- Use new zlib headers;
- Removed z_alloc and z_free to use the common sys/dev/zlib version.
- Replace z_compressBound with compressBound from zlib.
While there, limit LZMA CFLAGS to apply only for g_uzip_lzma.c.
PR: 229763
Submitted by: Yoshihiro Ota <ota j email ne jp> (with changes,
bugs are mine)
Differential Revision: https://reviews.freebsd.org/D20271
On FreeBSD 13.0, the fuse driver will always be known as fusefs. The
backwards compatibility symlink will still be used for stable/12 and
stable/11, though.
Reported by: jhibbits
Reviewed by: rgrimes, imp, cem
MFC after: Never
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D21181
with Communication Device Class Ethernet Emulation Model (CDC EEM).
The driver supports both the device, and host side operation; there
is a new USB template (#11) for the former.
This enables communication with virtual USB NIC provided by iLO 5,
as found in new HPE Proliant servers.
Reviewed by: hselasky
MFC after: 2 weeks
Relnotes: yes
Sponsored by: Hewlett Packard Enterprise
Instances of the device can be configured using hints or FDT data.
Interfaces to reconfigure the chip and extract voltage measurements from
it are available via sysctl(8).
with an eventual goal to convert all legacl zlib callers to the new zlib
version:
* Move generic zlib shims that are not specific to zlib 1.0.4 to
sys/dev/zlib.
* Connect new zlib (1.2.11) to the zlib kernel module, currently built
with Z_SOLO.
* Prefix the legacy zlib (1.0.4) with 'zlib104_' namespace.
* Convert sys/opencrypto/cryptodeflate.c to use new zlib.
* Remove bundled zlib 1.2.3 from ZFS and adapt it to new zlib and make
it depend on the zlib module.
* Fix Z_SOLO build of new zlib.
PR: 229763
Submitted by: Yoshihiro Ota <ota j email ne jp>
Reviewed by: markm (sys/dev/zlib/zlib_kmod.c)
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D19706
It is assembled using "${CC} -x assembler-with-cpp", which by convention
(bsd.suffixes.mk) uses the .asm extension.
This is a portion of the review referenced below (D18344). That review
also renamed linux_support.s to .S, but that is a functional change
(using the compiler's integrated assembler instead of as) and will be
revisited separately.
MFC after: 1 week
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D18344
The already-listed APMC0D0F ID belongs to the Ampere eMAG aarch64
platform, but ACPI support was not even built on aarch64.
Submitted by: Greg V <greg_unrelenting.technology>
Differential Revision: https://reviews.freebsd.org/D21059
well as sets in some of the groundwork for committing BBR. The
hpts system is updated as well as some other needed utilities
for the entrance of BBR. This is actually part 1 of 3 more
needed commits which will finally complete with BBRv1 being
added as a new tcp stack.
Sponsored by: Netflix Inc.
Differential Revision: https://reviews.freebsd.org/D20834
This patch is the driver for NTB hardware in AMD SoCs (ported from Linux)
and enables the NTB infrastructure like Doorbells, Scratchpads and Memory
window in AMD SoC. This driver has been validated using ntb_transport and
if_ntb driver already available in FreeBSD.
Submitted by: Rajesh Kumar <rajesh1.kumar@amd.com>
MFC after: 1 month
Relnotes: yes
Differential Revision: https://reviews.freebsd.org/D18774
The goal of this driver is consolidate information about SuperIO chips
and to provide for peaceful coexistence of drivers that need to access
SuperIO configuration registers.
While SuperIO chips can host various functions most of them are
discoverable and accessible without any knowledge of the SuperIO.
Examples are: keyboard and mouse controllers, UARTs, floppy disk
controllers. SuperIO-s also provide non-standard functions such as
GPIO, watchdog timers and hardware monitoring. Such functions do
require drivers with a knowledge of a specific SuperIO.
At this time the driver supports a number of ITE and Nuvoton (fka
Winbond) SuperIO chips.
There is a single driver for all devices. So, I have not done the usual
split between the hardware driver and the bus functionality. Although,
superio does act as a bus for devices that represent known non-standard
functions of a SuperIO chip. The bus provides enumeration of child
devices based on the hardcoded knowledge of such functions. The
knowledge as extracted from datasheets and other drivers.
As there is a single driver, I have not defined a kobj interface for it.
So, its interface is currently made of simple functions.
I think that we can the flexibility (and complications) when we actually
need it.
I am planning to convert nctgpio and wbwd to superio bus very soon.
Also, I am working on itwd driver (watchdog in ITE SuperIO-s).
Additionally, there is ithwm driver based on the reverted sensors
import, but I am not sure how to integrate it given that we still lack
any sensors interface.
Discussed with: imp, jhb
MFC after: 7 weeks
Differential Revision: https://reviews.freebsd.org/D8175
NANDFS has been broken for years. Remove it. The NAND drivers that
remain are for ancient parts that are no longer relevant. They are
polled, have terrible performance and just for ancient arm
hardware. NAND parts have evolved significantly from this early work
and little to none of it would be relevant should someone need to
update to support raw nand. This code has been off by default for
years and has violated the vnode protocol leading to panics since it
was committed.
Numerous posts to arch@ and other locations have found no actual users
for this software.
Relnotes: Yes
No Objection From: arch@
Differential Revision: https://reviews.freebsd.org/D20745
This adds ACPI device path on devinfo(8) output and
show value of _UPC(usb port capabilities), _PLD (physical location of device)
when hw.usb.debug >= 1 .
Reviewed by: hselasky
Differential Revision: https://reviews.freebsd.org/D20630
The natural place to look for them based on how other SoCs are organized
would be sys/modules/ti, but that's already taken. Drop a clue into
modules/ti/Makefile directing people to modules/arm_ti if they're looking
for ARM modules.
necessary support functions in cpu-v6.h, and it may be that the only armv6
platform we support (RPi, the bcm2835 SOC) is incapable of supporting hwpmc.
Reported by: dim@
This fixes META_MODE rebuilding since it assumes that it this is
a non-consistent build command. These are always unencoded consistently
though and do not need to use the .OODATE/$? mechanism.
MFC after: 2 weeks
Reported by: npn
Sponsored by: DellEMC
Add a CAM-Newbus SDIO support module. This works provides a newbus
infrastructure for device drivers wanting to use SDIO. On the lower end
while it is connected by newbus to SDHCI, it talks CAM using the MMCCAM
framework to get to it.
This also duplicates the usbdevs framework to equally create sdiodev
header files with #defines for "vendors" and "products".
Submitted by: kibab (initial work, see https://reviews.freebsd.org/D12467)
Reviewed by: kibab, imp (comments on earlier version)
MFC after: 6 weeks
Relnotes: yes
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D19749
install -> ${INSTALL}
mtree -> ${MTREE_CMD}
services_mkdb -> ${SERVICES_MKDB_CMD}
cap_mkdb -> ${CAP_MKDB_CMD}
pwd_mkdb -> ${PWD_MKDB_CMD}
kldxref -> ${KLDXREF_CMD}
If you do custom FreeBSD builds you may want to override those
in some cases.
Sponsored by: Sippy Software, Inc.
ENAv2 introduces many new features, bug fixes and improvements.
Main new features are LLQ (Low Latency Queues) and independent queues
reconfiguration using sysctl commands.
The year in copyright notice was updated to 2019.
Submitted by: Michal Krawczyk <mk@semihalf.com>
Obtained from: Semihalf
Sponsored by: Amazon, Inc.
code. The primary client of this is probably going to be ZFS encryption.
Reviewed by: jhb, cem
Sponsored by: iXsystems Inc, Kithrup Enterprises
Differential Revision: https://reviews.freebsd.org/D19298
FDT data is sometimes used to configure usb devices which are hardwired into
an embedded system. Because the devices are instantiated by the usb
enumeration process rather than by ofwbus iterating through the fdt data, it
is somewhat difficult for a usb driver to locate fdt data that belongs to
it. In the past, various ad-hoc methods have been used, which can lead to
errors such applying configuration that should apply only to a hardwired
device onto a similar device attached by the user at runtime. For example,
if the user adds an ethernet device that uses the same driver as the builtin
ethernet, both devices might end up with the same MAC address.
These changes add a new usb_fdt_get_node() helper function that a driver can
use to locate FDT data that belongs to a single unique instance of the
device. This function locates the proper FDT data using the mechanism
detailed in the standard "usb-device.txt" binding document [1].
There is also a new usb_fdt_get_mac_addr() function, used to retrieve the
mac address for a given device instance from the fdt data. It uses
usb_fdt_get_node() to locate the right node in the FDT data, and attempts to
obtain the mac-address or local-mac-address property (in that order, the
same as linux does it).
The existing if_smsc driver is modified to use the new functions, both as an
example and for testing the new functions. Rpi and rpi2 boards use this
driver and provide the mac address via the fdt data.
[1] https://github.com/torvalds/linux/blob/master/Documentation/devicetree/bindings/usb/usb-device.txt
Differential Revision: https://reviews.freebsd.org/D20262
The source file was moved to base earlier and also improved upon,
but never compiled in. This patch will:
- Make a module in sys/modules
- Make lindebugfs depend on linuxkpi (for seq_file)
- Check if read/write functions are set before calling, DRM drivers
don't always set both of them.
Reviewed by: hps
Approved by: imp (mentor), hps
MFC after: 1 week
seq_file.h and linux_seq_file.c was imported form ports earlier but
linux_seq_file.c was never compiled in with the module. With this
commit base seq_file will replace ports seq_file and it required a
few modifications to not break functionality and build.
Reviewed by: hps
Approved by: imp (mentor), hps
MFC after: 1 week