QLogic 8300 Series Adapters
Submitted by: David C Somayajulu (davidcs@freebsd.org) QLogic Corporation
Approved by: George Neville-Neil (gnn@freebsd.org)
The NTB allows you to connect two systems with this device using a PCI-e
link. The driver is made of two modules:
- ntb_hw which is a basic hardware abstraction layer for the device.
- if_ntb which implements the ntb network device and the communication
protocol.
The driver is limited at the moment to CPU memcpy instead of using DMA, and
only Back-to-Back mode is supported. Also the network device isn't full
featured yet. These changes will be coming soon. The DMA change will also
bring in the ioat driver from the project branch it is on now.
This is an initial port of the GPL/BSD Linux driver contributed by Jon Mason
from Intel. Any bugs are my contributions.
Sponsored by: Intel
Reviewed by: jimharris, joel (man page only)
Approved by: jimharris (mentor)
it will work with either the old or new server.
The FHA code keeps a cache of currently active file handles for
NFSv2 and v3 requests, so that read and write requests for the same
file are directed to the same group of threads (reads) or thread
(writes). It does not currently work for NFSv4 requests. They are
more complex, and will take more work to support.
This improves read-ahead performance, especially with ZFS, if the
FHA tuning parameters are configured appropriately. Without the
FHA code, concurrent reads that are part of a sequential read from
a file will be directed to separate NFS threads. This has the
effect of confusing the ZFS zfetch (prefetch) code and makes
sequential reads significantly slower with clients like Linux that
do a lot of prefetching.
The FHA code has also been updated to direct write requests to nearby
file offsets to the same thread in the same way it batches reads,
and the FHA code will now also send writes to multiple threads when
needed.
This improves sequential write performance in ZFS, because writes
to a file are now more ordered. Since NFS writes (generally
less than 64K) are smaller than the typical ZFS record size
(usually 128K), out of order NFS writes to the same block can
trigger a read in ZFS. Sending them down the same thread increases
the odds of their being in order.
In order for multiple write threads per file in the FHA code to be
useful, writes in the NFS server have been changed to use a LK_SHARED
vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem
doesn't allow multiple writers to a file at once. ZFS is currently
the only filesystem that allows multiple writers to a file, because
it has internal file range locking. This change does not affect the
NFSv4 code.
This improves random write performance to a single file in ZFS, since
we can now have multiple writers inside ZFS at one time.
I have changed the default tuning parameters to a 22 bit (4MB)
window size (from 256K) and unlimited commands per thread as a
result of my benchmarking with ZFS.
The FHA code has been updated to allow configuring the tuning
parameters from loader tunable variables in addition to sysctl
variables. The read offset window calculation has been slightly
modified as well. Instead of having separate bins, each file
handle has a rolling window of bin_shift size. This minimizes
glitches in throughput when shifting from one bin to another.
sys/conf/files:
Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c
when either the old or the new NFS server is built.
sys/fs/nfs/nfsport.h,
sys/fs/nfs/nfs_commonport.c:
Bring in changes from Rick Macklem to newnfs_realign that
allow it to operate in blocking (M_WAITOK) or non-blocking
(M_NOWAIT) mode.
sys/fs/nfs/nfs_commonsubs.c,
sys/fs/nfs/nfs_var.h:
Bring in a change from Rick Macklem to allow telling
nfsm_dissect() whether or not to wait for mallocs.
sys/fs/nfs/nfsm_subs.h:
Bring in changes from Rick Macklem to create a new
nfsm_dissect_nonblock() inline function and
NFSM_DISSECT_NONBLOCK() macro.
sys/fs/nfs/nfs_commonkrpc.c,
sys/fs/nfsclient/nfs_clkrpc.c:
Add the malloc wait flag to a newnfs_realign() call.
sys/fs/nfsserver/nfs_nfsdkrpc.c:
Setup the new NFS server's RPC thread pool so that it will
call the FHA code.
Add the malloc flag argument to newnfs_realign().
Unstaticize newnfs_nfsv3_procid[] so that we can use it in
the FHA code.
sys/fs/nfsserver/nfs_nfsdsocket.c:
In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types
that use the LK_SHARED lock type.
sys/fs/nfsserver/nfs_nfsdport.c:
In nfsd_fhtovp(), if we're starting a write, check to see
whether the underlying filesystem supports shared writes.
If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE.
sys/nfsserver/nfs_fha.c:
Remove all code that is specific to the NFS server
implementation. Anything that is server-specific is now
accessed through a callback supplied by that server's FHA
shim in the new softc.
There are now separate sysctls and tunables for the FHA
implementations for the old and new NFS servers. The new
NFS server has its tunables under vfs.nfsd.fha, the old
NFS server's tunables are under vfs.nfsrv.fha as before.
In fha_extract_info(), use callouts for all server-specific
code. Getting file handles and offsets is now done in the
individual server's shim module.
In fha_hash_entry_choose_thread(), change the way we decide
whether two reads are in proximity to each other.
Previously, the calculation was a simple shift operation to
see whether the offsets were in the same power of 2 bucket.
The issue was that there would be a bucket (and therefore
thread) transition, even if the reads were in close
proximity. When there is a thread transition, reads wind
up going somewhat out of order, and ZFS gets confused.
The new calculation simply tries to see whether the offsets
are within 1 << bin_shift of each other. If they are, the
reads will be sent to the same thread.
The effect of this change is that for sequential reads, if
the client doesn't exceed the max_reqs_per_nfsd parameter
and the bin_shift is set to a reasonable value (22, or
4MB works well in my tests), the reads in any sequential
stream will largely be confined to a single thread.
Change fha_assign() so that it takes a softc argument. It
is now called from the individual server's shim code, which
will pass in the softc.
Change fhe_stats_sysctl() so that it takes a softc
parameter. It is now called from the individual server's
shim code. Add the current offset to the list of things
printed out about each active thread.
Change the num_reads and num_writes counters in the
fha_hash_entry structure to 32-bit values, and rename them
num_rw and num_exclusive, respectively, to reflect their
changed usage.
Add an enable sysctl and tunable that allows the user to
disable the FHA code (when vfs.XXX.fha.enable = 0). This
is useful for before/after performance comparisons.
nfs_fha.h:
Move most structure definitions out of nfs_fha.c and into
the header file, so that the individual server shims can
see them.
Change the default bin_shift to 22 (4MB) instead of 18
(256K). Allow unlimited commands per thread.
sys/nfsserver/nfs_fha_old.c,
sys/nfsserver/nfs_fha_old.h,
sys/fs/nfsserver/nfs_fha_new.c,
sys/fs/nfsserver/nfs_fha_new.h:
Add shims for the old and new NFS servers to interface with
the FHA code, and callbacks for the
The shims contain all of the code and definitions that are
specific to the NFS servers.
They setup the server-specific callbacks and set the server
name for the sysctl and loader tunable variables.
sys/nfsserver/nfs_srvkrpc.c:
Configure the RPC code to call fhaold_assign() instead of
fha_assign().
sys/modules/nfsd/Makefile:
Add nfs_fha.c and nfs_fha_new.c.
sys/modules/nfsserver/Makefile:
Add nfs_fha_old.c.
Reviewed by: rmacklem
Sponsored by: Spectra Logic
MFC after: 2 weeks
and kern.cam.ctl.disable tunable; those were introduced as a workaround
to make it possible to boot GENERIC on low memory machines.
With ctl(4) being built as a module and automatically loaded by ctladm(8),
this makes CTL work out of the box.
Reviewed by: ken
Sponsored by: FreeBSD Foundation
option left but actually consumed by ada(4), so move it to opt_ada.h
and get rid of opt_ata.h.
- Fix stand-alone build of atacore(4) by adding opt_cam.h.
- Use __FBSDID.
- Use DEVMETHOD_END.
- Use NULL instead of 0 for pointers.
- Move ata_timeout() to ata-all.c so we don't need to expose both this
function and ata_cam_end_transaction() but only the former.
- Move ata_cmd2str() from ata-queue.c to ata-all.c so we can get rid of
the former.
- Add some missing prototypes.
MFC after: 3 days
most kernels before FreeBSD 9.0. Remove such modules and respective kernel
options: atadisk, ataraid, atapicd, atapifd, atapist, atapicam. Remove the
atacontrol utility and some man pages. Remove useless now options ATA_CAM.
No objections: current@, stable@
MFC after: never
Merge change from illumos:
1368 enablings on defunct providers prevent providers from unregistering
We try to address some underlying differences between the Solaris
and FreeBSD implementations: dtrace_attach() / dtrace_detach() are
currently unimplemented in FreeBSD but the new code from illumos
makes use of taskq so some adaptations were made to dtrace_open()
and dtrace_close() to handle them appropriately.
Illumos Revision: r13430:8e6add739e38
Reference:
https://www.illumos.org/issues/1368
Reviewed by: gnn
Tested by: Fabian Keil
Obtained from: Illumos
MFC after: 3 weeks
includes support for the NIC and TOE features of the 40G, 10G, and
1G/100M cards based on the T5.
The ASIC is mostly backward compatible with the Terminator 4 so cxgbe(4)
has been updated instead of writing a brand new driver. T5 cards will
show up as cxl (short for cxlgb) ports attached to the t5nex bus driver.
Sponsored by: Chelsio
the older if_start/non-multiqueue interface from the stack. This
is not the default, but can be turned on in the Makefile now regardless
of the OS level to allow either testing or use of ALTQ.
MFC after: one week
much of which is not necessary for PowerPC.
The FBT module can likely be factored into 3 separate files: common,
intel, and powerpc, rather than duplicating most of the code between
the x86 and PowerPC flavors.
All DTrace modules for PowerPC will be MFC'd together once Fasttrap is
completed.
future further optimizations where the vm_object lock will be held
in read mode most of the time the page cache resident pool of pages
are accessed for reading purposes.
The change is mostly mechanical but few notes are reported:
* The KPI changes as follow:
- VM_OBJECT_LOCK() -> VM_OBJECT_WLOCK()
- VM_OBJECT_TRYLOCK() -> VM_OBJECT_TRYWLOCK()
- VM_OBJECT_UNLOCK() -> VM_OBJECT_WUNLOCK()
- VM_OBJECT_LOCK_ASSERT(MA_OWNED) -> VM_OBJECT_ASSERT_WLOCKED()
(in order to avoid visibility of implementation details)
- The read-mode operations are added:
VM_OBJECT_RLOCK(), VM_OBJECT_TRYRLOCK(), VM_OBJECT_RUNLOCK(),
VM_OBJECT_ASSERT_RLOCKED(), VM_OBJECT_ASSERT_LOCKED()
* The vm/vm_pager.h namespace pollution avoidance (forcing requiring
sys/mutex.h in consumers directly to cater its inlining functions
using VM_OBJECT_LOCK()) imposes that all the vm/vm_pager.h
consumers now must include also sys/rwlock.h.
* zfs requires a quite convoluted fix to include FreeBSD rwlocks into
the compat layer because the name clash between FreeBSD and solaris
versions must be avoided.
At this purpose zfs redefines the vm_object locking functions
directly, isolating the FreeBSD components in specific compat stubs.
The KPI results heavilly broken by this commit. Thirdy part ports must
be updated accordingly (I can think off-hand of VirtualBox, for example).
Sponsored by: EMC / Isilon storage division
Reviewed by: jeff
Reviewed by: pjd (ZFS specific review)
Discussed with: alc
Tested by: pho
The early commit is done to facilitate the off-tree work on the
porting of the Radeon driver.
Sponsored by: The FreeBSD Foundation
Debugged and tested by: dumbbell
MFC after: 1 month
from the tree since few months (please note that the userland bits
were already disconnected since a long time, thus there is no need
to update the OLD* entries).
This is not targeted for MFC.
- Add support for IPv6 rx csum offload
- Finally switch mxge from using its own driver lro, to
using tcp_lro
MFC after: 7 days
Sponsored by: Myricom Inc.
The "blackhole" driver was used in conjunction with bhyve to sequester
pci devices intended for passthru until vmm.ko was loaded. This was
useful at one point because vmm.ko could not be loaded at boot time.
The same functionality can now be achieved by loading vmm.ko via the
loader along with the kernel.
Discussed with: grehan
Obtained from: NetApp