns,
or calls out to an external routine, we swap %fs back again. Currently,
Project Evil makes use of GDT slot 7, which is all 0s by default.
I fully expect someone to jump up and say I can't do that, but I
couldn't find any code that makes use of this entry anywhere. Sadly,
this was the only method I could come up with that worked on both
UP and SMP. (Modifying the LDT works on UP, but becomes incredibly
complicated on SMP.) If necessary, the context switching stuff can
be yanked out while preserving the convention calling wrappers.
(Fortunately, it looks like Microsoft uses some special epilog/prolog
code on amd64 to implement exception handling, so the same nastiness
won't be necessary on that arch.)
The advantages are:
- Any driver that uses %fs as though it were a TEB pointer won't
clobber pcpu.
- All the __stdcall/__fastcall/__regparm stuff that's specific to
gcc goes away.
Also, while I'm here, switch NdisGetSystemUpTime() back to using
nanouptime() again. It turns out nanouptime() is way more accurate
than just using ticks(). On slower machines, the Atheros drivers
I tested seem to take a long time to associate due to the loss
in accuracy.
pc98 machines because (a) it is PCIe or PCI-X (b) there's a BIOS that
must run at boot which assumes IBM-AT compatible boot environment.
Noticed by: scottl
series of controllers. Areca provides a CLI and HTTP management tool for
FreeBSD/i386 and FreeBSD/amd64 on their website. Many thanks to Areca for
their support of FreeBSD. Thanks also to Mike Tansca and Sentex Communications
for donating hardware.
Obtained from: Erich Chen <erich at areca com tw>
o ATA is now fully newbus'd and split into modules.
This means that on a modern system you just load "atapci and ata"
to get the base support, and then one or more of the device
subdrivers "atadisk atapicd atapifd atapist ataraid".
All can be loaded/unloaded anytime, but for obvious reasons you
dont want to unload atadisk when you have mounted filesystems.
o The device identify part of the probe has been rewritten to fix
the problems with odd devices the old had, and to try to remove
so of the long delays some HW could provoke. Also probing is done
without the need for interrupts, making earlier probing possible.
o SATA devices can be hot inserted/removed and devices will be created/
removed in /dev accordingly.
NOTE: only supported on controllers that has this feature:
Promise and Silicon Image for now.
On other controllers the usual atacontrol detach/attach dance is
still needed.
o Support for "atomic" composite ATA requests used for RAID.
o ATA RAID support has been rewritten and and now supports these
metadata formats:
"Adaptec HostRAID"
"Highpoint V2 RocketRAID"
"Highpoint V3 RocketRAID"
"Intel MatrixRAID"
"Integrated Technology Express"
"LSILogic V2 MegaRAID"
"LSILogic V3 MegaRAID"
"Promise FastTrak"
"Silicon Image Medley"
"FreeBSD PseudoRAID"
o Update the ioctl API to match new RAID levels etc.
o Update atacontrol to know about the new RAID levels etc
NOTE: you need to recompile atacontrol with the new sys/ata.h,
make world will take care of that.
NOTE2: that rebuild is done differently from the old system as
the rebuild is now done piggybacked on read requests to the
array, so atacontrol simply starts a background "dd" to rebuild
the array.
o The reinit code has been worked over to be much more robust.
o The timeout code has been overhauled for races.
o Support of new chipsets.
o Lots of fixes for bugs found while doing the modulerization and
reviewing the old code.
Missing or changed features from current ATA:
o atapi-cd no longer has support for ATAPI changers. Todays its
much cheaper and alot faster to copy those CD images to disk
and serve them from there. Besides they dont seem to be made
anymore, maybe for that exact reason.
o ATA RAID can only read metadata from all the above metadata formats,
not write all of them (Promise and Highpoint V2 so far). This means
that arrays can be picked up from the BIOS, but they cannot be
created from FreeBSD. There is more to it than just the missing
write metadata support, those formats are not unique to a given
controller like Promise and Highpoint formats, instead they exist
for several types, and even worse, some controllers can have
different formats and its impossible to tell which one.
The outcome is that we cannot reliably create the metadata of those
formats and be sure the controller BIOS will understand it.
However write support is needed to update/fail/rebuild the arrays
properly so it sits fairly high on the TODO list.
o So far atapicam is not supported with these changes. When/if this
will change is up to the maintainer of atapi-cam so go there for
questions.
HW donated by: Webveveriet AS
HW donated by: Frode Nordahl
HW donated by: Yahoo!
HW donated by: Sentex
Patience by: Vife and my boys (and even the cats)
FreeBSD based on aue(4) it was picked by OpenBSD, then from OpenBSD ported
to NetBSD and finally NetBSD version merged with original one goes into
FreeBSD.
Obtained from: http://www.gank.org/freebsd/cdce/
NetBSD
OpenBSD
when we create a PDO, the driver_object associated with it is that
of the parent driver, not the driver we're trying to attach. For
example, if we attach a PCI device, the PDO we pass to the NdisAddDevice()
function should contain a pointer to fake_pci_driver, not to the NDIS
driver itself. For PCI or PCMCIA devices this doesn't matter because
the child never needs to talk to the parent bus driver, but for USB,
the child needs to be able to send IRPs to the parent USB bus driver, and
for that to work the parent USB bus driver has to be hung off the PDO.
This involves modifying windrv_lookup() so that we can search for
bus drivers by name, if necessary. Our fake bus drivers attach themselves
as "PCI Bus," "PCCARD Bus" and "USB Bus," so we can search for them
using those names.
The individual attachment stubs now create and attach PDOs to the
parent bus drivers instead of hanging them off the NDIS driver's
object, and in if_ndis.c, we now search for the correct driver
object depending on the bus type, and use that to find the correct PDO.
With this fix, I can get my sample USB ethernet driver to deliver
an IRP to my fake parent USB bus driver's dispatch routines.
- Add stub modules for USB support: subr_usbd.c, usbd_var.h and
if_ndis_usb.c. The subr_usbd.c module is hooked up the build
but currently doesn't do very much. It provides the stub USB
parent driver object and a dispatch routine for
IRM_MJ_INTERNAL_DEVICE_CONTROL. The only exported function at
the moment is USBD_GetUSBDIVersion(). The if_ndis_usb.c stub
compiles, but is not hooked up to the build yet. I'm putting
these here so I can keep them under source code control as I
flesh them out.
Ville-Pertti Keinonen (will at exomi dot comohmygodnospampleasekthx)
deserves a big thanks for submitting initial patches to make it
work. I have mangled his contributions appropriately.
The main gotcha with Windows/x86-64 is that Microsoft uses a different
calling convention than everyone else. The standard ABI requires using
6 registers for argument passing, with other arguments on the stack.
Microsoft uses only 4 registers, and requires the caller to leave room
on the stack for the register arguments incase the callee needs to
spill them. Unlike x86, where Microsoft uses a mix of _cdecl, _stdcall
and _fastcall, all routines on Windows/x86-64 uses the same convention.
This unfortunately means that all the functions we export to the
driver require an intermediate translation wrapper. Similarly, we have
to wrap all calls back into the driver binary itself.
The original patches provided macros to wrap every single routine at
compile time, providing a secondary jump table with a customized
wrapper for each exported routine. I decided to use a different approach:
the call wrapper for each function is created from a template at
runtime, and the routine to jump to is patched into the wrapper as
it is created. The subr_pe module has been modified to patch in the
wrapped function instead of the original. (On x86, the wrapping
routine is a no-op.)
There are some minor API differences that had to be accounted for:
- KeAcquireSpinLock() is a real function on amd64, not a macro wrapper
around KfAcquireSpinLock()
- NdisFreeBuffer() is actually IoFreeMdl(). I had to change the whole
NDIS_BUFFER API a bit to accomodate this.
Bugs fixed along the way:
- IoAllocateMdl() always returned NULL
- kern_windrv.c:windrv_unload() wasn't releasing private driver object
extensions correctly (found thanks to memguard)
This has only been tested with the driver for the Broadcom 802.11g
chipset, which was the only Windows/x86-64 driver I could find.
and wd80x3 support. Make the obscure ISA cards optional, and add
those options to NOTES on i386 (note: the ifdef around the whole code
is for module building). Tweak pc98 ed support to include wd80x3 too.
Add goo for alpha too.
The affected cards are the 3Com 3C503, HP LAN+ and SIC (whatever that
is). I couldn't find any of these for sale on ebay, so they are
untested. If you have one of these cards, and send it to me, I'll
ensure that you have no future problems with it...
Minor cleanups as well by using functions rather than cut and paste
code for some probing operations (where the function call overhead is
lost in the noise).
Remove use of kvtop, since they aren't required anymore. This driver
needs to get its memory mapped act together, however, and use bus
space. It doesn't right now.
This reduces the size of if_ed.ko from about 51k to 33k on my laptop.
Windows DRIVER_OBJECT and DEVICE_OBJECT mechanism so that we can
simulate driver stacking.
In Windows, each loaded driver image is attached to a DRIVER_OBJECT
structure. Windows uses the registry to match up a given vendor/device
ID combination with a corresponding DRIVER_OBJECT. When a driver image
is first loaded, its DriverEntry() routine is invoked, which sets up
the AddDevice() function pointer in the DRIVER_OBJECT and creates
a dispatch table (based on IRP major codes). When a Windows bus driver
detects a new device, it creates a Physical Device Object (PDO) for
it. This is a DEVICE_OBJECT structure, with semantics analagous to
that of a device_t in FreeBSD. The Windows PNP manager will invoke
the driver's AddDevice() function and pass it pointers to the DRIVER_OBJECT
and the PDO.
The AddDevice() function then creates a new DRIVER_OBJECT structure of
its own. This is known as the Functional Device Object (FDO) and
corresponds roughly to a private softc instance. The driver uses
IoAttachDeviceToDeviceStack() to add this device object to the
driver stack for this PDO. Subsequent drivers (called filter drivers
in Windows-speak) can be loaded which add themselves to the stack.
When someone issues an IRP to a device, it travel along the stack
passing through several possible filter drivers until it reaches
the functional driver (which actually knows how to talk to the hardware)
at which point it will be completed. This is how Windows achieves
driver layering.
Project Evil now simulates most of this. if_ndis now has a modevent
handler which will use MOD_LOAD and MOD_UNLOAD events to drive the
creation and destruction of DRIVER_OBJECTs. (The load event also
does the relocation/dynalinking of the image.) We don't have a registry,
so the DRIVER_OBJECTS are stored in a linked list for now. Eventually,
the list entry will contain the vendor/device ID list extracted from
the .INF file. When ndis_probe() is called and detectes a supported
device, it will create a PDO for the device instance and attach it
to the DRIVER_OBJECT just as in Windows. ndis_attach() will then call
our NdisAddDevice() handler to create the FDO. The NDIS miniport block
is now a device extension hung off the FDO, just as it is in Windows.
The miniport characteristics table is now an extension hung off the
DRIVER_OBJECT as well (the characteristics are the same for all devices
handled by a given driver, so they don't need to be per-instance.)
We also do an IoAttachDeviceToDeviceStack() to put the FDO on the
stack for the PDO. There are a couple of fake bus drivers created
for the PCI and pccard buses. Eventually, there will be one for USB,
which will actually accept USB IRP.s
Things should still work just as before, only now we do things in
the proper order and maintain the correct framework to support passing
IRPs between drivers.
Various changes:
- corrected the comments about IRQL handling in subr_hal.c to more
accurately reflect reality
- update ndiscvt to make the drv_data symbol in ndis_driver_data.h a
global so that if_ndis_pci.o and/or if_ndis_pccard.o can see it.
- Obtain the softc pointer from the miniport block by referencing
the PDO rather than a private pointer of our own (nmb_ifp is no
longer used)
- implement IoAttachDeviceToDeviceStack(), IoDetachDevice(),
IoGetAttachedDevice(), IoAllocateDriverObjectExtension(),
IoGetDriverObjectExtension(), IoCreateDevice(), IoDeleteDevice(),
IoAllocateIrp(), IoReuseIrp(), IoMakeAssociatedIrp(), IoFreeIrp(),
IoInitializeIrp()
- fix a few mistakes in the driver_object and device_object definitions
- add a new module, kern_windrv.c, to handle the driver registration
and relocation/dynalinkign duties (which don't really belong in
kern_ndis.c).
- made ndis_block and ndis_chars in the ndis_softc stucture pointers
and modified all references to it
- fixed NdisMRegisterMiniport() and NdisInitializeWrapper() so they
work correctly with the new driver_object mechanism
- changed ndis_attach() to call NdisAddDevice() instead of ndis_load_driver()
(which is now deprecated)
- used ExAllocatePoolWithTag()/ExFreePool() in lookaside list routines
instead of kludged up alloc/free routines
- added kern_windrv.c to sys/modules/ndis/Makefile and files.i386.
copies arguments into the kernel space and one that operates
completely in the kernel space;
o use kernel-only version of execve(2) to kill another stackgap in
linuxlator/i386.
Obtained from: DragonFlyBSD (partially)
MFC after: 2 weeks
to elide. This is a somewhat more convenient way of specifying in
e.g. make.conf a list of modules you know you will never need.
PR: kern/76225
Submitted by: David Yeske <dyeske@yahoo.com>
MFC after: 2 weeks
the given providers. Without even one of the configured components there
should be no way to get the secret.
Supported by: WHEEL Sp. z o.o.
http://www.wheel.pl
Silence on: net@, current@, hackers@.
No objections: joerg
Requested by: by many (mostly Cronyx) users for a long long time.
MFC after: 10 days
PR: kern/21771, kern/66348
the ISA and CBUS (called isa on pc98) attachments. Eliminate all PC98
ifdefs in the process (the driver in pc98/pc98/mse.c was a copy of the one
in i386/isa/mse.c with PC98 ifdefs). Create a module for this driver.
I've tested this my PC-9821RaS40 with moused. I've not tested this on i386
because I have no InPort cards, or similar such things. NEC standardized
on bus mice very early, long before ps/2 mice ports apeared, so all PC-98
machines supported by FreeBSD/pc98 have bus mice, I believe.
Reviewed by: nyan-san
without ever being changed to actually work with an i8251. Nobody is
working on this either at the moment, so it's not about to change
soon.
When the code necessary to support the i8251 is committed, this can
be reverted again.
- The claim in the commit log of rev. 1.11 of dev/uart/uart_cpu_sparc64.c
etc. that UARTs are the only relevant ISA devices on sparc64 turned out
to be false. While there are sparc64 models where UARTs are the only
devices on the ISA bus there are in fact also low-cost models where all
devices traditionally found on the EBus are hooked up to the ISA bus.
There are also models that use a mix between EBus and ISA devices with
things like an AT keyboard controller and other rather interesting
devices that we might want to support in the futute hook up to the ISA
bus.
In order to not need to add sparc64 specific device_identify methods to
all of the respective ISA drivers and also not add OFW specific code to
the common ISA code make the sparc64 ISA bus code fake up PnP devices so
most ISA drivers probe their devices without further changes.
Unfortunately Sun doesn't adhere to the ISA bindings defined in IEEE
1275-1994 for the properties of most of the ISA devices which would
allow to obtain the vendor and logical IDs from their properties. So we
we just use a simple table which maps the name properties to PnP IDs.
This could be done in a more sophisticated way but I courrently don't
see the need for this. [1]
- Add the children with fully mapped and specified resources (in the OFW
sense) similar to what is done in the EBus code for the IRQ resources
of the children as adjusting the resources and the resource list entries
respectively in isa_alloc_resource() as done perviously causes trouble
with drivers which use rman_get_start(), pass-through or allocate and
release resources multiple times, etc.
Adjusting the resources might be better off in a bus_activate_resource
method but the common ISA code currently doesn't allow for an
isa_activate_resource(). [2]
With this change:
- ppbus(4) and lpt(4) attach and work (modulo ECP mode, which requires
real ISADMA code but it currently only consists of stubs on sparc64).
- atkbdc(4) and atkbdc(4) attach, no further testing done.
- fdc(4) itself attaches but causes a hang while attaching fd0 also
when is DMA disabled, further work in fdc(4) is required here as e.g.
fd0 uses the address of fd1 on sparc64 (not sure if sparc64 supports
more than one floppy drive at all).
All of these drivers previously caused panics in the sparc64 ISA code.
- Minor changes, e.g. use __FBSDID, remove a dupe word in a comment and
declare one global variable which isn't used outside of isa.c static.
o dev/uart/uart_cpu_sparc64.c and modules/uart/Makefile:
- Remove the code for registering the UARTs on the ISA bus from the
sparc64 uart_cpu_identify() again and rely on probing them via PnP.
Original idea by: tmm [1]
No objections by: tmm [1], [2]
i386 to dev/acpi_support. In theory, these devices could be found
other than in i386 machines only as amd64 becomes more popular. These
drivers don't appear to do anything i386 specific, so move them to
dev/acpi_support. Move config lines to files so that those
architectures that don't support kernel modules can build them into
the kernel. At the same time, rename acpi_snc to acpi_sony to follow
the lead of all the other specialty devices.
the tree. Small tweaks were made by myself to eliminate unnecessary
includes and some other minor issues. Last time I asked takawata-san
about this driver, he suggested I commit it.
Submitted by: takawata
on UltraSPARC workstations. The driver is based on OpenBSD's SBus
cs4231 driver and heavily modified to incorporate into sound(4)
infrastructure. Due to the lack of APCDMA documentation, the DMA
code of SBus cs4231 came from OpenBSD's driver.
The driver runs without Giant lock and supports both SBus and EBus
based CS4231 audio controller. Special thanks to marius for providing
feedbacks during the driver writing. His feedback made it possible
to write hiccup free playback code under high system loads.
Approved by: jake (mentor)
Reviewed by: marius (initial version)
Tested by: marius, kwm, Julian C. Dunn(jdunn AT opentrend DOT net)
of protocols. The call to divert_packet() is done through a function pointer. All
semantics of IPDIVERT remain intact. If IPDIVERT is not loaded ipfw will refuse to
install divert rules and natd will complain about 'protocol not supported'. Once
it is loaded both will work and accept rules and open the divert socket. The module
can only be unloaded if no divert sockets are open. It does not close any divert
sockets when an unload is requested but will return EBUSY instead.
List of functional changes:
- Make a single device per single node with a single hook.
This gives us parrallelizm, which can't be achieved on a single
node with many devices/hooks. This also gives us flexibility - we
can play with a particular device node, not affecting others.
- Remove read queue as it is. Use struct ifqueue instead. This change
removes a lot of extra memcpy()ing, m_devget()ting and m_copymem()ming.
In ng_device_receivedata() we enqueue an mbuf and wake readers.
In ngdread() we take one mbuf from qeueue and uiomove() it to
userspace. If no mbuf is present we optionally block. [1]
- In ngdwrite() we create an mbuf from uio using m_uiotombuf().
This is faster then uiomove() into buffer, and then m_copydata(),
and this is much better than huge m_pullup().
- Perform locking of device
- Perform locking of connection list.
- Clear out _rcvmsg method, since it does nothing good yet.
- Implement NGM_DEVICE_GET_DEVNAME message.
- #if 0 ioctl method, while nothing is done here yet.
- Return immediately from ngdwrite() if uio_resid == 0.
List of tidyness changes:
- Introduce device2priv(), to remove cut'n'paste.
- Use MALLOC/FREE, instead of malloc/free.
- Use unit2minor().
- Use UID_ROOT/GID_WHEEL instead of 0/0.
- Define NGD_DEVICE_DEVNAME, use it.
- Use more nice macros for debugging. [2]
- Return Exxx, not -1.
style(9) changes:
- No "#endif" after short block.
- Break long lines.
- Remove extra spaces, add needed spaces.
[1] Obtained from: if_tun.c
[2] Obtained from: ng_pppoe.c
Reviewed by: marks
Approved by: julian (mentor)
MFC after: 1 month
be used to announce various system activity.
The auxio device provides auxiliary I/O functions and is found on various
SBus/EBus UltraSPARC models. At present, only front panel LED is
controlled by this driver.
Approved by: jake (mentor)
Reviewed by: joerg
Tested by: joerg
Users should move to the new geom_vinum implementation instead.
The refcount logic which is being added to devices to enable safe module
unloading and the buf/vm work also in progress would require a major rework
of the (old)-vinum code to comply with the new semantics.
The actual source files will not be removed until I have coordinated with
the geomvinum people if they need any bits repo-copied etc.
VT6122 gigabit ethernet chip and integrated 10/100/1000 copper PHY.
The vge driver has been added to GENERIC for i386, pc98 and amd64,
but not to sparc or ia64 since I don't have the ability to test
it there. The vge(4) driver supports VLANs, checksum offload and
jumbo frames.
Also added the lge(4) and nge(4) drivers to GENERIC for i386 and
pc98 since I was in the neighborhood. There's no reason to leave them
out anymore.
to RS232 bridges, such as the one found in the DeLorme Earthmate USB GPS
receiver (which is the only device currently supported by this driver).
While other USB to serial drivers in the tree rely heavily on ucom, this
one is self-contained. The reason for that is that ucom assumes that
the bridge uses bulk pipes for I/O, while the Cypress parts actually
register as human interface devices and use HID reports for configuration
and I/O.
The driver is not entirely complete: there is no support yet for flow
control, and output doesn't seem to work, though I don't know if that is
because of a bug in the code, or simply because the Earthmate is a read-
only device.