implementing accurate logarithms in different bases. This is based
on an approach bde coded up years ago.
This function should always be inlined; it will be used in only a few
places, and rudimentary tests show a 40% performance improvement in
implementations of log2() and log10() on amd64.
The kernel takes a reduced argument x and returns the same polynomial
approximation as e_log.c, but omitting the low-order term. The low-order
term is much larger than the rest of the approximation, so the caller of
the kernel function can scale it to the appropriate base in extra precision
and obtain a much more accurate answer than by using log(x)/log(b).
Explanation by Steve:
jn[f](n,x) for certain ranges of x uses downward recursion to compute
the value of the function. The recursion sequence that is generated is
proportional to the actual desired value, so a normalization step is
taken. This normalization is j0[f](x) divided by the zeroth sequence
member. As Bruce notes, near the zeros of j0[f](x) the computed value
can have giga-ULP inaccuracy. I found for the 1st zero of j0f(x) only
the leading decimal digit is correct. The solution to the issue is
fairly straight forward. The zeros of j0(x) and j1(x) never coincide,
so as j0(x) approaches a zero, the normalization constant switches to
j1[f](x) divided by the 2nd sequence member. The expectation is that
j1[f](x) is a more accurately computed value.
PR: bin/144306
Submitted by: Steven G. Kargl <kargl@troutmask.apl.washington.edu>
Reviewed by: bde
MFC after: 7 days
and one under lib/msun/amd64. This avoids adding the identifiers to the
.text section, and moves them to the .comment section instead.
Suggested by: bde
Approved by: rpaulo (mentor)
macro expand to __isnanf() instead of isnanf() for float arguments.
This change is needed because isnanf() isn't declared in strict POSIX
or C99 mode.
Compatibility note: Apps using isnan(float) that are compiled after
this change won't link against an older libm.
Reported by: Florian Forster <octo@verplant.org>
bottom of the manpages and order them consistently.
GNU groff doesn't care about the ordering, and doesn't even mention
CAVEATS and SECURITY CONSIDERATIONS as common sections and where to put
them.
Found by: mdocml lint run
Reviewed by: ru
argument for fnstsw. Explicitely specify sizes for the XMM control and
status word and X87 control and status words.
Reviewed by: das
Tested by: avg
MFC after: 2 weeks
The amd64-specific bits of msun use an undocumented constraint, which is
less likely to be supported by other compilers (such as Clang). Change
the code to use a more common machine constraint.
Obtained from: /projects/clangbsd/
FPA floating-point format is identical to the VFP format,
but is always stored in big-endian.
Introduce _IEEE_WORD_ORDER to describe the byte-order of
the FP representation.
Obtained from: Juniper Networks, Inc
#pragma STDC CX_LIMITED_RANGE ON
the "ON" needs to be in caps. gcc doesn't understand this pragma
anyway and assumes it is always on in any case, but icc supports
it and cares about the case.
conj() instead of using expressions like z * I. The latter is bad for
several reasons:
1. It is implemented using arithmetic, which is unnecessary, and can
generate floating point exceptions, contrary to the requirements on
these functions.
2. gcc implements complex multiplication using a formula that breaks
down for infinities, e.g., it gives INFINITY * I == nan + inf I.
- When y/x is huge, it's faster and more accurate to return pi/2
instead of pi - pi/2.
- There's no need for 3 lines of bit fiddling to compute -z.
- Fix a comment.
at compile time regardless of the dynamic precision, and there's
no way to disable this misfeature at compile time. Hence, it's
impossible to generate the appropriate tables of constants for the
long double inverse trig functions in a straightforward way on i386;
this change hacks around the problem by encoding the underlying bits
in the table.
Note that these functions won't pass the regression test on i386,
even with the FPU set to extended precision, because the regression
test is similarly damaged by gcc. However, the tests all pass when
compiled with a modified version of gcc.
Reported by: bde
- Adjust several constants for float precision. Some thresholds
that were appropriate for double precision were never changed
when these routines were converted to float precision. This
has an impact on performance but not accuracy. (Submitted by bde.)
- Reduce the degrees of the polynomials used. A smaller degree
suffices for float precision.
- In asinf(), use double arithmetic in part of the calculation to
avoid a corner case and some complicated arithmetic involving a
division and some buggy constants. This improves performance and
accuracy.
Max error (ulps):
asinf acosf atanf
before 0.925 0.782 0.852
after 0.743 0.804 0.852
As bde points out, it's cheaper for asin*() and acos*() to use
polynomials instead of rational functions, but that's a task for
another day.
spurious optimizations. gcc doesn't support FENV_ACCESS, so when it
folds constants, it assumes that the rounding mode is always the
default and floating point exceptions never matter.
1. architecture-specific files
2. long double format-specific files
3. bsdsrc
4. src
5. man
The original order was virtually the opposite of this.
This should not cause any functional changes at this time. The
difference is only significant when one wants to override, say, a
generic foo.c with a more specialized foo.c (as opposed to foo.S).
- fma(x, y, z) returns z, not NaN, if z is infinite, x and y are finite,
x*y overflows, and x*y and z have opposite signs.
- fma(x, y, z) doesn't generate an overflow, underflow, or inexact exception
if z is NaN or infinite, as per IEEE 754R.
- If the rounding mode is set to FE_DOWNWARD, fma(1.0, 0.0, -0.0) is -0.0,
not +0.0.
This makes little difference in float precision, but in double
precision gives a speedup of about 30% on amd64 (A64 CPU) and i386
(A64). This depends on fabs[f]() being inline and efficient. The
bit fiddling (or any use of SET_HIGH_WORD(), which libm does too
much because it was best on old 32-bit machines) always causes
packing overheads and sometimes causes stalls in the packing, since
it operates on only part of a variable in the double precision case.
It apparently did cause stalls in a critical path here.
fabs(x+0.0)+fabs(y+0.0) when mixing NaNs. This improves
consistency of the result by making it harder for the compiler to reorder
the operands. (FP addition is not necessarily commutative because the
order of operands makes a difference on some machines iff the operands are
both NaNs.)
e_rem_pio2.c:
This case goes up to about 2**20pi/2, but the comment about it said that
it goes up to about 2**19pi/2.
It went too far above 2**pi/2, giving a multiplier fn with 21 significant
bits in some cases. This would be harmful except for a numerical
accident. It happens that the terms of the approximation to pi/2,
when rounded to 33 bits so that multiplications by 20-bit fn's are
exact, happen to be rounded to 32 bits so multiplications by 21-bit
fn's are exact too, so the bug only complicates the error analysis (we
might lose a bit of accuracy but have bits to spare).
e_rem_pio2f.c:
The bogus comment in e_rem_pio2.c was copied and the code was changed
to be bug-for-bug compatible with it, except the limit was made 90
ulps smaller than necessary. The approximation to pi/2 was not
modified except for discarding some of it.
The same rough error analysis that justifies the limit of 2**20pi/2
for double precision only justifies a limit of 2**18pi/2 for float
precision. We depended on exhaustive testing to check the magic numbers
for float precision. More exaustive testing shows that we can go up
to 2**28pi/2 using a 53+25 bit approximation to pi/2 for float precision,
with a the maximum error for cosf() and sinf() unchanged at 0.5009
ulps despite the maximum error in rem_pio2f being ~0.25 ulps. Implement
this.
gives an average speedup of about 12 cycles or 17% for
9pi/4 < |x| <= 2**19pi/2 and a smaller speedup for larger x, and a
small speeddown for |x| <= 9pi/4 (only 1-2 cycles average, but that
is 4%).
Inlining this is less likely to bust caches than inlining the float
version since it is much smaller (about 220 bytes text and rodata) and
has many fewer branches. However, the float version was already large
due to its manual inlining of the branches and also the polynomial
evaluations.
__kernel_rem_pio2(). This simplifies analysis of aliasing and thus
results in better code for the usual case where __kernel_rem_pio2()
is not called. In particular, when __ieee854_rem_pio2[f]() is inlined,
it normally results in y[] being returned in registers. I couldn't
get this to work using the restrict qualifier.
In float precision, this saves 2-3% in most cases on amd64 and i386
(A64) despite it not being inlined in float precision yet. In double
precision, this has high variance, with an average gain of 2% for
amd64 and 0.7% for i386 (but a much larger gain for usual cases) and
some losses.
this function and its callers cosf(), sinf() and tanf() don't waste time
converting values from doubles to floats and back for |x| > 9pi/4.
All these functions were optimized a few years ago to mostly use doubles
internally and across the __kernel*() interfaces but not across the
__ieee754_rem_pio2f() interface.
This saves about 40 cycles in cosf(), sinf() and tanf() for |x| > 9pi/4
on amd64 (A64), and about 20 cycles on i386 (A64) (except for cosf()
and sinf() in the upper range). 40 cycles is about 35% for |x| < 9pi/4
<= 2**19pi/2 and about 5% for |x| > 2**19pi/2. The saving is much
larger on amd64 than on i386 since the conversions are not easy to
optimize except on i386 where some of them are automatic and others
are optimized invalidly. amd64 is still about 10% slower in cosf()
and tanf() in the lower range due to conversion overhead.
This also gives a tiny speedup for |x| <= 9pi/4 on amd64 (by simplifying
the code). It also avoids compiler bugs and/or additional slowness
in the conversions on (not yet supported) machines where double_t !=
double.
e_rem_pio2.c:
Float and double precision didn't work because init_jk[] was 1 too small.
It needs to be 2 larger than you might expect, and 1 larger than it was
for these precisions, since its test for recomputing needs a margin of
47 bits (almost 2 24-bit units).
init_jk[] seems to be barely enough for extended and quad precisions.
This hasn't been completely verified. Callers now get about 24 bits
of extra precision for float, and about 19 for double, but only about
8 for extended and quad. 8 is not enough for callers that want to
produce extra-precision results, but current callers have rounding
errors of at least 0.8 ulps, so another 1/2**8 ulps of error from the
reduction won't affect them much.
Add a comment about some of the magic for init_jk[].
e_rem_pio2.c:
Double precision worked in practice because of a compensating off-by-1
error here. Extended precision was asked for, and it executed exactly
the same code as the unbroken double precision.
e_rem_pio2f.c:
Float precision worked in practice because of a compensating off-by-1
error here. Double precision was asked for, and was almost needed,
since the cosf() and sinf() callers want to produce extra-precision
results, at least internally so that their error is only 0.5009 ulps.
However, the extra precision provided by unbroken float precision is
enough, and the double-precision code has extra overheads, so the
off-by-1 error cost about 5% in efficiency on amd64 and i386.
variations (e500 currently), this provides a gcc-level FPU emulation and is an
alternative approach to the recently introduced kernel-level emulation
(FPU_EMU).
Approved by: cognet (mentor)
MFp4: e500
fabs(), a conditional branch, and sign adjustments of 3 variables for
x < 0 when the branch is taken. In double precision, even when the
branch is perfectly predicted, this saves about 10 cycles or 10% on
amd64 (A64) and i386 (A64) for the negative half of the range, but
makes little difference for the positive half of the range. In float
precision, it also saves about 4 cycles for the positive half of the
range on i386, and many more cycles in both halves on amd64 (28 in the
negative half and 11 in the positive half for tanf), but the amd64
times for float precision are anomalously slow so the larger
improvement is only a side effect.
Previous commits arranged for the x < 0 case to be handled simply:
- one part of the rounding method uses the magic number 0x1.8p52
instead of the usual 0x1.0p52. The latter is required for large |x|,
but it doesn't work for negative x and we don't need it for large |x|.
- another part of the rounding method no longer needs to add `half'.
It would have needed to add -half for negative x.
- removing the "quick check no cancellation" in the double precision
case removed the need to take the absolute value of the quadrant
number.
Add my noncopyright in e_rem_pio2.c
FP-to-FP method to round to an integer on all arches, and convert this
to an int using FP-to-integer conversion iff irint() is not available.
This is cleaner and works well on at least ia64, where it saves 20-30
cycles or about 10% on average for 9Pi/4 < |x| <= 32pi/2 (should be
similar up to 2**19pi/2, but I only tested the smaller range).
After the previous commit to e_rem_pio2.c removed the "quick check no
cancellation" non-optimization, the result of the FP-to-integer
conversion is not needed so early, so using irint() became a much
smaller optimization than when it was committed.
An earlier commit message said that cos, cosf, sin and sinf were equally
fast on amd64 and i386 except for cos and sin on i386. Actually, cos
and sin on amd64 are equally fast to cosf and sinf on i386 (~88 cycles),
while cosf and sinf on amd64 are not quite equally slow to cos and sin
on i386 (average 115 cycles with more variance).
9pi/2 < |x| < 32pi/2 since it is only a small or negative optimation
and it gets in the way of further optimizations. It did one more
branch to avoid some integer operations and to use a different
dependency on previous results. The branches are fairly predictable
so they are usually not a problem, so whether this is a good
optimization depends mainly on the timing for the previous results,
which is very machine-dependent. On amd64 (A64), this "optimization"
is a pessimization of about 1 cycle or 1%; on ia64, it is an
optimization of about 2 cycles or 1%; on i386 (A64), it is an
optimization of about 5 cycles or 4%; on i386 (Celeron P2) it is an
optimization of about 4 cycles or 3% for cos but a pessimization of
about 5 cycles for sin and 1 cycle for tan. I think the new i386
(A64) slowness is due to an pipeline stall due to an avoidable
load-store mismatch (so the old timing was better), and the i386
(Celeron) variance is due to its branch predictor not being too good.
the the double to int conversion operation which is very slow on these
arches. Assume that the current rounding mode is the default of
round-to-nearest and use rounding operations in this mode instead of
faking this mode using the round-towards-zero mode for conversion to
int. Round the double to an integer as a double first and as an int
second since the double result is needed much earler.
Double rounding isn't a problem since we only need a rough approximation.
We didn't support other current rounding modes and produce much larger
errors than before if called in a non-default mode.
This saves an average about 10 cycles on amd64 (A64) and about 25 on
i386 (A64) for x in the above range. In some cases the saving is over
25%. Most cases with |x| < 1000pi now take about 88 cycles for cos
and sin (with certain CFLAGS, etc.), except on i386 where cos and sin
(but not cosf and sinf) are much slower at 111 and 121 cycles respectivly
due to the compiler only optimizing well for float precision. A64
hardware cos and sin are slower at 105 cycles on i386 and 110 cycles
on amd64.
the same as lrint() except it returns int instead of long. Though the
extern lrint() is fairly fast on these arches, it still takes about
12 cycles longer than the inline version, and 12 cycles is a lot in
applications where [li]rint() is used to avoid slow conversions that
are only a couple of times slower.
This is only for internal use. The libm versions of *rint*() should
also be inline, but that would take would take more header engineering.
Implementing irint() instead of lrint() also avoids a conflict with
the extern declaration of the latter.
on i386 (A64), 5 cycles on amd64 (A64), and 3 cycles on ia64). gcc
tends to generate very bad code for accessing floating point values
as bits except when the integer accesses have the same width as the
floating point values, and direct accesses to bit-fields (as is common
only for long double precision) always gives such accesses. Use the
expsign access method, which is good for 80-bit long doubles and
hopefully no worse for 128-bit long doubles. Now the generated code
is less bad. There is still unnecessary copying of the arg on amd64
and i386 and mysterious extra slowness on amd64.
pi/4 <= |x| <= 3pi/4. Use the same branch ladder as for float precision.
Remove the optimization for |x| near pi/2 and don't do it near the
multiples of pi/2 in the newly optimized range, since it requires
fairly large code to handle only relativley few cases. Ifdef out
optimization for |x| <= pi/4 since this case can't occur because it
is done in callers.
On amd64 (A64), for cos() and sin() with uniformly distributed args,
no cache misses, some parallelism in the caller, and good but not great
CC and CFLAGS, etc., this saves about 40 cycles or 38% in the newly
optimized range, or about 27% on average across the range |x| <= 2pi
(~65 cycles for most args, while the A64 hardware fcos and fsin take
~75 cycles for half the args and 125 cycles for the other half). The
speedup for tan() is much smaller, especially relatively. The speedup
on i386 (A64) is slightly smaller, especially relatively. i386 is
still much slower than amd64 here (unlike in the float case where it
is slightly faster).
saves an average of about 8 cycles or 5% on A64 (amd64 and i386 --
more in cycles but about the same percentage on i386, and more with
old versions of gcc) with good CFLAGS and some parallelism in the
caller. As usual, it takes a couple more multiplications so it will
be slower on old machines.
Convert to __FBSDID().
optimization of about 10% for cos(x), sin(x) and tan(x) on
|x| < 2**19*pi/2. We didn't do this before because __ieee754__rem_pio2()
is too large and complicated for gcc-3.3 to inline very well. We don't
do this for float precision because it interferes with optimization
of the usual (?) case (|x| < 9pi/4) which is manually inlined for float
precision only.
This has some rough edges:
- some static data is duplicated unnecessarily. There isn't much after
the recent move of large tables to k_rem_pio2.c, and some static data
is duplicated to good affect (all the data static const, so that the
compiler can evaluate expressions like 2*pio2 at compile time and
generate even more static data for the constant for this).
- extern inline is used (for the same reason as in previous inlining of
k_cosf.c etc.), but C99 apparently doesn't allow extern inline
functions with static data, and gcc will eventually warn about this.
Convert to __FBSDID().
Indent __ieee754_rem_pio2()'s declaration consistently (its style was
made inconsistent with fdlibm a while ago, so complete this).
Fix __ieee754_rem_pio2()'s return type to match its prototype. Someone
changed too many ints to int32_t's when fixing the assumption that all
ints are int32_t's.
Bruce for putting lots of effort into these; getting them right isn't
easy, and they went through many iterations.
Submitted by: Steve Kargl <sgk@apl.washington.edu> with revisions from bde
|x| or |y| and b is |y| or |x|) when mixing NaN arg(s).
hypot*() had its own foot shooting for mixing NaNs -- it swaps the
args so that |x| in bits is largest, but does this before quieting
signaling NaNs, so on amd64 (where the result of adding NaNs depends
on the order) it gets inconsistent results if setting the quiet bit
makes a difference, just like a similar ia64 and i387 hardware comparison.
The usual fix (see e_powf.c 1.13 for more details) of mixing using
(a+0.0)+-(b+0.0) doesn't work on amd64 if the args are swapped (since
the rder makes a difference with SSE). Fortunately, the original args
are unchanged and don't need to be swapped when we let the hardware
decide the mixing after quieting them, but we need to take their
absolute value.
hypotf() doesn't seem to have any real bugs masked by this non-bug.
On amd64, its maximum error in 2^32 trials on amd64 is now 0.8422 ulps,
and on i386 the maximum error is unchanged and about the same, except
with certain CFLAGS it magically drops to 0.5 (perfect rounding).
Convert to __FBSDID().
be into 12+24 bits of precision for extra-precision multiplication,
but was into 13+24 bits. On i386 with -O1 the bug was hidden by
accidental extra precision, but on amd64, in 2^32 trials the bug
caused about 200000 errors of more than 1 ulp, with a maximum error
of about 80 ulps. Now the maximum error in 2^32 trials on amd64
is 0.8573 ulps. It is still 0.8316 ulps on i386 with -O1.
The nearby decomposition of 1/ln2 and the decomposition of 2/(3ln2) in
the double precision version seem to be sub-optimal but not broken.
This uses 2 tricks to improve consistency so that more serious problems
aren't hidden in simple regression tests by noise for the NaNs:
- for a signaling NaN, adding 0.0 generates the invalid exception and
converts to a quiet NaN, and doesn't have too many effects for other
types of args (it converts -0 to +0 in some rounding modes, but that
hopefully doesn't change the result after adding the NaN arg). This
avoids some inconsistencies on i386 and ia64. On these arches, the
result of an operation on 2 NaNs is apparently the largest or the
smallest of the NaNs as bits (consistently largest or smallest for
each arch, but the opposite). I forget which way the comparison
goes and if the sign bit affects it. The quiet bit is is handled
poorly by not always setting it before the comparision or ignoring
it. Thus if one of the args was originally a signaling NaN and the
other was originally a quiet NaN, then the result depends too much
on whether the signaling NaN has been quieted at this point, which
in turn depends on optimizations and promotions. E.g., passing float
signaling NaNs to double functions must quiet them on conversion;
on i387, loading a signaling NaN of type float or double (but not
long double) into a register involves a conversion, so it quiets
signaling NaNs, so if the addition has 2 register operands than it
only sees quiet NaNs, but if the addition has a memory operand then
it sees a signaling NaN iff it is in the memory operand.
- subtraction instead of addition is used to avoid a dubious optimization
in old versions of gcc. For SSE operations, mixing of NaNs apparently
always gives the target operand. This is not as good as the i387
and ia64 behaviour. It doesn't mix NaNs at all, and makes addition
not quite commutative. Old versions of gcc sometimes rewrite x+y
to y+x and thus give different results (in bits) for NaNs. gcc-3.3.3
rewrites x+y to y+x for one of pow() and powf() but not the other,
so starting from float NaN args x and y, powf(x, y) was almost always
different from pow(x, y).
These tricks won't give consistency of 2-arg float and double functions
with long double ones on amd64, since long double ones use the i387
which has different semantics from SSE.
Convert to __FBSDID().
and trunc() to the corresponding long double functions. This is not
just an optimization for these arches. The full long double functions
have a wrong value for `huge', and the arches without full long doubles
depended on it being wrong.
This has the side effect of confusing gcc-4.2.1's optimizer into more
often doing the right thing. When it does the wrong thing here, it
seems to be mainly making too many copies of x with dependency chains.
This effect is tiny on amd64, but in some cases on i386 it is enormous.
E.g., on i386 (A64) with -O1, the current version of exp2() should
take about 50 cycles, but took 83 cycles before this change and 66
cycles after this change. exp2f() with -O1 only speeded up from 51
to 47 cycles. (exp2f() should take about 40 cycles, on an Athlon in
either i386 or amd64 mode, and now takes 42 on amd64). exp2l() with
-O1 slowed down from 155 cycles to 123 for some args; this is unimportant
since the i386 exp2l() is a fake; the wrong thing for it seems to
involve branch misprediction.
faster on all machines tested (old Celeron (P2), A64 (amd64 and i386)
and ia64) except on ia64 when compiled with -O1. It takes 2 more
multiplications, so it will be slower on old machines. The speedup
is about 8 cycles = 17% on A64 (amd64 and i386) with best CFLAGS
and some parallelism in the caller.
Move the evaluation of 2**k up a bit so that it doesn't compete too
much with the new polynomial evaluation. Unlike the previous
optimization, this rearrangement cannot change the result, so compilers
and CPU schedulers can do it, but they don't do it quite right yet.
This saves a whole 1 or 2 cycles on A64.
when the result is +-0. IEEE754 requires (in all rounding modes) that
if the result is +-0 then its sign is the same as that of the first
arg, but in round-towards-minus-infinity mode an uncorrected implementation
detail always reversed the sign. (The detail is that x-x with x's
sign positive gives -0 in this mode only, but the algorithm assumed
that x-x always has positive sign for such x.)
remquo() and remquof() seem to need the same fix, but I cannot test them
yet.
Use long doubles when mixing NaN args. This trick improves consistency
of results on at least amd64, so that more serious problems like the
above aren't hidden in simple regression tests by noise for the NaNs.
On amd64, hardware remainder should be used since it is about 10 times
faster than software remainder and is already used for remquo(), but
it involves using the i387 even for floats and doubles, and the i387
does NaN mixing which is better than but inconsistent with SSE NaN mixing.
Software remainder() would probably have been inconsistent with
software remainderl() for the same reason if the latter existed.
Signaling NaNs cause further inconsistencies on at least ia64 and i386.
Use __FBSDID().
exp2(i/TBLSIZE) * p(z) instead of only for the final multiplication
and addition. This fixes the code to match the comment that the maximum
error is 0.5010 ulps (except on machines that evaluate float expressions
in extra precision, e.g., i386's, where the evaluation was already
in extra precision).
Fix and expand the comment about use of double precision.
The relative roundoff error from evaluating p(z) in non-extra precision
was about 16 times larger than in exp2() because the interval length
is 16 times smaller. Its maximum was at least P1 * (1.0 ulps) *
max(|z|) ~= log(2) * 1.0 * 1/32 ~= 0.0217 ulps (1.0 ulps from the
addition in (1 + P1*z) with a cancelation error when z ~= -1/32). The
actual final maximum was 0.5313 ulps, of which 0.0303 ulps must have
come from the additional roundoff error in p(z). I can't explain why
the additional roundoff error was almost 3/2 times larger than the rough
estimate.
precision. The new polynomial has degree 4 instead of 10, and a maximum
error of 2**-30.04 ulps instead of 2**-33.15. This doesn't affect the
final error significantly; the maximum error was and is about 0.5015
ulps on i386 -O1, and the number of cases with an error of > 0.5 ulps
is increased from 13851 to 14407.
Note that the error is only this close to 0.5 ulps due to excessive
extra precision caused by compiler bugs on i386. The extra precision
could be obtained intentionally, and is useful for keeping the error
of the hyperbolic float functions below 1 ulp, since these functions
are implemented using expm1f. My recent change for scaling by 2**k
had the unintentional side effect of retaining extra precision for
longer, so callers of expm1f see errors of more like 0.0015 ulps than
0.5015 ulps, and for the hyperbolic functions this reduces the maximum
error from nearly about 2 ulps to about 0.75 ulps.
This is about 10% faster on i386 (A64). expm1* is still very slow,
but now the float version is actually significantly faster. The
algorithm is very sophisticated but not very good except on machines
with fast division.
exponent bits of the reduced result, construct 2**k (hopefully in
parallel with the construction of the reduced result) and multiply by
it. This tends to be much faster if the construction of 2**k is
actually in parallel, and might be faster even with no parallelism
since adjustment of the exponent requires a read-modify-wrtite at an
unfortunate time for pipelines.
In some cases involving exp2* on amd64 (A64), this change saves about
40 cycles or 30%. I think it is inherently only about 12 cycles faster
in these cases and the rest of the speedup is from partly-accidentally
avoiding compiler pessimizations (the construction of 2**k is now
manually scheduled for good results, and -O2 doesn't always mess this
up). In most cases on amd64 (A64) and i386 (A64) the speedup is about
20 cycles. The worst case that I found is expf on ia64 where this
change is a pessimization of about 10 cycles or 5%. The manual
scheduling for plain exp[f] is harder and not as tuned.
Details specific to expm1*:
- the saving is closer to 12 cycles than to 40 for expm1* on i386 (A64).
For some reason it is much larger for negative args.
- also convert to __FBSDID().
exponent bits of the reduced result, construct 2**k (hopefully in
parallel with the construction of the reduced result) and multiply by
it. This tends to be much faster if the construction of 2**k is
actually in parallel, and might be faster even with no parallelism
since adjustment of the exponent requires a read-modify-wrtite at an
unfortunate time for pipelines.
In some cases involving exp2* on amd64 (A64), this change saves about
40 cycles or 30%. I think it is inherently only about 12 cycles faster
in these cases and the rest of the speedup is from partly-accidentally
avoiding compiler pessimizations (the construction of 2**k is now
manually scheduled for good results, and -O2 doesn't always mess this
up). In most cases on amd64 (A64) and i386 (A64) the speedup is about
20 cycles. The worst case that I found is expf on ia64 where this
change is a pessimization of about 10 cycles or 5%. The manual
scheduling for plain exp[f] is harder and not as tuned.
This change ld128/s_exp2l.c has not been tested.
that is specialized for float precision. The new polynomial has degree
5 instead of 11, and a maximum error of 2**-27.74 ulps instead
of 2**-30.64. This doesn't affect the final error significantly; the
maximum error was and is about 0.9101 ulps on amd64 -01 and the number
of cases with an error of > 0.5 ulps is actually reduced by epsilon
despite the larger error in the polynomial.
This is about 15% faster on amd64 (A64), i386 (A64) and ia64. The asm
version is still used instead of this on i386 since it is faster and
more accurate.
cases which are used mainly by regression tests.
As usual, the cutoff for tiny args was not correctly translated to
float precision. It was 2**-54 but 2**-24 works. It must be about
2**-precision, since the error from approximating log(1+x) by x is
about the same as |x|. Exhaustive testing shows that 2**-24 gives
perfect rounding in round-to-nearest mode.
Similarly for the cutoff for being small, except this is not used by
so many other functions. It was 2**-29 but 2**-15 works. It must be
a bit smaller than sqrt(2**-precision), since the error from
approximating log(1+x) by x-x*x/2 is about the same as x*x. Exhaustive
testing shows that 2**-15 gives a maximum error of 0.5052 ulps in
round-to-nearest-mode. The algorithm for the general case is only good
for 0.8388 ulps, so this is sufficient (but it loses slightly on i386 --
then extra precision gives 0.5032 ulps for the general case).
While investigating this, I noticed that optimizing the usual case by
falling into a middle case involving a simple polynomial evaluation
(return x-x*x/2 instead of x here) is not such a good idea since it
gives an enormous pessimization of tinier args on machines for which
denormals are slow. Float x*x/2 is denormal when |x| ~< 2**-64 and
x*x/2 is evaluated in float precision, so it can easily be denormal
for normal x. This is even more interesting for general polynomial
evaluations. Multiplying out large powers of x is normally a good
optimization since it reduces dependencies, but it creates denormals
starting with quite large x.
forget to translate "float" to "double".
ucbtest didn't detect the bug, but exhaustive testing of the float
case relative to the double case eventually did. The bug only affects
args x with |x| ~> 2**19*(pi/2) on non-i386 (i386 is broken in a
different way for large args).
it should never have existed and it has not been used for many years
(floats are reduced faster using doubles). All relevant changes (just
the workaround for broken assignment) have been merged to the double
version.
there is a problem with non-floats (when i386 defaults to extra
precision). This essentially restores yesterday's behaviour for doubles
on i386 (since generic rint() isn't used and everywhere else assumed
working assignment), but for arches that use the generic rint() it
finishes restoring some of 1995's behaviour (don't waste time doing
unnecessary store/load).
variable hack for exp2f() only.
The volatile variable had a surprisingly large cost for exp2f() -- 19
cycles or 15% on i386 in the worst case observed. This is only partly
explained by there being several references to the variable, only one
of which benefited from it being volatile. Arches that have working
assignment are likely to benefit even more from not having any volatile
variable.
exp2() now has a chance of working with extra precision on i386.
exp2() has even more references to the variable, so it would have been
pessimized more by simply declaring the variable as volatile. Even
the temporary volatile variable for STRICT_ASSIGN costs 5-10% on i386,
(A64) so I will change STRICT_ASSIGN() to do an ordinary assignment
until i386 defaults to extra precision.
instead of a volatile cast hack for the float version only. The cast
hack broke with gcc-4, but this was harmless since the float version
hasn't been used for a few years. Merge from the float version so
that the double version has a chance of working on i386 with extra
precision.
See k_rem_pio2f.c rev.1.8 for the original hack.
Convert to _FBSDID().
hack for log1pf() only. The cast hack broke with gcc-4, resulting in
~1 million errors of more than 1 ulp, with a maximum error of ~1.5 ulps.
Now the maximum error for log1pf() on i386 is 0.5034 ulps again (this
depends on extra precision), and log1p() has a chance of working with
extra precision.
See s_log1pf.c 1.8 for the original hack. (It claims only 62343 large
errors).
Convert to _FBSDID(). Another thing broken with gcc-4 is the static
const hack used for rcsids.
around assignments not working for gcc on i386. Now volatile hacks
for rint() and rintf() don't needlessly pessimize so many arches
and the remaining pessimizations (for arm and powerpc) can be avoided
centrally.
This cleans up after s_rint.c 1.3 and 1.13 and s_rintf.c 1.3 and 1.9:
- s_rint.c 1.13 broke 1.3 by only using a volatile cast hack in 1 place
when it was needed in 2 places, and the volatile cast hack stopped
working with gcc-4. These bugs only affected correctness tests on
i386 since i386 normally uses asm rint() and doesn't support the
extra precision mode that would break assignments of doubles.
- s_rintf.c 1.9 improved(?) on 1.3 by using a volatile variable hack
instead of an extra-precision variable hack, but it declared 2
variables as volatile when only 1 variable needed to be volatile.
This only affected speed tests on i386 since i386 uses asm rintf().
long doubles (i386, amd64, ia64) and one for machines with 128-bit
long doubles (sparc64). Other platforms use the double version.
I've only done runtime testing on i386.
Thanks to bde@ for helpful discussions and bugfixes.
assignments and casts don't clip extra precision, if any. The
implementation is to assign to a temporary volatile variable and read
the result back to assign to the original lvalue.
lib/msun currently 2 different hard-coded hacks to avoid the problem
in just a few places and needs it in a few more places. One variant
uses volatile for the original lvalue. This works but is slower than
necessary. Another temporarily casts the lvalue to volatile. This
broke with gcc-4.2.1 or earlier (gcc now stores to the lvalue but
doesn't load from it).
my original implementation made both use the same code. Unfortunately,
this meant libm depended on a vendor header at compile time and previously-
unexposed vendor bits in libc at runtime.
Hence, I just wrote my own version of the relevant vendor routine. As it
turns out, mine has a factor of 8 fewer of lines of code, and is a bit more
readable anyway. The strtod() and *scanf() routines still use vendor code.
Reviewed by: bde
someone thought it would be a good idea to copy z_abs() to libm in 1994.
However, it's never been declared or documented anywhere, and I'm
reasonably confident that nobody uses it.
Discussed with: bde, deischen, kan
I hope that this and the i386 version of it will not be needed, but
this is currently about 16 cycles or 36% faster than the C version,
and the i386 version is about 8 cycles or 19% faster than the C
version, due to poor optimization of the C version.
adds two new directories in msun: ld80 and ld128. These are for
long double functions specific to the 80-bit long double format
used on x86-derived architectures, and the 128-bit format used on
sparc64, respectively.
hundreds of similar aliasing bugs, but all except this one seem to have
been fixed by Cygnus and/or NetBSD before the modified version of fdlibm
was imported into FreeBSD in 1994.
PR: standards/113147
Submitted by: Steve Kargl <sgk@troutmask.apl.washington.edu>
involving moving the check for x == 0). The savings in cycles are
smaller for cbrtf() than for cbrt(), and positive in all measured cases
with gcc-3.4.4, but still very machine/compiler-dependent.
Warning, after symbol versioning is enabled, going back is not easy
(use WITHOUT_SYMVER at your own risk).
Change the default thread library to libthr.
There most likely still needs to be a version bump for at least the
thread libraries. If necessary, this will happen later.
that ints have >= 31 value bits elsewhere. s/int/int32_t/ seems to
have been done too globally for all other files in msun/src before
msun/ was imported into FreeBSD.
Minor fixes in comments.
e_lgamma_r.c:
Describe special cases in more detail:
- exception for lgamma(0) and lgamma(neg.integer)
- lgamma(-Inf) = Inf. This is wrong but is required by C99 Annex F. I
hope to change this.
(1) tgamma(-Inf) returned +Inf and failed to raise any exception, but
should always have raised an exception, and should behave like
tgamma(negative integer).
(2) tgamma(negative integer) returned +Inf and raised divide-by-zero,
but should return NaN and raise "invalid" on any IEEEish system.
(3) About half of the 2**52 negative intgers between -2**53 and -2**52
were misclassified as non-integers by using floor(x + 0.5) to round
to nearest, so tgamma(x) was wrong (+-0 instead of +Inf and now NaN)
on these args. The floor() expression is hard to use since rounding
of (x + 0.5) may give x or x + 1, depending on |x| and the current
rounding mode. The fixed version uses ceil(x) to classify x before
operating on x and ends up being more efficient since ceil(x) is
needed anyway.
(4) On at least the problematic args in (3), tgamma() raised a spurious
inexact.
(5) tgamma(large positive) raised divide-by-zero but should raise overflow.
(6) tgamma(+Inf) raised divide-by-zero but should not raise any exception.
(7) Raise inexact for tiny |x| in a way that has some chance of not being
optimized away.
The fix for (5) and (6), and probably for (2), also prevents -O optimizing
away the exception.
PR: 112180 (2)
Standards: Annex F in C99 (IEC 60559 binding) requires (1), (2) and (6).
values in more detail, and change the style of this comment to be closer
to fdlibm and C99:
- tgamma(-Inf) was undocumented and is wrong (+Inf, should be NaN)
- tgamma(negative integer) is as intended (+Inf) but not best for IEEE-754
(NaN)
- tgamma(-0) was documented as being wrong (+Inf) but was correct (-Inf)
- documentation of setting of exceptions (overflow, etc.) was more
complete here than in most of libm, but was further from matching
the actual setting than in most of libm, due to various bugs here
(primarily, always evaluating +Inf one/zero and getting unwanted
divide-by-zero exceptions from this). Now the actual behaviour with
gcc -O0 is documented. Optimization still breaks setting of exceptions
all over libm, so nothing can depend on this working.
- tgamma(NaN)'s exception was documented as being wrong (invalid) but was
correct (no exception with IEEEish NaNs).
Finish (?) rev.1.5. gamma was not renamed to tgamma in one place.
Finish (?) rev.1.6. errno.h was not completely removed.
Details: As a side-effect of restoring a saved FP environment,
fesetenv() overwrites the tag word, which indicates which i387
registers are in use. Normally this isn't a problem because
the calling convention requires the register stack to be empty
on function entry and exit. However, fesetenv() is inlined, so we
need to tell gcc explicitly that the i387 registers get clobbered.
PR: 85101
In e_log.c, there was just a off-by-1 (1 ulp) error in the comment
about the threshold. The precision of the threshold is unimportant,
but the magic numbers in the code are easier to understand when the
threshold is described precisely.
In e_logf.c, mistranslation of the magic numbers gave an off-by-1
(1 * 16 ulps) error in the intended negative bound for the threshold
and an off-by-7 (7 * 16 ulps) error in the intended positive bound for
the threshold, and the intended bounds were not translated from the
double precision bounds so they were unnecessarily small by a factor
of about 2048.
The optimization of using the simple Taylor approximation for args
near a power of 2 is dubious since it only applies to a relatively
small proportion of args, but if it is done then doing it 2048 times
as often _may_ be more efficient. (My benchmarks show unexplained
dependencies on the data that increase with further optimizations
in this area.)
2**-28 as a side effect, by merging with the float precision version
of tanh() and the double precision version of sinh().
For tiny x, tanh(x) ~= x, and we used the expression x*(one+x) to
return this value (x) and set the inexact flag iff x != 0. This
doesn't work on ia64 since gcc -O does the dubious optimization
x*(one+x) = x+x*x so as to use fma, so the sign of -0.0 was lost.
Instead, handle tiny x in the same as sinh(), although this is imperfect:
- return x directly and set the inexact flag in a less efficient way.
- increased the threshold for non-tinyness from 2**-55 to 2**-28 so that
many more cases are optimized than are pessimized.
Updated some comments and fixed bugs in others (ranges for half-open
intervals mostly had the open end backwards, and there were nearby style
bugs).
functions are only for compatibility with obsolete standards. They
shouldn't be used, so they shouldn't be optimized. Use the generic
versions instead.
This fixes scalbf() as a side effect. The optimized asm version left
garbage on the FP stack. I fixed the corresponding bug in the optimized
asm scalb() and scalbn() in 1996. NetBSD fixed it in scalb(), scalbn()
and scalbnf() in 1999 but missed fixing it in scalbf(). Then in 2005
the bug was reimplemented in FreeBSD by importing NetBSD's scalbf().
The generic versions have slightly different error handling:
- the asm versions blindly round the second parameter to a (floating
point) integer and proceed, while the generic versions return NaN
if this rounding changes the value. POSIX permits both behaviours
(these functions are XSI extensions and the behaviour for a bogus
non-integral second parameter is unspecified). Apart from this
and the bug in scalbf(), the behaviour of the generic versions seems
to be identical. (I only exhusatively tested
generic_scalbf(1.0F, anyfloat) == asm_scalb(1.0F, anyfloat). This
covers many representative corner cases involving NaNs and Infs but
doesn't test exception flags. The brokenness of scalbf() showed up
as weird behaviour after testing just 7 integer cases sequentially.)
to scalbf(), but ldexpf() cannot be implemented in that way since the
types of the second parameter differ. ldexpf() can be implemented as
a weak or strong reference to scalbnf() (*) but that was already done
long before rev.1.10 was committed. The old implementation uses a
reference, so rev.1.10 had no effect on applications. The C files for
the scalb() family are not used for amd64 or i386, so rev.1.10 had even
less effect for these arches.
(*) scalbnf() raises the radix to the given exponent, while ldexpf()
raises 2 to the given exponent. Thus the functions are equivalent
except possibly for their error handling iff the radix is 2. Standards
more or less require identical error handling. Under FreeBSD, the
functions are equivalent except for more details being missing in
scalbnf()'s man page.
commit broke the 2**24 cases where |x| > DBL_MAX/2. There are exponent
range problems not just for denormals (underflow) but for large values
(overflow). Doubles have more than enough exponent range to avoid the
problems, but I forgot to convert enough terms to double, so there was
an x+x term which was sometimes evaluated in float precision.
Unfortunately, this is a pessimization with some combinations of systems
and compilers (it makes no difference on Athlon XP's, but on Athlon64's
it gives a 5% pessimization with gcc-3.4 but not with gcc-3.3).
Exlain the problem better in comments.
algorithm for the second step significantly to also get a perfectly
rounded result in round-to-nearest mode. The resulting optimization
is about 25% on Athlon64's and 30% on Athlon XP's (about 25 cycles
out of 100 on the former).
Using extra precision, we don't need to do anything special to avoid
large rounding errors in the third step (Newton's method), so we can
regroup terms to avoid a division, increase clarity, and increase
opportunities for parallelism. Rearrangement for parallelism loses
the increase in clarity. We end up with the same number of operations
but with a division reduced to a multiplication.
Using specifically double precision, there is enough extra precision
for the third step to give enough precision for perfect rounding to
float precision provided the previous steps are accurate to 16 bits.
(They were accurate to 12 bits, which was almost minimal for imperfect
rounding in the old version but would be more than enough for imperfect
rounding in this version (9 bits would be enough now).) I couldn't
find any significant time optimizations from optimizing the previous
steps, so I decided to optimize for accuracy instead. The second step
needed a division although a previous commit optimized it to use a
polynomial approximation for its main detail, and this division dominated
the time for the second step. Use the same Newton's method for the
second step as for the third step since this is insignificantly slower
than the division plus the polynomial (now that Newton's method only
needs 1 division), significantly more accurate, and simpler. Single
precision would be precise enough for the second step, but doesn't
have enough exponent range to handle denormals without the special
grouping of terms (as in previous versions) that requires another
division, so we use double precision for both the second and third
steps.
distributed non-large args, this saves about 14 of 134 cycles for
Athlon64s and about 5 of 199 cycles for AthlonXPs.
Moved the check for x == 0 inside the check for subnormals. With
gcc-3.4 on uniformly distributed non-large args, this saves another
5 cycles on Athlon64s and loses 1 cycle on AthlonXPs.
Use INSERT_WORDS() and not SET_HIGH_WORD() when converting the first
approximation from bits to double. With gcc-3.4 on uniformly distributed
non-large args, this saves another 4 cycles on both Athlon64s and and
AthlonXPs.
Accessing doubles as 2 words may be an optimization on old CPUs, but on
current CPUs it tends to cause extra operations and pipeline stalls,
especially for writes, even when only 1 of the words needs to be accessed.
Removed an unused variable.
function approximation for the second step. The polynomial has degree
2 for cbrtf() and 4 for cbrt(). These degrees are minimal for the final
accuracy to be essentially the same as before (slightly smaller).
Adjust the rounding between steps 2 and 3 to match. Unfortunately,
for cbrt(), this breaks the claimed accuracy slightly although incorrect
rounding doesn't. Claim less accuracy since its not worth pessimizing
the polynomial or relying on exhaustive testing to get insignificantly
more accuracy.
This saves about 30 cycles on Athlons (mainly by avoiding 2 divisions)
so it gives an overall optimization in the 10-25% range (a larger
percentage for float precision, especially in 32-bit mode, since other
overheads are more dominant for double precision, surprisingly more
in 32-bit mode).
- in preparing for the third approximation, actually make t larger in
magnitude than cbrt(x). After chopping, t must be incremented by 2
ulps to make it larger, not 1 ulp since chopping can reduce it by
almost 1 ulp and it might already be up to half a different-sized-ulp
smaller than cbrt(x). I have not found any cases where this is
essential, but the think-time error bound depends on it. The relative
smallness of the different-sized-ulp limited the bug. If there are
cases where this is essential, then the final error bound would be
5/6+epsilon instead of of 4/6+epsilon ulps (still < 1).
- in preparing for the third approximation, round more carefully (but
still sloppily to avoid branches) so that the claimed error bound of
0.667 ulps is satisfied in all cases tested for cbrt() and remains
satisfied in all cases for cbrtf(). There isn't enough spare precision
for very sloppy rounding to work:
- in cbrt(), even with the inadequate increment, the actual error was
0.6685 in some cases, and correcting the increment increased this
a little. The fix uses sloppy rounding to 25 bits instead of very
sloppy rounding to 21 bits, and starts using uint64_t instead of 2
words for bit manipulation so that rounding more bits is not much
costly.
- in cbrtf(), the 0.667 bound was already satisfied even with the
inadequate increment, but change the code to almost match cbrt()
anyway. There is not enough spare precision in the Newton
approximation to double the inadequate increment without exceeding
the 0.667 bound, and no spare precision to avoid this problem as
in cbrt(). The fix is to round using an increment of 2 smaller-ulps
before chopping so that an increment of 1 ulp is enough. In cbrt(),
we essentially do the same, but move the chop point so that the
increment of 1 is not needed.
Fixed comments to match code:
- in cbrt(), the second approximation is good to 25 bits, not quite 26 bits.
- in cbrt(), don't claim that the second approximation may be implemented
in single precision. Single precision cannot handle the full exponent
range without minor but pessimal changes to renormalize, and although
single precision is enough, 25 bit precision is now claimed and used.
Added comments about some of the magic for the error bound 4/6+epsilon.
I still don't understand why it is 4/6+ and not 6/6+ ulps.
Indent comments at the right of code more consistently.
the second step of approximating cbrt(x). It turns out to be neither
very magic not nor very good. It is just the (2,2) Pade approximation
to 1/cbrt(r) at r = 1, arranged in a strange way to use fewer operations
at a cost of replacing 4 multiplications by 1 division, which is an
especially bad tradeoff on machines where some of the multiplications
can be done in parallel. A Remez rational approximation would give
at least 2 more bits of accuracy, but the (2,2) Pade approximation
already gives 6 more bits than needed. (Changed the comment which
essentially says that it gives 3 more bits.)
Lower order Pade approximations are not quite accurate enough for
double precision but are plenty for float precision. A lower order
Remez rational approximation might be enough for double precision too.
However, rational approximations inherently require an extra division,
and polynomial approximations work well for 1/cbrt(r) at r = 1, so I
plan to switch to using the latter. There are some technical
complications that tend to cost a division in another way.
This gives an optimization of between 9 and 22% on Athlons (largest
for cbrt() on amd64 -- from 205 to 159 cycles).
We extracted the sign bit and worked with |x|, and restored the sign
bit as the last step. We avoided branches to a fault by using accesses
to FP values as bits to clear and restore the sign bit. Avoiding
branches is usually good, but the bit access macros are not so good
(especially for setting FP values), and here they always caused pipeline
stalls on Athlons. Even using branches would be faster except on args
that give perfect branch misprediction, since only mispredicted branches
cause stalls, but it possible to avoid touching the sign bit in FP
values at all (except to preserve it in conversions from bits to FP
not related to the sign bit). Do this. The results are identical
except in 2 of the 3 unsupported rounding modes, since all the
approximations use odd rational functions so they work right on strictly
negative values, and the special case of -0 doesn't use an approximation.
<cbrt(x) in bits> ~= <x in bits>/3 + BIAS.
Keep the large comments only in the double version as usual.
Fixed some style bugs (mainly grammar and spelling errors in comments).
It was because I forgot to translate the part of the double precision
algorithm that chops t so that t*t is exact. Now the maximum error
is the same as for double precision (almost exactly 2.0/3 ulps).
The maximum error was 3.56 ulps.
The bug was another translation error. The double precision version
has a comment saying "new cbrt to 23 bits, may be implemented in
precision". This means exactly what it says -- that the 23 bit second
approximation for the double precision cbrt() may be implemented in
single (i.e., float) precision. It doesn't mean what the translation
assumed -- that this approximation, when implemented in float precision,
is good enough for the the final approximation in float precision.
First, float precision needs a 24 bit approximation. The "23 bit"
approximation is actually good to 24 bits on float precision args, but
only if it is evaluated in double precision. Second, the algorithm
requires a cleanup step to ensure its error bound.
In float precision, any reasonable algorithm works for the cleanup
step. Use the same algorithm as for double precision, although this
is much more than enough and is a significant pessimization, and don't
optimize or simplify anything using double precision to implement the
float case, so that the whole double precision algorithm can be verified
in float precision. A maximum error of 0.667 ulps is claimed for cbrt()
and the max for cbrtf() using the same algorithm shouldn't be different,
but the actual max for cbrtf() on amd64 is now 0.9834 ulps. (On i386
-O1 the max is 0.5006 (down from < 0.7) due to extra precision.)