- Process ATIO queue only if interrupt status tells so;
- Do not update queue out pointers after each processed command, do it
only once at the end of the loop.
every time. The purpose of that register is unlikely output queue overflow
detection, so read it only when its last known (and probably stale now)
value signals overflow.
This reduces CPU load and lock congestion and rises bottleneck in CTL
while doing target mode via two 8Gbps ports from 100K to 120K IOPS.
mostly by adjustments to debugging printf() format specifiers. For high
numbered LUNs, also switch to printing them in hex as per SAM-5.
MFC after: 2 weeks
reduce lock congestion and improve SMP scalability of the SCSI/ATA stack,
preparing the ground for the coming next GEOM direct dispatch support.
Replace big per-SIM locks with bunch of smaller ones:
- per-LUN locks to protect device and peripheral drivers state;
- per-target locks to protect list of LUNs on target;
- per-bus locks to protect reference counting;
- per-send queue locks to protect queue of CCBs to be sent;
- per-done queue locks to protect queue of completed CCBs;
- remaining per-SIM locks now protect only HBA driver internals.
While holding LUN lock it is allowed (while not recommended for performance
reasons) to take SIM lock. The opposite acquisition order is forbidden.
All the other locks are leaf locks, that can be taken anywhere, but should
not be cascaded. Many functions, such as: xpt_action(), xpt_done(),
xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM
lock to be held.
To keep compatibility and solve cases where SIM lock can't be dropped, all
xpt_async() calls in addition to xpt_done() calls are queued to completion
threads for async processing in clean environment without SIM lock held.
Instead of single CAM SWI thread, used for commands completion processing
before, use multiple (depending on number of CPUs) threads. Load balanced
between them using "hash" of the device B:T:L address.
HBA drivers that can drop SIM lock during completion processing and have
sufficient number of completion threads to efficiently scale to multiple
CPUs can use new function xpt_done_direct() to avoid extra context switch.
Make ahci(4) driver to use this mechanism depending on hardware setup.
Sponsored by: iXsystems, Inc.
MFC after: 2 months
- Remove two excessive and slow register reads from isp_intr(). Instead
of rereading value every time, assume that registers contain what we have
written there.
- Avoid sequential search through 4096 array elements when looking for
command tag. Use hash of lists to store active tags separately from free
ones and so greatly speedup the searches.
Reviewed by: mjacob
driver.
This tells consumers up the stack the maximum I/O size that the
controller can handle.
The I/O size is bounded by the number of scatter/gather segments
the controller can handle and the page size. For an amd64 system,
it works out to around 5MB.
Reviewed by: mjacob
MFC after: 3 days
Sponsored by: Spectra Logic
command register. The lazy BAR allocation code in FreeBSD sometimes
disables this bit when it detects a range conflict, and will re-enable
it on demand when a driver allocates the BAR. Thus, the bit is no longer
a reliable indication of capability, and should not be checked. This
results in the elimination of a lot of code from drivers, and also gives
the opportunity to simplify a lot of drivers to use a helper API to set
the busmaster enable bit.
This changes fixes some recent reports of disk controllers and their
associated drives/enclosures disappearing during boot.
Submitted by: jhb
Reviewed by: jfv, marius, achadd, achim
MFC after: 1 day
a mailbox command and which registers to copy back in when
the command completes, the bits being set need to not only
specify what bits you want to add from the default from the
table but also what bits you want *subtract* (mask) from the
default from the table.
A failing ISP2200 command pointed this out.
Much appreciation to: marius, who persisted and narrowed down what
the failure delta was, and shamed me into actually fixing it.
MFC after: 1 week
Stop abusing xpt_periph in random plases that really have no periph related
to CCB, for example, bus scanning. NULL value is fine in such cases and it
is correctly logged in debug messages as "noperiph". If at some point we
need some real XPT periphs (alike to pmpX now), quite likely they will be
per-bus, and not a single global instance as xpt_periph now.
might have been enabled for them- now that we use all 32 bits of handle.
Fast Posting doesn't pass the full 32 bits.
Noticed by: Bugs in NetBSD. Only a NetBSD user might actually still use such old hardware.
MFC after: 1 week
every architecture's busdma_machdep.c. It is done by unifying the
bus_dmamap_load_buffer() routines so that they may be called from MI
code. The MD busdma is then given a chance to do any final processing
in the complete() callback.
The cam changes unify the bus_dmamap_load* handling in cam drivers.
The arm and mips implementations are updated to track virtual
addresses for sync(). Previously this was done in a type specific
way. Now it is done in a generic way by recording the list of
virtuals in the map.
Submitted by: jeff (sponsored by EMC/Isilon)
Reviewed by: kan (previous version), scottl,
mjacob (isp(4), no objections for target mode changes)
Discussed with: ian (arm changes)
Tested by: marius (sparc64), mips (jmallet), isci(4) on x86 (jharris),
amd64 (Fabian Keil <freebsd-listen@fabiankeil.de>)
CCB at a time outstanding reliable. It's not there yet, but this
is the direction to go in so might as well commit. So far,
multiple at a time CCBs work (see ISP_INTERNAL_TARGET test mode),
but it fails if there are more downstream than the SIM wants
to handle and SRR is sort of confused when this happens, plus
it is not entirely quite clear what one does if a CCB/CTIO fails
and you have more in flight (that don't fail, say) and more queued
up at the SIM level that haven't been started yet.
Some of this is driven because there apparently is no flow control
to requeue XPT_CONTINUE_IO requests like there are for XPT_SCSI_IO
requests. It is also more driven in that the few target mode
periph drivers there are are not really set up for handling pushback-
heck most of them don't even check for errors (and what would they
really do with them anyway? It's the initiator's problem, really....).
The data transfer arithmetic has been worked over again to handle
multiple outstanding commands, so you have a notion of what's been
moved already as well as what's currently in flight. It turns that
this led to uncovering a REPORT_LUNS bug in the ISP_INTERNAL_TARGET
code which was sending back 24 bytes of rpl data instead of the
specified 16. What happened furthermore here is that sending back
16 bytes and reporting an overrun of 8 bytes made the initiator
(running FC-Tape aware f/w) mad enough to request, and keep
requesting, another FCP response (I guess it didn't like the answer
so kept asking for it again).
Sponsored by: Spectralogic
MFC after: 1 month
a tinderbox myself and caught the error.
Change to isp_send_cmd needs a final ecmd argument.
Sponsored by: Spectralogic
MFC after: 1 month
X-MFC: 238869
MISC CHANGES
Add a new async event- ISP_TARGET_NOTIFY_ACK, that will guarantee
eventual delivery of a NOTIFY ACK. This is tons better than just
ignoring the return from isp_notify_ack and hoping for the best.
Clean up the lower level lun enable code to be a bit more sensible.
Fix a botch in isp_endcmd which was messing up the sense data.
Fix notify ack for SRR to use a sensible error code in the case
of a reject.
Clean up and make clear what kind of firmware we've loaded and
what capabilities it has.
-----------
FULL (252 byte) SENSE DATA
In CTIOs for the ISP, there's only a limimted amount of space
to load SENSE DATA for associated CHECK CONDITIONS (24 or 26
bytes). This makes it difficult to send full SENSE DATA that can
be up to 252 bytes.
Implement MODE 2 responses which have us build the FCP Response
in system memory which the ISP will put onto the wire directly.
On the initiator side, the same problem occurs in that a command
status response only has a limited amount of space for SENSE DATA.
This data is supplemented by status continuation responses that
the ISP pushes onto the response queue after the status response.
We now pull them all together so that full sense data can be
returned to the periph driver.
This is supported on 23XX, 24XX and 25XX cards.
This is also preparation for doing >16 byte CDBs.
-----------
FC TAPE
Implement full FC-TAPE on both initiator and target mode side. This
capability is driven by firmware loaded, board type, board NVRAM
settings, or hint configuration options to enable or disable. This
is supported for 23XX, 24XX and 25XX cards.
On the initiator side, we pretty much just have to generate a command
reference number for each command we send out. This is FCP-4 compliant
in that we do this per ITL nexus to generate the allowed 1 thru 255
CRN.
In order to support the target side of FC-TAPE, we now pay attention
to more of the PRLI word 3 parameters which will tell us whether
an initiator wants confirmed responses. While we're at it, we'll
pay attention to the initiator view too and report it.
On sending back CTIOs, we will notice whether the initiator wants
confirmed responses and we'll set up flags to do so.
If a response or data frame is lost the initiator sends us an SRR
(Sequence Retransmit Request) ELS which shows up as an SRR notify
and all outstanding CTIOs are nuked with SRR Received status. The
SRR notify contains the offset that the initiator wants us to restart
the data transfer from or to retransmit the response frame.
If the ISP driver still has the CCB around for which the data segment
or response applies, it will retransmit.
However, we typically don't know about a lost data frame until we
send the FCP Response and the initiator totes up counters for data
moved and notices missing segments. In this case we've already
completed the data CCBs already and sent themn back up to the periph
driver. Because there's no really clean mechanism yet in CAM to
handle this, a hack has been put into place to complete the CTIO
CCB with the CAM_MESSAGE_RECV status which will have a MODIFY DATA
POINTER extended message in it. The internal ISP target groks this
and ctl(8) will be modified to deal with this as well.
At any rate, the data is retransmitted and an an FCP response is
sent. The whole point here is to successfully complete a command
so that you don't have to depend on ULP (SCSI) to have to recover,
which in the case of tape is not really possible (hence the name
FC-TAPE).
Sponsored by: Spectralogic
MFC after: 1 month
not by some hint setting. Do more preparations for FC-Tape.
Clean up resource counting for 24XX or later chipsets so
we find out after EXEC_FIRMWARE what is actually supported.
Set target mode exchange count based upon whether or not
we are supporting simultaneous target/initiator mode. Clean
up some old (pre-24XX) xfwoption and zfwoption issues.
Sponsored by: Spectralogic
MFC after: 3 days
and crosschecks against firmware documentation. We now check and report
FC firmware attributes and at least are now prepared for the upper 48 bits
of f/w attributes (which are probably for the 8100 or later cards). This
involed changing how inbits and outbits are calculated for varios commands,
hopefully clearer and cleaner. This also caused me to clean up the actual
mailbox register usage. Finally, we are now unconditionally using a CRN
for initiator mode.
A longstanding issue with the 2400/2500 is that they do *not* support
a "Prefer PTP followed by loop", which explains why enabling that
caused the f/w to crash.
A slightly more invasive change is to let the firmware load entirely
drive whether multi_id support is enabled or not.
Sponsored by: Spectralogic
MFC after: 1 week
Make the default role NONE if target mode is selected. This
allows ctl(8) to switch to/from target mode via knob settings.
If we default to role 'none', this causes a reset of the
24XX f/w which then causes initiators to wake up and notice
when we come online.
Reviewed by: kdm
MFC after: 2 weeks
Sponsored by: Spectralogic
- in destroy_lun_state() assert hold == 1 instead of 0, as it should
receive hold taken by the create_lun_state() or get_lun_statep() before;
- fix hold count leak inside rls_lun_statep() that also fired above assert;
- in destroy_lun_state() use SIM bus number instead of SIM path id for
ISP_GET_PC_ADDR(), as it was before r196008;
- make isp_disable_lun() to set status in CCB;
- make isp_target_mark_aborted() set status into the proper CCB.
Reviewed by: mjacob
Sponsored by: iXsystems, inc.
MFC after: 1 month
is actually broken, or needs a BIOS upgrade for 64 bit loads, but this uncovered
a couple of misplaced opcode definitions and some missing continual mbox command
cases, so might as well update them here.
- fix other errors introduced when committing r226436
- add 'function' to a sentence where it makes sense
Submitted by: delphij
Submitted by: dougb
Submitted by: jhb
Approved by: dougb
Approved by: jhb
Zero any sense not transferred by the device as the SCSI specification
mandates that any untransferred data should be assumed to be zero.
Reviewed by: ken
CAM.
Desriptor sense is a new sense data format that originated in SPC-3. Among
other things, it allows for an 8-byte info field, which is necessary to
pass back block numbers larger than 4 bytes.
This change adds a number of new functions to scsi_all.c (and therefore
libcam) that abstract out most access to sense data.
This includes a bump of CAM_VERSION, because the CCB ABI has changed.
Userland programs that use the CAM pass(4) driver will need to be
recompiled.
camcontrol.c: Change uses of scsi_extract_sense() to use
scsi_extract_sense_len().
Use scsi_get_sks() instead of accessing sense key specific
data directly.
scsi_modes: Update the control mode page to the latest version (SPC-4).
scsi_cmds.c,
scsi_target.c: Change references to struct scsi_sense_data to struct
scsi_sense_data_fixed. This should be changed to allow the
user to specify fixed or descriptor sense, and then use
scsi_set_sense_data() to build the sense data.
ps3cdrom.c: Use scsi_set_sense_data() instead of setting sense data
manually.
cam_periph.c: Use scsi_extract_sense_len() instead of using
scsi_extract_sense() or accessing sense data directly.
cam_ccb.h: Bump the CAM_VERSION from 0x15 to 0x16. The change of
struct scsi_sense_data from 32 to 252 bytes changes the
size of struct ccb_scsiio, but not the size of union ccb.
So the version must be bumped to prevent structure
mis-matches.
scsi_all.h: Lots of updated SCSI sense data and other structures.
Add function prototypes for the new sense data functions.
Take out the inline implementation of scsi_extract_sense().
It is now too large to put in a header file.
Add macros to calculate whether fields are present and
filled in fixed and descriptor sense data
scsi_all.c: In scsi_op_desc(), allow the user to pass in NULL inquiry
data, and we'll assume a direct access device in that case.
Changed the SCSI RESERVED sense key name and description
to COMPLETED, as it is now defined in the spec.
Change the error recovery action for a number of read errors
to prevent lots of retries when the drive has said that the
block isn't accessible. This speeds up reconstruction of
the block by any RAID software running on top of the drive
(e.g. ZFS).
In scsi_sense_desc(), allow for invalid sense key numbers.
This allows calling this routine without checking the input
values first.
Change scsi_error_action() to use scsi_extract_sense_len(),
and handle things when invalid asc/ascq values are
encountered.
Add a new routine, scsi_desc_iterate(), that will call the
supplied function for every descriptor in descriptor format
sense data.
Add scsi_set_sense_data(), and scsi_set_sense_data_va(),
which build descriptor and fixed format sense data. They
currently default to fixed format sense data.
Add a number of scsi_get_*() functions, which get different
types of sense data fields from either fixed or descriptor
format sense data, if the data is present.
Add a number of scsi_*_sbuf() functions, which print
formatted versions of various sense data fields. These
functions work for either fixed or descriptor sense.
Add a number of scsi_sense_*_sbuf() functions, which have a
standard calling interface and print the indicated field.
These functions take descriptors only.
Add scsi_sense_desc_sbuf(), which will print a formatted
version of the given sense descriptor.
Pull out a majority of the scsi_sense_sbuf() function and
put it into scsi_sense_only_sbuf(). This allows callers
that don't use struct ccb_scsiio to easily utilize the
printing routines. Revamp that function to handle
descriptor sense and use the new sense fetching and
printing routines.
Move scsi_extract_sense() into scsi_all.c, and implement it
in terms of the new function, scsi_extract_sense_len().
The _len() version takes a length (which should be the
sense length - residual) and can indicate which fields are
present and valid in the sense data.
Add a couple of new scsi_get_*() routines to get the sense
key, asc, and ascq only.
mly.c: Rename struct scsi_sense_data to struct
scsi_sense_data_fixed.
sbp_targ.c: Use the new sense fetching routines to get sense data
instead of accessing it directly.
sbp.c: Change the firewire/SCSI sense data transformation code to
use struct scsi_sense_data_fixed instead of struct
scsi_sense_data. This should be changed later to use
scsi_set_sense_data().
ciss.c: Calculate the sense residual properly. Use
scsi_get_sense_key() to fetch the sense key.
mps_sas.c,
mpt_cam.c: Set the sense residual properly.
iir.c: Use scsi_set_sense_data() instead of building sense data by
hand.
iscsi_subr.c: Use scsi_extract_sense_len() instead of grabbing sense data
directly.
umass.c: Use scsi_set_sense_data() to build sense data.
Grab the sense key using scsi_get_sense_key().
Calculate the sense residual properly.
isp_freebsd.h: Use scsi_get_*() routines to grab asc, ascq, and sense key
values.
Calculate and set the sense residual.
MFC after: 3 days
Sponsored by: Spectra Logic Corporation
We also revive loop down freezes. We also externaliz within isp
isp_prt_endcmd so something outside the core module can print
something about a command completing. Also some work in progress to
assist in handling timed out commands better.
Partially Sponsored by: Panasas
Approved by: re (kib)
MFC after: 1 month
once. Use taskqueues to do the actual work.
Fix an offset line.
Fix isp_prt so that prints from just one buffer, which makes it
appear cleanly cleanly in logs on SMP systems.
Approved by: re (kib)
MFC after: 1 month
- Allocate coherent DMA memory for the request/response queue area and
and the FC scratch area.
These changes allow isp(4) to work properly on sparc64 with usage of the
IOMMU streaming buffers enabled.
Approved by: mjacob
MFC after: 2 weeks
I don't know why- but it occurred to me in looking at the second sleep
is that all I want is a pause- not an actual sleep. So do that instead.
MFC after: 2 weeks
whole bus (XPT_SCAN_BUS) and a single lun on that bus (XPT_SCAN_LUN).
It's less resource comsumptive than scanning a whole bus when the
caller knows only one target has changes.
Reviewed by: scsi@
Sponsored by: Panasas
MFC after: 1 month
on debug output. Add a new platform function requirement to allow
for printing based upon the ITL nexus instead of the isp unit plus
channel, target and lun. This allows some printouts and error messages
from the core code to appear in the same format as the platform's
subsystem (in FreeBSD's case, CAM path).
MFC after: 1 week
Untangle some of the confusion about what role means when it's in the FCPARAM/SDPARAM
or isp_fc/isp_spi structures. This fixed a problem about seeing targets appear if you've
turned off autologin and find them, or rather don't, via camcontrol rescan.
MFC after: 1 month
32 bit handles. The RIO (reduced interrupt operation) and fast posting
for the parallel SCSI cards were all 16 bit handles. Furthermore,
target mode parallel SCSI only can have 16 bit handles.
Use part of a supplied patch to switch over to using 32 bit handles.
Be a bit more conservative here and only do this for parallel SCSI
for the 12160 (Ultra3) cards. There were a lot of marginal Ultra2
cards, and, frankly, few are findable now for testing.
Fix the target handle routine to only do 16 bit handles for parallel
SCSI cards. This is okay because the upper sixteen bits of the new
32 bit handles is a sequence number to help protect against duplicate
completions. This would be very unlikely to happen with parallel
SCSI target mode, and wasn't present before, so we're no worse off
than we used to be.
While we're at it, finally split the async mailbox completion handlers
into FC and parallel SCSI functions. This makes it much cleaner and
easier to figure out what is or isn't a legal async mailbox completion
code for different card classes.
PR: kern/144250
Submitted partially by: Charles D
MFC after: 1 week
change and have isp_make_here scan the whole bus which will then scan all
luns.
I think xpt_rescan needs to be fixed, but that's a separable issue.
Suggested by: Alexander
numbers and handle types in rational way. This will better protect from
(unwittingly) dealing with stale handles/commands.
Fix the watchdog timeout code to better protect itself from mistakes.
If we run an abort on a putatively timed out command, the command
may in fact get completed, so check to make sure the command we're
timing it out is still around. If the abort succeeds, btw, the command
should get returned via a different path.
If the NAA is type 2, the Node WWN is the Port WWN with the 12 bits
of port (48..60) cleared. This iff a wwn fetched from NVRAM is zero.
MFC after: 1 week
the loop down counter, as well as other things. This was brought to my
attention with a different fix, more for RELENG_7- this one covers the
multiple channel case.
PR: 140438
MFC after: 1 month
Most of the pieces came from Marius- correct settings for channels
and resource management. The one piece missing was that you cannot
for SBus cards replace 32 bit operations with A64 operations- not
supported.
Submitted by: marius
MFC after: 3 days
Add a maximum response length for FCP RSPNS IUs.
Clarify some of the FC option words for setting parameters
and try and disable automatic PRLI when in target mode- this
should correct some cases of N-port topologies with 23XX cards
where we put out an illegal PRLI (in target mode only we're
not supposed to put out a PRLI).
we at least don't panic.
We don't really support dual role mode (INITIATOR/TARGET) any more. We
should but it's broken and will take a fair amount of effort to fix
and correctly manage both initiator and target roles sharing the port
database. So, for now, disallow it.
firmware loading bugs.
Target mode support has received some serious attention to make it
more usable and stable.
Some backward compatible additions to CAM have been made that make
target mode async events easier to deal with have also been put
into place.
Further refinement and better support for NP-IV (N-port Virtualization)
is now in place.
Code for release prior to RELENG_7 has been stripped away for code clarity.
Sponsored by: Copan Systems
Reviewed by: scottl, ken, jung-uk kim
Approved by: re
modularize it so that new transports can be created.
Add a transport for SATA
Add a periph+protocol layer for ATA
Add a driver for AHCI-compliant hardware.
Add a maxio field to CAM so that drivers can advertise their max
I/O capability. Modify various drivers so that they are insulated
from the value of MAXPHYS.
The new ATA/SATA code supports AHCI-compliant hardware, and will override
the classic ATA driver if it is loaded as a module at boot time or compiled
into the kernel. The stack now support NCQ (tagged queueing) for increased
performance on modern SATA drives. It also supports port multipliers.
ATA drives are accessed via 'ada' device nodes. ATAPI drives are
accessed via 'cd' device nodes. They can all be enumerated and manipulated
via camcontrol, just like SCSI drives. SCSI commands are not translated to
their ATA equivalents; ATA native commands are used throughout the entire
stack, including camcontrol. See the camcontrol manpage for further
details. Testing this code may require that you update your fstab, and
possibly modify your BIOS to enable AHCI functionality, if available.
This code is very experimental at the moment. The userland ABI/API has
changed, so applications will need to be recompiled. It may change
further in the near future. The 'ada' device name may also change as
more infrastructure is completed in this project. The goal is to
eventually put all CAM busses and devices until newbus, allowing for
interesting topology and management options.
Few functional changes will be seen with existing SCSI/SAS/FC drivers,
though the userland ABI has still changed. In the future, transports
specific modules for SAS and FC may appear in order to better support
the topologies and capabilities of these technologies.
The modularization of CAM and the addition of the ATA/SATA modules is
meant to break CAM out of the mold of being specific to SCSI, letting it
grow to be a framework for arbitrary transports and protocols. It also
allows drivers to be written to support discrete hardware without
jeopardizing the stability of non-related hardware. While only an AHCI
driver is provided now, a Silicon Image driver is also in the works.
Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware
is possible and encouraged. Help with new transports is also encouraged.
Submitted by: scottl, mav
Approved by: re
adapted to MPSAFE cam(4) to a isp(4) specific callout structure.
Thanks to Florian Smeets for providing access to a machine exhibiting
this problem for debugging.
Approved by: mjacob
MFC after: 3 days
controllers. Reading this register, for which there are indications
that it doesn't really exist, returns 0 on at least some 12160
and doing so on Sun Fire V880 causes a data access error exception.
Reported and tested by: Beat Gaetzi
Approved by: mjacob
Obtained from: OpenBSD (modulo setting isp_lvdmode)
After I removed all the unit2minor()/minor2unit() calls from the kernel
yesterday, I realised calling minor() everywhere is quite confusing.
Character devices now only have the ability to store a unit number, not
a minor number. Remove the confusion by using dev2unit() everywhere.
This commit could also be considered as a bug fix. A lot of drivers call
minor(), while they should actually be calling dev2unit(). In -CURRENT
this isn't a problem, but it turns out we never had any problem reports
related to that issue in the past. I suspect not many people connect
more than 256 pieces of the same hardware.
Reviewed by: kib
to kproc_xxx as they actually make whole processes.
Thos makes way for us to add REAL kthread_create() and friends
that actually make theads. it turns out that most of these
calls actually end up being moved back to the thread version
when it's added. but we need to make this cosmetic change first.
I'd LOVE to do this rename in 7.0 so that we can eventually MFC the
new kthread_xxx() calls.
Both WWNN and WWPN are 64-bit unsigned integers and they are prefixed
with "0x", which requires two more bytes each.
Submitted by: Danny Braniss (danny at cs dot huji dot ac dot il)
via Matthew Jacob (lydianconcepts at gmail dot com)
Approved by: re (bmah)
MFC after: 3 days
First, we were never correctly checking for a 24XX Status Type 0
response- that cased us to fall through to evaluate status for
commands as if this were a 2100/2200/2300 Status Type 0 response.
This is *close*, but not quite the same. This has been reported
to be apparent with some wierd lun configuration problems with
some arrays. It became glaringly apparent on sparc64 where none
of the correct byte swap things were done.
Fixing this omission then caused a whole universe shifting debug
cycle of endian issues for the 2400. The manual for 24XX f/w turns
out to be wrong about the endianness of a couple of entities. The
lun and cdb fields for the type 7 request are *not* unconditionally
big endian- they happen to be opposite of whatever the endian of
the current machine type is. Same with the sense data for the
24XX type 0 response.
While we're at it investigate and resolve some NVRAM endian
issues.
Approved by: re (ken)
MFC after: 3 days
put out a ispreqt2e_t structure onto the request queue- not a ispreqt2_t
structure. I forgot that the 23XX can use a t2 structure.
Approved by: re (ken, implicitly)
MFC after: 3 days
to put out a ispreqt3e_t structure onto the request queue-
not a ispreqt3_t structure. We weren't. This turns out only
to really matter for big endian machines.
Approved by: re (ken)
MFC after: 3 days
request queues rather than shove it down a word at a time, we have
to remember to put it into little endian format. Use the macros
ISP_IOXPUT_{16,32} for this purpose. Otherwise, on sparc the firmware
is loaded garbled and we get a (not surprisingly) firmware checksum
failure and the card won't start and we don't attach it.
Approved by: re (bruce)
MFC after: 3 days
now takes a device_t to be the parent of the bus that is being created.
Most SIMs have been updated with a reasonable argument, but a few exceptions
just pass NULL for now. This argument isn't used yet and the newbus
integration likely won't be ready until after 7.0-RELEASE.
Seems to work on RELENG_4 through -current and also on sparc64
now. There may still be some issues with the auto attach/detach
code to sort out.
MFC after: 3 days
use to synchornize and protect all data objects that are used for that
SIM. Drivers that are not yet MPSAFE register Giant and operate as
usual. RIght now, no drivers are MPSAFE, though a few will be changed
in the coming week as this work settles down.
The driver API has changed, so all CAM drivers will need to be recompiled.
The userland API has not changed, so tools like camcontrol do not need to
be recompiled.
When the linux port changes were imported which split the
target command list to be separate from the initiator command
list and the handle format changed to encode a type in the handle
the implications to the function isp_handle_index (which only
the NetBSD/OpenBSD/FreeBSD ports use) were overlooked.
The fault is twofold: first, the index into the DMA maps
in isp_pci is wrong because a target command handle with
the type bit left in place caused a bad index (and panic)
into dma map. Secondly, the assumption of the array
of DMA maps in either PCS or SBUS attachment structures is
that there is a linear mapping between handle index and
DMA map index. This can no longer be true if there are
overlapping index spaces for initiator mode and target
mode commands.
These changes bandaid around the problem by forcing us
to not have simultaneous dual roles and doing the appropriate
masking to make sure things are indexed correctly. A longer
term fix is being devloped.
tokens into the common isp_osinfo structure instead of being
in bus specific structures. This allows us to implement
a SYNC_REG MEMORYBARRIER call (using bus_space_barrier)
and also reduce the amount of bus specific wrapper structure
usages in isp_pci && isp_sbus.
MFC after: 3 days
an ICB. This shows up on card restarts, and usually for
2200-2300 cards. What happens is that we start up,
attempting to acquire a hard address. We end up instead
being an F-port topology, which reports out a loop id
of 0xff (or 0xffff for 2K Login f/w). Then, if we restart,
we end up telling the card to go off an acquire this loop
address, which the card then rejects. Bah.
Compilation fixes from Solaris port.
attachment of new devices that arrive (and we notice them
via async Fibre Channel events). We've always had the
right thing (of sorts) happen when devices go away- this
is the corollary function that makes multipath failover
actually work.
MFC after: 2 weeks
early, we haven't set board type, so we can't correctly check for
some options. Fix this by splitting option setting/getting into
generic, pci and then later board specific, option setting/getting.
This was noticed when setting 'iid' (or 'hard loop id') didn't work
all of a sudden.
Noticed by: Mike Drangula (thanks!) via Jung-uk Kim (thanks!)
a version that i posted earlier on the -current mailing list,
and subsequent feedback received.
The core of the change is just in sys/firmware.h and kern/subr_firmware.c,
while other files are just adaptation of the clients to the ABI change
(const-ification of some parameters and hiding of internal info,
so this is fully compatible at the binary level).
In detail:
- reduce the amount of information exported to clients in struct firmware,
and constify the pointer;
- internally, document and simplify the implementation of the various
functions, and make sure error conditions are dealt with properly.
The diffs are large, but the code is really straightforward now (i hope).
Note also that there is a subtle issue with the implementation of
firmware_register(): currently, as in the previous version, we just
store a reference to the 'imagename' argument, but we should rather
copy it because there is no guarantee that this is a static string.
I realised this while testing this code, but i prefer to fix it in
a later commit -- there is no regression with respect to the past.
Note, too, that the version in RELENG_6 has various bugs including
missing locks around the module release calls, mishandling of modules
loaded by /boot/loader, and so on, so an MFC is absolutely necessary
there. I was just postponing it until this cleanup to avoid doing
things twice.
MFC after: 1 week
sparc64 GENERIC and the sound device drivers known working on sparc64
to use bus_get_dma_tag() to obtain the parent DMA tag so we can get rid
of the sparc64_root_dma_tag kludge eventually. Except for ath(4), sk(4),
stge(4) and ti(4) these changes are runtime tested (unless I booted up
the wrong kernels again...).
front of isp_init so we can read NVRAM even if we're role ISP_NONE.
Prepare for reintroduction of channels (for FC) for N-Port
Virtualization.
Fix a botch in handle assignment that caused us to nuke one device
when a new one arrives and end up with two devices with the same
identity in the virtual target mapping table.
server.
Don't complain about a hard loop id of 0xffff- we get this in
point-to-point topologies with the 2300 and 2K Login firmware.
Up the timeout on register FC4 types commands.
Either they're there early and the ispfw sets have
registered themselves, or they're not.
The module dependency stuff isn't quite what we want
anyway. If the user doesn't want the load placed on
system memory by loading the firmware, they don't
specify it to be loaded (either by being linked in
or via being a module to be loaded and then hooked
in with firmware(9)). It doesn't then make sense to
then override what they want by pulling it in anyway.
This might be able to work if we were able to pull in
just exactly what we needed for the card we have- but
that's an optimization left for the future.
with- not hope for the best. Change some things which were gated
off of 24XX to be gated off of 2K login support. Convert some
isp_prt calls to xpt_print calls.