variations (e500 currently), this provides a gcc-level FPU emulation and is an
alternative approach to the recently introduced kernel-level emulation
(FPU_EMU).
Approved by: cognet (mentor)
MFp4: e500
check if it is invoked as 'bsdranlib'.
Reported by: Michael Plass <mfp49_freebsd [AT] plass-family [DOT] net>
Reviewed by: Michael Plass <mfp49_freebsd [AT] plass-family [DOT] net>
Reviewed by: jkoshy
Approved by: jkoshy (mentor)
only anonymous default (OBJT_DEFAULT) and swap (OBJT_SWAP) objects should
ever have OBJ_ONEMAPPING set. However, vm_object_deallocate() was
setting it on device (OBJT_DEVICE) objects. As a result,
vm_object_page_remove() could be called on a device object and if that
occurred pmap_remove_all() would be called on the device object's pages.
However, a device object's pages are fictitious, and fictitious pages do
not have an initialized pv list (struct md_page).
To date, fictitious pages have been allocated from zeroed memory,
effectively hiding this problem. Now, however, the conversion of rotting
diagnostics to invariants in the amd64 and i386 pmaps has revealed the
problem. Specifically, assertion failures have occurred during the
initialization phase of the X server on some hardware.
MFC after: 1 week
Discussed with: Kostik Belousov
Reported by: Michiel Boland
Do not mmap 0-size objects and do not try to extract symbol from
0-size objects, but do treat 0-size objects as qualified objects and
accept them as an archive member. (A member with only the header part)
Note that GNU binutils ar on FreeBSD ignores 0-size objects, but on
Linux it accepts them. [1] But, since this is a rare usage, we can
safely ignore the compatibility issue.
Reported by: Michael Plass <mfp49_freebsd [AT] plass-family [DOT] net>
Pointed out by: Michael Plass <mfp49_freebsd [AT] plass-family [DOT] net> [1]
Reviewed by: Michael Plass <mfp49_freebsd [AT] plass-family [DOT] net>
Reviewed by: jkoshy
Approved by: jkoshy (mentor)
computes the new path and the second one, updatepwd(), updates the variables
PWD, OLDPWD and the path used for the pwd builtin according to the new
directory. For a logical directory change, chdir() is now called between
those two functions, no longer causing wrong values to be stored in PWD etc. if
it fails.
PR: 64990, 101316, 120571
namespace in order to handle lockmgr fields in a controlled way instead
than spreading all around bogus stubs:
- VN_LOCK_AREC() allows lock recursion for a specified vnode
- VN_LOCK_ASHARE() allows lock sharing for a specified vnode
In FFS land:
- BUF_AREC() allows lock recursion for a specified buffer lock
- BUF_NOREC() disallows recursion for a specified buffer lock
Side note: union_subr.c::unionfs_node_update() is the only other function
directly handling lockmgr fields. As this is not simple to fix, it has
been left behind as "sole" exception.
the same order that FreeBSD 6 and before did. Doug
White and the other bloodhounds at ISC discovered that
while FreeBSD 7's ordering of options was more efficient,
it caused some cable modem routers to ignore the
SYN-ACKs ordered in this fashion.
The placement of sackOK after the timestamp option seems
to be the critical difference:
FreeBSD 6:
<mss 1460,nop,wscale 1,nop,nop,timestamp 3512155768 0,sackOK,eol>
FreeBSD 7.0:
<mss 1460,nop,wscale 3,sackOK,timestamp 1370692577 0>
FreeBSD 7.0 + this change:
<mss 1460,nop,wscale 3,nop,nop,timestamp 7371813 0,sackOK,eol>
MFC after: 1 week
the provided trailers. This has been broken since revision 1.240.
Submitted by: Dan Nelson
PR: kern/120948
"sounds ok to me" from: phk
MFC after: 3 days
itself, not on the type of the file. As such, do a readlink to get
the symbolic link's contents and fail to match if the path isn't a
symbolic link.
Pointed out by: des@
can run on processors that don't have a FPU. This is typically the
case for Book E processors. While a tuned system will probably want
to use soft-float (or use a processor that has a FPU if the usage is
FP intensive enough), allowing hard-float on FPU-less systems gives
great portability and flexibility.
Obtained from: NetBSD
o Disable interrupts while not running U-Boot code. We clobber
registers that the U-Boot interrupt handlers assume to be
fixed as per the U-Boot register usage. At this time this only
applies to r14. U-Boot uses r2 now for what they used r29 for.
After we restore r14 in preparation of doing the syscall, we
re-enable interrupts. When we return from the syscall, we
disable interrupts and restore the callee-saved r14.
(link) address and the physical (load) address. Ideally, the mapping
between link and load addresses should be abstracted by the copyin(),
copyout() and readin() functions, so that we don't have to add kluges
in __elfN(loadimage)(). Then, we could also have paged virtual memory
for the kernel. This can be important under EFI, where you need to
allocate physical memory form the firmware if you want to work in all
scenarios.
o Move the API prototypes to a separate header (glue.h)
o Allow the platform to hint libuboot about where to look
for the API signature. The uboot_address variable is
expected to be defined by the platform.
in our find.
The following are nops because they aren't relevant to our find:
-ignore_readdir_race
-noignore_readdir_race
-noleaf
The following aliaes were created:
-gid -> -group [2]
-uid -> -user [2]
-wholename -> -path
-iwholename -> ipath
-mount -> -xdev
-d -> -depth [1]
The following new primaries were created:
-lname like -name, but matches symbolic links only)
-ilname like -lname but case insensitive
-quit exit(0)
-samefile returns true for hard links to the specified file
-true Always true
I changed one primary to match GNU find since I think our use of it violates
POLA
-false Always false (was an alias for -not!)
Also, document the '+' modifier for -execdir, as well as all of the above.
This was previously implemented.
Document the remaining 7 primaries that are in GNU find, but aren't yet
implemented in find(1)
[1] This was done in GNU find for compatibility with FreeBSD, yet they
mixed up command line args and primary args.
[2] -uid/-gid in GNU find ONLY takes a numeric arg, but that arg does the
normal range thing that. GNU find -user and -uid also take a numberic arg,
but don't do the range processing. find(1) does both for -user and -group,
so making -uid and -gid aliases is compatible for all non-error cases used
in GNU find. While not perfect emulation, this seems a reasonable thing
for us.
fabs(), a conditional branch, and sign adjustments of 3 variables for
x < 0 when the branch is taken. In double precision, even when the
branch is perfectly predicted, this saves about 10 cycles or 10% on
amd64 (A64) and i386 (A64) for the negative half of the range, but
makes little difference for the positive half of the range. In float
precision, it also saves about 4 cycles for the positive half of the
range on i386, and many more cycles in both halves on amd64 (28 in the
negative half and 11 in the positive half for tanf), but the amd64
times for float precision are anomalously slow so the larger
improvement is only a side effect.
Previous commits arranged for the x < 0 case to be handled simply:
- one part of the rounding method uses the magic number 0x1.8p52
instead of the usual 0x1.0p52. The latter is required for large |x|,
but it doesn't work for negative x and we don't need it for large |x|.
- another part of the rounding method no longer needs to add `half'.
It would have needed to add -half for negative x.
- removing the "quick check no cancellation" in the double precision
case removed the need to take the absolute value of the quadrant
number.
Add my noncopyright in e_rem_pio2.c
from a group without the need to perform the same operation by replacing
the existing list via the '-M' option. The '-M' option requires someone
to fetch the existing members with pw, deleting the undesired members from
the list and sending the altered list back to pw.
Approved by: wes (mentor)
MFC after: 5 days
- add support for T3C
- add DDP support (zero-copy receive)
- fix TOE transmit of large requests
- fix shutdown so that sockets don't remain in CLOSING state indefinitely
- register listeners when an interface is brought up after tom is loaded
- fix setting of multicast filter
- enable link at device attach
- exit tick handler if shutdown is in progress
- add helper for logging TCB
- add sysctls for dumping transmit queues
- note that TOE wxill not be MFC'd until after 7.0 has been finalized
MFC after: 3 days
consists of the null-terminated name and the contents of any structure
you wish to record. A new ktrstruct() function constructs and emits a
KTR_STRUCT record. It is accompanied by convenience macros for struct
stat and struct sockaddr.
In kdump(1), KTR_STRUCT records are handled by a dispatcher function
that runs stringent sanity checks on its contents before handing it
over to individual decoding funtions for each type of structure.
Currently supported structures are struct stat and struct sockaddr for
the AF_INET, AF_INET6 and AF_UNIX families; support for AF_APPLETALK
and AF_IPX is present but disabled, as I am unable to test it properly.
Since 's' was already taken, the letter 't' is used by ktrace(1) to
enable KTR_STRUCT trace points, and in kdump(1) to enable their
decoding.
Derived from patches by Andrew Li <andrew2.li@citi.com>.
PR: kern/117836
MFC after: 3 weeks
FP-to-FP method to round to an integer on all arches, and convert this
to an int using FP-to-integer conversion iff irint() is not available.
This is cleaner and works well on at least ia64, where it saves 20-30
cycles or about 10% on average for 9Pi/4 < |x| <= 32pi/2 (should be
similar up to 2**19pi/2, but I only tested the smaller range).
After the previous commit to e_rem_pio2.c removed the "quick check no
cancellation" non-optimization, the result of the FP-to-integer
conversion is not needed so early, so using irint() became a much
smaller optimization than when it was committed.
An earlier commit message said that cos, cosf, sin and sinf were equally
fast on amd64 and i386 except for cos and sin on i386. Actually, cos
and sin on amd64 are equally fast to cosf and sinf on i386 (~88 cycles),
while cosf and sinf on amd64 are not quite equally slow to cos and sin
on i386 (average 115 cycles with more variance).
9pi/2 < |x| < 32pi/2 since it is only a small or negative optimation
and it gets in the way of further optimizations. It did one more
branch to avoid some integer operations and to use a different
dependency on previous results. The branches are fairly predictable
so they are usually not a problem, so whether this is a good
optimization depends mainly on the timing for the previous results,
which is very machine-dependent. On amd64 (A64), this "optimization"
is a pessimization of about 1 cycle or 1%; on ia64, it is an
optimization of about 2 cycles or 1%; on i386 (A64), it is an
optimization of about 5 cycles or 4%; on i386 (Celeron P2) it is an
optimization of about 4 cycles or 3% for cos but a pessimization of
about 5 cycles for sin and 1 cycle for tan. I think the new i386
(A64) slowness is due to an pipeline stall due to an avoidable
load-store mismatch (so the old timing was better), and the i386
(Celeron) variance is due to its branch predictor not being too good.