Implement the protection check required by the pmap_extract_and_hold()
specification.
Remove the acquisition and release of Giant from pmap_extract_and_hold() and
pmap_protect().
Many thanks to Ken Smith for resolving a sparc64-specific initialization
problem in my original patch.
Tested by: kensmith@
being defined, define and use a new MD macro, cpu_spinwait(). It only
expands to something on i386 and amd64, so the compiled code should be
identical.
Name of the macro found by: jhb
Reviewed by: jhb
their own directory and module, leaving the MD parts in the MD
area (the MD parts _are_ part of the modules). /dev/mem and /dev/io
are now loadable modules, thus taking us one step further towards
a kernel created entirely out of modules. Of course, there is nothing
preventing the kernel from having these statically compiled.
those architectures without pmap locking.
- Eliminate the acquisition and release of Giant from vm_map_protect().
(Translation: mprotect(2) runs to completion without touching Giant on
alpha, amd64, i386 and ia64.)
dereference curthread. It is called only from critical_{enter,exit}(),
which already dereferences curthread. This doesn't seem to affect SMP
performance in my benchmarks, but improves MySQL transaction throughput
by about 1% on UP on my Xeon.
Head nodding: jhb, bmilekic
the thread ID and call db_trace_thread().
Since arm has all the logic in db_stack_trace_cmd(), rename the
new DB_COMMAND function to db_stack_trace to avoid conflicts on
arm.
While here, have db_stack_trace parse its own arguments so that
we can use a more natural radix for IDs. If the ID is not a thread
ID, or more precisely when no thread exists with the ID, try if
there's a process with that ID and return the first thread in it.
This makes it easier to print stack traces from the ps output.
requested by: rwatson@
tested on: amd64, i386, ia64
pmap_protect() and pmap_remove(). In general, they require the lock in
order to modify a page's pv list or flags. In some cases, however,
pmap_protect() can avoid acquiring the lock.
Most of the changes are a direct result of adding thread awareness.
Typically, DDB_REGS is gone. All registers are taken from the
trapframe and backtraces use the PCB based contexts. DDB_REGS was
defined to be a trapframe on all platforms anyway.
Thread awareness introduces the following new commands:
thread X switch to thread X (where X is the TID),
show threads list all threads.
The backtrace code has been made more flexible so that one can
create backtraces for any thread by giving the thread ID as an
argument to trace.
With this change, ia64 has support for breakpoints.
o Make debugging code conditional upon KDB instead of DDB.
o Call kdb_enter() instead of Debugger().
o Remove implementation of Debugger().
o Check kdb_active instead of db_active.
o Call kdb_trap() according to the new world order.
a PCB from a trapframe for purposes of unwinding the stack. The PCB
is used as the thread context and all but the thread that entered the
debugger has a valid PCB.
This function can also be used to create a context for the threads
running on the CPUs that have been stopped when the debugger got
entered. This however is not done at the time of this commit.
in which multiple (presumably different) debugger backends can be
configured and which provides basic services to those backends.
Besides providing services to backends, it also serves as the single
point of contact for any and all code that wants to make use of the
debugger functions, such as entering the debugger or handling of the
alternate break sequence. For this purpose, the frontend has been
made non-optional.
All debugger requests are forwarded or handed over to the current
backend, if applicable. Selection of the current backend is done by
the debug.kdb.current sysctl. A list of configured backends can be
obtained with the debug.kdb.available sysctl. One can enter the
debugger by writing to the debug.kdb.enter sysctl.
backend improves over the old GDB support in the following ways:
o Unified implementation with minimal MD code.
o A simple interface for devices to register themselves as debug
ports, ala consoles.
o Compression by using run-length encoding.
o Implements GDB threading support.
than as one-off hacks in various other parts of the kernel:
- Add a function maybe_preempt() that is called from sched_add() to
determine if a thread about to be added to a run queue should be
preempted to directly. If it is not safe to preempt or if the new
thread does not have a high enough priority, then the function returns
false and sched_add() adds the thread to the run queue. If the thread
should be preempted to but the current thread is in a nested critical
section, then the flag TDF_OWEPREEMPT is set and the thread is added
to the run queue. Otherwise, mi_switch() is called immediately and the
thread is never added to the run queue since it is switch to directly.
When exiting an outermost critical section, if TDF_OWEPREEMPT is set,
then clear it and call mi_switch() to perform the deferred preemption.
- Remove explicit preemption from ithread_schedule() as calling
setrunqueue() now does all the correct work. This also removes the
do_switch argument from ithread_schedule().
- Do not use the manual preemption code in mtx_unlock if the architecture
supports native preemption.
- Don't call mi_switch() in a loop during shutdown to give ithreads a
chance to run if the architecture supports native preemption since
the ithreads will just preempt DELAY().
- Don't call mi_switch() from the page zeroing idle thread for
architectures that support native preemption as it is unnecessary.
- Native preemption is enabled on the same archs that supported ithread
preemption, namely alpha, i386, and amd64.
This change should largely be a NOP for the default case as committed
except that we will do fewer context switches in a few cases and will
avoid the run queues completely when preempting.
Approved by: scottl (with his re@ hat)
than a a stack-limited list. This removes the artifical limit on s/g list
size.
cvs: ----------------------------------------------------------------------
Ultra2 users may want to set OFWCONS_POLL_HZ to a value of '20'.
I have left default value at '4' as higher values can consume a more
than is acceptable amount of CPU, and we don't have a consensus yet
what is an optimal value.
Submitted by: Pyun YongHyeon <yongari@kt-is.co.kr>
its primary use is for the FEPS/FAS366 SCSI found in Sun Ultra 1e and 2
machines. Once the pci front-end is ported, this driver can replace the
amd(4) driver.
The code as-is is fairly stable. I've disabled tagged-queueing until I can
figure out a corruption bug related to it. I'm importing it now so that
people with these machines can (finally) stop netbooting and report bugs
before 5.3.
mbuma is an Mbuf & Cluster allocator built on top of a number of
extensions to the UMA framework, all included herein.
Extensions to UMA worth noting:
- Better layering between slab <-> zone caches; introduce
Keg structure which splits off slab cache away from the
zone structure and allows multiple zones to be stacked
on top of a single Keg (single type of slab cache);
perhaps we should look into defining a subset API on
top of the Keg for special use by malloc(9),
for example.
- UMA_ZONE_REFCNT zones can now be added, and reference
counters automagically allocated for them within the end
of the associated slab structures. uma_find_refcnt()
does a kextract to fetch the slab struct reference from
the underlying page, and lookup the corresponding refcnt.
mbuma things worth noting:
- integrates mbuf & cluster allocations with extended UMA
and provides caches for commonly-allocated items; defines
several zones (two primary, one secondary) and two kegs.
- change up certain code paths that always used to do:
m_get() + m_clget() to instead just use m_getcl() and
try to take advantage of the newly defined secondary
Packet zone.
- netstat(1) and systat(1) quickly hacked up to do basic
stat reporting but additional stats work needs to be
done once some other details within UMA have been taken
care of and it becomes clearer to how stats will work
within the modified framework.
From the user perspective, one implication is that the
NMBCLUSTERS compile-time option is no longer used. The
maximum number of clusters is still capped off according
to maxusers, but it can be made unlimited by setting
the kern.ipc.nmbclusters boot-time tunable to zero.
Work should be done to write an appropriate sysctl
handler allowing dynamic tuning of kern.ipc.nmbclusters
at runtime.
Additional things worth noting/known issues (READ):
- One report of 'ips' (ServeRAID) driver acting really
slow in conjunction with mbuma. Need more data.
Latest report is that ips is equally sucking with
and without mbuma.
- Giant leak in NFS code sometimes occurs, can't
reproduce but currently analyzing; brueffer is
able to reproduce but THIS IS NOT an mbuma-specific
problem and currently occurs even WITHOUT mbuma.
- Issues in network locking: there is at least one
code path in the rip code where one or more locks
are acquired and we end up in m_prepend() with
M_WAITOK, which causes WITNESS to whine from within
UMA. Current temporary solution: force all UMA
allocations to be M_NOWAIT from within UMA for now
to avoid deadlocks unless WITNESS is defined and we
can determine with certainty that we're not holding
any locks when we're M_WAITOK.
- I've seen at least one weird socketbuffer empty-but-
mbuf-still-attached panic. I don't believe this
to be related to mbuma but please keep your eyes
open, turn on debugging, and capture crash dumps.
This change removes more code than it adds.
A paper is available detailing the change and considering
various performance issues, it was presented at BSDCan2004:
http://www.unixdaemons.com/~bmilekic/netbuf_bmilekic.pdf
Please read the paper for Future Work and implementation
details, as well as credits.
Testing and Debugging:
rwatson,
brueffer,
Ketrien I. Saihr-Kesenchedra,
...
Reviewed by: Lots of people (for different parts)
struct vmspace is freed from cpu_sched_exit() to pmap_release().
This has the advantage of being able to rely on MI code to decide
when a free should occur, instead of having to inspect the reference
count ourselves.
At the same time, turn the per-CPU vmspace pointer into a pmap pointer,
so that pmap_release() can deal with pmaps exclusively.
Reviewed (and embrassing bug spotted) by: jake
to <sys/gmon.h>. Cleaned them up a little by not attempting to ifdef
for incomplete and out of date support for GUPROF in userland, as in
the sparc64 version.
elf_reloc() backends for two reasons. First, to support the possibility
of there being two elf linkers in the kernel (eg: amd64), and second, to
pass the relocbase explicitly (for relocating .o format kld files).