327 Commits

Author SHA1 Message Date
dim
ef58aa56fe Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
6.0.0 release (upstream r326565).

Release notes for llvm, clang and lld will be available here soon:
<http://releases.llvm.org/6.0.0/docs/ReleaseNotes.html>
<http://releases.llvm.org/6.0.0/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/6.0.0/tools/lld/docs/ReleaseNotes.html>

Relnotes:	yes
MFC after:	3 months
X-MFC-With:	r327952
PR:		224669
2018-03-04 17:06:37 +00:00
dim
044c6471dc Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
6.0.0 (branches/release_60 r325932).  This corresponds to 6.0.0 rc3.

MFC after:	3 months
X-MFC-With:	r327952
PR:		224669
2018-02-25 13:20:32 +00:00
dim
5308e413d2 Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
6.0.0 (branches/release_60 r325330).

MFC after:	3 months
X-MFC-With:	r327952
PR:		224669
2018-02-16 20:45:32 +00:00
emaste
b93a9fbc91 Promote llvm-cov to a standalone option
Introduce WITH_/WITHOUT_LLVM_COV to match GCC's WITH_/WITHOUT_GCOV.
It is intended to provide a superset of the interface and functionality
of gcov.

It is enabled by default when building Clang, similarly to gcov and GCC.

This change moves one file in libllvm to be compiled unconditionally.
Previously it was included only when WITH_CLANG_EXTRAS was set, but the
complexity of a new special case for (CLANG_EXTRAS | LLVM_COV) is not
worth avoiding a tiny increase in build time.

Reviewed by:	dim, imp
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D142645
2018-02-10 00:22:35 +00:00
dim
2da71e5ed9 Bump clang's __FreeBSD_cc_version, to cope with r328816, which removed
-Wno-error=tautological-constant-compare again (this flag is now out of
-Wextra after upstream https://reviews.llvm.org/rL322901).  Otherwise
the MK_SYSTEM_COMPILER logic will not build a cross-tools compiler.

Reported by:	jpaetzel, tuexen, Stefan Hagen
2018-02-04 20:33:47 +00:00
dim
eae4eb0a6c Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
6.0.0 (branches/release_60 r324090).

This introduces retpoline support, with the -mretpoline flag.  The
upstream initial commit message (r323155 by Chandler Carruth) contains
quite a bit of explanation.  Quoting:

  Introduce the "retpoline" x86 mitigation technique for variant #2 of
  the speculative execution vulnerabilities disclosed today,
  specifically identified by CVE-2017-5715, "Branch Target Injection",
  and is one of the two halves to Spectre.

  Summary:
  First, we need to explain the core of the vulnerability. Note that
  this is a very incomplete description, please see the Project Zero
  blog post for details:
  https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

  The basis for branch target injection is to direct speculative
  execution of the processor to some "gadget" of executable code by
  poisoning the prediction of indirect branches with the address of
  that gadget. The gadget in turn contains an operation that provides a
  side channel for reading data. Most commonly, this will look like a
  load of secret data followed by a branch on the loaded value and then
  a load of some predictable cache line. The attacker then uses timing
  of the processors cache to determine which direction the branch took
  *in the speculative execution*, and in turn what one bit of the
  loaded value was. Due to the nature of these timing side channels and
  the branch predictor on Intel processors, this allows an attacker to
  leak data only accessible to a privileged domain (like the kernel)
  back into an unprivileged domain.

  The goal is simple: avoid generating code which contains an indirect
  branch that could have its prediction poisoned by an attacker. In
  many cases, the compiler can simply use directed conditional branches
  and a small search tree. LLVM already has support for lowering
  switches in this way and the first step of this patch is to disable
  jump-table lowering of switches and introduce a pass to rewrite
  explicit indirectbr sequences into a switch over integers.

  However, there is no fully general alternative to indirect calls. We
  introduce a new construct we call a "retpoline" to implement indirect
  calls in a non-speculatable way. It can be thought of loosely as a
  trampoline for indirect calls which uses the RET instruction on x86.
  Further, we arrange for a specific call->ret sequence which ensures
  the processor predicts the return to go to a controlled, known
  location. The retpoline then "smashes" the return address pushed onto
  the stack by the call with the desired target of the original
  indirect call. The result is a predicted return to the next
  instruction after a call (which can be used to trap speculative
  execution within an infinite loop) and an actual indirect branch to
  an arbitrary address.

  On 64-bit x86 ABIs, this is especially easily done in the compiler by
  using a guaranteed scratch register to pass the target into this
  device.  For 32-bit ABIs there isn't a guaranteed scratch register
  and so several different retpoline variants are introduced to use a
  scratch register if one is available in the calling convention and to
  otherwise use direct stack push/pop sequences to pass the target
  address.

  This "retpoline" mitigation is fully described in the following blog
  post: https://support.google.com/faqs/answer/7625886

  We also support a target feature that disables emission of the
  retpoline thunk by the compiler to allow for custom thunks if users
  want them.  These are particularly useful in environments like
  kernels that routinely do hot-patching on boot and want to hot-patch
  their thunk to different code sequences. They can write this custom
  thunk and use `-mretpoline-external-thunk` *in addition* to
  `-mretpoline`. In this case, on x86-64 thu thunk names must be:
  ```
    __llvm_external_retpoline_r11
  ```
  or on 32-bit:
  ```
    __llvm_external_retpoline_eax
    __llvm_external_retpoline_ecx
    __llvm_external_retpoline_edx
    __llvm_external_retpoline_push
  ```
  And the target of the retpoline is passed in the named register, or in
  the case of the `push` suffix on the top of the stack via a `pushl`
  instruction.

  There is one other important source of indirect branches in x86 ELF
  binaries: the PLT. These patches also include support for LLD to
  generate PLT entries that perform a retpoline-style indirection.

  The only other indirect branches remaining that we are aware of are
  from precompiled runtimes (such as crt0.o and similar). The ones we
  have found are not really attackable, and so we have not focused on
  them here, but eventually these runtimes should also be replicated for
  retpoline-ed configurations for completeness.

  For kernels or other freestanding or fully static executables, the
  compiler switch `-mretpoline` is sufficient to fully mitigate this
  particular attack. For dynamic executables, you must compile *all*
  libraries with `-mretpoline` and additionally link the dynamic
  executable and all shared libraries with LLD and pass `-z
  retpolineplt` (or use similar functionality from some other linker).
  We strongly recommend also using `-z now` as non-lazy binding allows
  the retpoline-mitigated PLT to be substantially smaller.

  When manually apply similar transformations to `-mretpoline` to the
  Linux kernel we observed very small performance hits to applications
  running typic al workloads, and relatively minor hits (approximately
  2%) even for extremely syscall-heavy applications. This is largely
  due to the small number of indirect branches that occur in
  performance sensitive paths of the kernel.

  When using these patches on statically linked applications,
  especially C++ applications, you should expect to see a much more
  dramatic performance hit. For microbenchmarks that are switch,
  indirect-, or virtual-call heavy we have seen overheads ranging from
  10% to 50%.

  However, real-world workloads exhibit substantially lower performance
  impact. Notably, techniques such as PGO and ThinLTO dramatically
  reduce the impact of hot indirect calls (by speculatively promoting
  them to direct calls) and allow optimized search trees to be used to
  lower switches. If you need to deploy these techniques in C++
  applications, we *strongly* recommend that you ensure all hot call
  targets are statically linked (avoiding PLT indirection) and use both
  PGO and ThinLTO. Well tuned servers using all of these techniques saw
  5% - 10% overhead from the use of retpoline.

  We will add detailed documentation covering these components in
  subsequent patches, but wanted to make the core functionality
  available as soon as possible. Happy for more code review, but we'd
  really like to get these patches landed and backported ASAP for
  obvious reasons. We're planning to backport this to both 6.0 and 5.0
  release streams and get a 5.0 release with just this cherry picked
  ASAP for distros and vendors.

  This patch is the work of a number of people over the past month:
  Eric, Reid, Rui, and myself. I'm mailing it out as a single commit
  due to the time sensitive nature of landing this and the need to
  backport it. Huge thanks to everyone who helped out here, and
  everyone at Intel who helped out in discussions about how to craft
  this. Also, credit goes to Paul Turner (at Google, but not an LLVM
  contributor) for much of the underlying retpoline design.

  Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer

  Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits

  Differential Revision: https://reviews.llvm.org/D41723

MFC after:	3 months
X-MFC-With:	r327952
PR:		224669
2018-02-02 22:28:12 +00:00
dim
97d315ca19 Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
6.0.0 (branches/release_60 r323948).

MFC after:	3 months
X-MFC-With:	r327952
PR:		224669
2018-02-01 21:41:15 +00:00
dim
fd29b1d39e Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
6.0.0 (branches/release_60 r323338).

MFC after:	3 months
X-MFC-With:	r327952
PR:		224669
2018-01-24 22:35:00 +00:00
dim
3207b51c93 Pull in r322623 from upstream llvm trunk (by Andrew V. Tischenko):
Allow usage of X86-prefixes as separate instrs.
  Differential Revision: https://reviews.llvm.org/D42102

This should fix parse errors when x86 prefixes (such as 'lock' and
'rep') are followed by various non-mnemonic tokens, e.g. comments, .byte
directives and labels.

PR:		224669,225054
2018-01-17 17:11:55 +00:00
dim
5473ed2089 Build llvm-extract with -lz, and add a few objects to liblldb, both of
which turn out to be needed when you don't use -ffunction-sections.

Reported by:	Shawn Webb <shawn.webb@hardenedbsd.org>
2018-01-13 13:53:05 +00:00
dim
0f76262754 Merge llvm, clang, lld, lldb, compiler-rt and libc++ release_60 r321788,
update build glue and version numbers.
2018-01-06 23:44:14 +00:00
dim
740b3dd5fe Merge llvm, clang, lld, lldb, compiler-rt and libc++ trunk r321545,
update build glue and version numbers, add new intrinsics headers, and
update OptionalObsoleteFiles.inc.
2017-12-29 00:56:15 +00:00
dim
6168e10044 Add one more file to libllvm's SRCS_MIN, since this one is required for
MK_SHARED_TOOLCHAIN=yes.
2017-12-29 00:21:50 +00:00
dim
2bcccfe68a Update clang, lld and llvm version numbers for r321414, and update build
glue.
2017-12-24 12:32:55 +00:00
dim
274a2c8eba Next step in updating llvm/clang build glue: make lldb build. 2017-12-22 19:10:19 +00:00
dim
d062dc1876 Next step in updating llvm/clang build glue: make lld build. 2017-12-22 16:27:29 +00:00
dim
e288f5f1c6 Sort source file lists under lib/clang. 2017-12-22 13:35:26 +00:00
dim
196fc344f1 Next step in updating llvm/clang build glue: make the optional llvm and
clang tools build.
2017-12-22 13:28:10 +00:00
dim
48179c3cfd Next step in updating llvm/clang build glue: make llvm-objdump build. 2017-12-22 11:41:18 +00:00
dim
bc7d830468 Next step in updating llvm/clang build glue: make the full clang
executable build.
2017-12-22 10:04:40 +00:00
dim
ce14442b6c First step in updating llvm/clang build glue: make only the clang
executable build.
2017-12-21 21:24:52 +00:00
dim
1253af537c Bump FREEBSD_CC_VERSION. 2017-12-20 20:27:23 +00:00
dim
4db9de40f8 Add new clang intrinsics headers, and update version number. 2017-12-20 20:27:09 +00:00
dim
d691b51689 Update generated config headers, and version numbers. 2017-12-20 20:25:35 +00:00
dim
0a6d7463ef Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
5.0.1 release (upstream r320880).

Relnotes:	yes
MFC after:	2 weeks
2017-12-16 18:06:30 +00:00
dim
26ff34968f Upgrade our copies of clang, llvm, lldb and libc++ to r319231 from the
upstream release_50 branch.  This corresponds to 5.0.1 rc2.

MFC after:	2 weeks
2017-12-03 12:14:34 +00:00
bdrewery
e1a006b5a3 Tell bsd.dep.mk which depend files to dinclude.
This allows the _SKIP_DEPEND optimization to work, avoiding reading
the files when not needed.  It also fixes META_MODE incorrectly
reading these files when not needed.

Sponsored by:	Dell EMC Isilon
2017-11-10 20:09:15 +00:00
bdrewery
9c5d7caa5a Prefix {TARGET,BUILD}_TRIPLE with LLVM_ to avoid Makefile.inc1 collision.
The Makefile.inc1 TARGET_TRIPLE is for specifying which -target is used
during the build of world.

MFC after:	2 weeks
Reviewed by:	dim, imp
Sponsored by:	Dell EMC Isilon
Differential Revision:	https://reviews.freebsd.org/D12792
2017-10-25 21:45:55 +00:00
imp
c5ddd11381 Support armv7 builds for userland
Make armv7 as a new MACHINE_ARCH.

Copy all the places we do armv6 and add armv7 as basically an
alias. clang appears to generate code for armv7 by default. armv7 hard
float isn't supported by the the in-tree gcc, so it hasn't been
updated to have a new default.

Support armv7 as a new valid MACHINE_ARCH (and by extension
TARGET_ARCH).

Add armv7 to the universe build.

Differential Revision: https://reviews.freebsd.org/D12010
2017-10-05 23:01:33 +00:00
dim
c9fdfda4f3 Upgrade our copies of clang, llvm, lld, lldb, compiler-rt and libc++ to
5.0.0 release (upstream r312559).

Release notes for llvm, clang and lld will be available here soon:
<http://releases.llvm.org/5.0.0/docs/ReleaseNotes.html>
<http://releases.llvm.org/5.0.0/tools/clang/docs/ReleaseNotes.html>
<http://releases.llvm.org/5.0.0/tools/lld/docs/ReleaseNotes.html>

Relnotes:	yes
MFC after:	1 month
X-MFC-with:	r321369
2017-09-06 21:21:13 +00:00
dim
31c8df9a8a Upgrade our copies of clang, llvm, lldb and compiler-rt to r312293 from
the upstream release_50 branch.  This corresponds to 5.0.0 rc4.

As of this version, the cad/stepcode port should now compile in a more
reasonable time on i386 (see bug 221836 for more information).

PR:		221836
MFC after:	2 months
X-MFC-with:	r321369
2017-09-01 18:53:36 +00:00
dim
b5e6330452 Upgrade our copies of clang, llvm, lldb and compiler-rt to r311606 from
the upstream release_50 branch.

As of this version, lib/msun's trig test should also work correctly
again (see bug 220989 for more information).

PR:		220989
MFC after:	2 months
X-MFC-with:	r321369
2017-08-24 20:19:27 +00:00
jhb
054937d661 Improve the coverage of debug symbols for MK_DEBUG_FILES.
- Include debug symbols in static libraries.  This permits binaries
  to include debug symbols for functions obtained from static libraries.
- Permit the C/C++ compiler flags added for MK_DEBUG_FILES to be
  overridden by setting DEBUG_FILES_CFLAGS.  Use this to limit the debug
  information for llvm libraries and binaries.

Reviewed by:	emaste
Sponsored by:	DARPA / AFRL
Differential Revision:	https://reviews.freebsd.org/D12025
2017-08-23 23:30:25 +00:00
dim
09ad5627dc Upgrade our copies of clang, llvm, lld and libc++ to r311219 from the
upstream release_50 branch.

MFC after:	2 months
X-MFC-with:	r321369
2017-08-21 07:03:02 +00:00
dim
2dddd7a45c Upgrade our copies of clang, llvm and libc++ to r310316 from the
upstream release_50 branch.

MFC after:	2 months
X-MFC-with:	r321369
2017-08-09 17:32:39 +00:00
dim
91d0a1e5ff Upgrade our copies of clang, llvm, lld and lldb to r309439 from the
upstream release_50 branch.  This is just after upstream's 5.0.0-rc1.

MFC after:	2 months
X-MFC-with:	r321369
2017-07-30 18:01:34 +00:00
bdrewery
293e1695af Move llvm Options.inc hack from r321433 for NO_CLEAN to lib/clang/libllvm.
The files are only ever generated to .OBJDIR, not to WORLDTMP (as a
sysroot) and are only ever included from a compilation.  So using
a beforebuild target here removes the file before the compilation
tries to include it.

MFC after:	2 months
X-MFC-With:	r321369
2017-07-24 23:32:24 +00:00
dim
5b395b80a6 Add a few more object files to liblldb, which should solve errors when
linking the lldb executable in some cases.  In particular, when the
-ffunction-sections -fdata-sections options are turned off, or
ineffective.

Reported by:	Shawn Webb, Mark Millard
MFC after:	2 months
X-MFC-With:	r308421
2017-07-24 16:33:06 +00:00
dim
663f5db3f7 Merge llvm, clang, lld, lldb, compiler-rt and libc++ r308421, and update
build glue.
2017-07-19 19:41:41 +00:00
dim
4d0d296fa3 Merge llvm, clang, lld, lldb, compiler-rt and libc++ r307894, and update
build glue.
2017-07-13 21:58:45 +00:00
dim
9a01022502 Merge llvm, clang, lld, lldb, compiler-rt and libc++ r306956, and update
build glue.
2017-07-02 11:41:15 +00:00
dim
73efde936a Merge llvm, clang, lld, lldb, compiler-rt and libc++ r306325, and update
build glue.
2017-06-27 06:40:39 +00:00
dim
8c0fbdb3e6 Merge ^/head r319801 through r320041. 2017-06-17 00:14:54 +00:00
dim
e30d1a0bf8 Merge llvm, clang, lld, lldb, compiler-rt and libc++ r305575, and update
build glue.
2017-06-17 00:09:34 +00:00
dim
65f3f43118 Revert r319796 for now, it can cause undefined references when linking
in some circumstances.

Reported by:	Shawn Webb <shawn.webb@hardenedbsd.org>
2017-06-13 21:01:06 +00:00
dim
5bbcba2cd3 Merge llvm, clang, lld, lldb, compiler-rt and libc++ r305145, and update
build glue.
2017-06-10 19:17:14 +00:00
dim
3432f44f15 Remove a few unneeded files from libllvm, libclang and liblldb.
MFC after:	3 days
2017-06-10 18:52:13 +00:00
dim
4a8405fce0 Merge llvm, clang, lld, lldb, compiler-rt and libc++ r304659, and update
build glue.
2017-06-03 18:18:34 +00:00
dim
e0ec28bdd9 Merge ^/head r319251 through r319479. 2017-06-01 22:59:41 +00:00
dim
6f031eff4b Merge llvm, clang, lld, lldb, compiler-rt and libc++ r304460, and update
build glue.
2017-06-01 22:47:02 +00:00