threads. These serve as input threads and are queued
packets based on the V-tag number. This is similar to
what a modern card can do with queue's for TCP... but
alas modern cards know nothing about SCTP.
MFC after: 3 months (maybe)
never committed from p4 dtrace branch.
[The correct include path is referenced from every opensolaris compat
consumer's module Makefile, so it doesn't serve any purpose anyway.]
Reported by: arundel on freebsd-hackers@ via clang
Approved by: kib (mentor)
MFC after: 1 week
The AR5416 and later TX descriptors have new fields for supporting
11n bits (eg 20/40mhz mode, short/long GI) and enabling/disabling
RTS/CTS protection per rate.
These functions will be responsible for initialising the TX descriptors
for the AR5416 and later chips for both HT and legacy frames.
Beacon frames will remain using the non-11n TX descriptor setup for now;
Linux ath9k does much the same.
Note that these functions aren't yet used anywhere; a few more framework
changes are needed before all of the right rate information is available
for TX.
There's two reasons for this:
* the raw and non-raw TX path shares a lot of duplicate code which should be
refactored;
* the 11n-ready chip TX path needs a little reworking.
sys/dev/ath/ath_hal/ar5416/ is getting very crowded and further
commits will make it even more crowded. Now is a good time to
shuffle these files out before any more extensive work is done
on them.
Create an ar9003 directory whilst I'm here; ar9003 specific
chipset code will eventually live there.
- Remove sys/conf/ldscript.mips.64 and sys/conf/ldscript.mips.n32 and use
ldscript.mips for all ABIs. The default OUTPUT_FORMAT of the toolchain
is correct.
- Remove LDSCRIPT_NAME entires from XLR n32 and n64 conf files.
- Remove TARGET_BIG_ENDIAN from XLR conf files.
- Fix machine entry in XLRN32
This ldscript is used with both little-endian and big-endian targets.
This hopefully fixes MIPS universe.
NB: We really should get rid of almost all of the MIPS ldscripts. There's
only gratuitous differences between them, mostly because they're too
specific or they do things like specify the output format rather than
taking it from flags given in the kernel config file or the default
output format of the compiler.
Also add svn:keywords property.
Compile sys/dev/mem/memutil.c for all supported platforms and remove now
unnecessary dev_mem_md_init(). Consistently define mem_range_softc from
mem.c for all platforms. Add missing #include guards for machine/memdev.h
and sys/memrange.h. Clean up some nearby style(9) nits.
MFC after: 1 month
available on firmwares 3.15 and earlier.
Caveats: Support for the internal SATA controller is currently missing,
as is support for framebuffer resolutions other than 720x480. These
deficiencies will be remedied soon.
Special thanks to Peter Grehan for providing the hardware that made this
port possible, and thanks to Geoff Levand of Sony Computer Entertainment
for advice on the LV1 hypervisor.
mechanical change. This opens the door for using PV device drivers
under Xen HVM on i386, as well as more general harmonisation of i386
and amd64 Xen support in FreeBSD.
Reviewed by: cperciva
MFC after: 3 weeks
The controller is commonly found on DM&P Vortex86 x86 SoC. The
driver supports all hardware features except flow control. The
flow control was intentionally disabled due to silicon bug.
DM&P Electronics, Inc. provided all necessary information including
sample board to write driver and answered many questions I had.
Many thanks for their support of FreeBSD.
H/W donated by: DM&P Electronics, Inc.
has device mem in it almost everywhere, we get warnings about
duplicated device almost everywhere. Comment it out, with a note
about why, so that we don't get those warnings.
and in many respects can be thought of as a more generic superset of pfil.
Hhook provides a way for kernel subsystems to export hook points that Khelp
modules can hook to provide enhanced or new functionality to the kernel. The
KPI has been designed to ensure hook points pose no noticeable overhead when
no hook functions are registered.
- Introduce the Khelp (Kernel Helpers) KPI. Khelp provides a framework for
managing Khelp modules, which indirectly use the Hhook KPI to register their
hook functions with hook points of interest within the kernel. Khelp modules
aim to provide a structured way to dynamically extend the kernel at runtime in
an ABI preserving manner. Depending on the subsystem providing hook points, a
Khelp module may be able to associate per-object data for maintaining relevant
state between hook calls.
- pjd's Object Specific Data (OSD) KPI is used to manage the per-object data
allocated to Khelp modules. Create a new "OSD_KHELP" OSD type for use by the
Khelp framework.
- Bump __FreeBSD_version to 900028 to mark the introduction of the new KPIs.
In collaboration with: David Hayes <dahayes at swin edu au> and
Grenville Armitage <garmitage at swin edu au>
Sponsored by: FreeBSD Foundation
Reviewed by: bz, others along the way
MFC after: 3 months
- Remove the -shared flag for the trampoline binary, generate an
ELF executable instead of a shared object.
- No need to generate tmphack.S, move the code to sys/mips/mips/inckern.S
- No need generate opt_kernname.h, KERNNAME can be passed with -D
Reviewed by: gonzo, imp
Keep three lines disabled which I am unsure if they had been used at all.
This will allow us to seek testers and possibly bring it all back.
Discussed with: rwatson
MFC after: 7 weeks
Implement uma_small_alloc() and uma_small_free() for mips that allocates
pages from direct mapped memory. Uses the same mechanism as the page table
page allocator, so that we allocate from KSEG0 in 32 bit, and from XKPHYS
on 64 bit.
Reviewed by: alc, jmallett
logic to support modifying the page table through a hypervisor. This
uses KOBJ inheritance to provide subclasses of the base 64-bit AIM MMU
class with additional methods for page table manipulation.
Many thanks to Peter Grehan for suggesting this design and implementing
the MMU KOBJ inheritance mechanism.
This includes support in the kernel, camcontrol(8), libcam and the mps(4)
driver for SMP passthrough.
The CAM SCSI probe code has been modified to fetch Inquiry VPD page 0x00
to determine supported pages, and will now fetch page 0x83 in addition to
page 0x80 if supported.
Add two new CAM CCBs, XPT_SMP_IO, and XPT_GDEV_ADVINFO. The SMP CCB is
intended for SMP requests and responses. The ADVINFO is currently used to
fetch cached VPD page 0x83 data from the transport layer, but is intended
to be extensible to fetch other types of device-specific data.
SMP-only devices are not currently represented in the CAM topology, and so
the current semantics are that the SIM will route SMP CCBs to either the
addressed device, if it contains an SMP target, or its parent, if it
contains an SMP target. (This is noted in cam_ccb.h, since it will change
later once we have the ability to have SMP-only devices in CAM's topology.)
smp_all.c,
smp_all.h: New helper routines for SMP. This includes
SMP request building routines, response parsing
routines, error decoding routines, and structure
definitions for a number of SMP commands.
libcam/Makefile: Add smp_all.c to libcam, so that SMP functionality
is available to userland applications.
camcontrol.8,
camcontrol.c: Add smp passthrough support to camcontrol. Several
new subcommands are now available:
'smpcmd' functions much like 'cmd', except that it
allows the user to send generic SMP commands.
'smprg' sends the SMP report general command, and
displays the decoded output. It will automatically
fetch extended output if it is available.
'smppc' sends the SMP phy control command, with any
number of potential options. Among other things,
this allows the user to reset a phy on a SAS
expander, or disable a phy on an expander.
'smpmaninfo' sends the SMP report manufacturer
information and displays the decoded output.
'smpphylist' displays a list of phys on an
expander, and the CAM devices attached to those
phys, if any.
cam.h,
cam.c: Add a status value for SMP errors
(CAM_SMP_STATUS_ERROR).
Add a missing description for CAM_SCSI_IT_NEXUS_LOST.
Add support for SMP commands to cam_error_string().
cam_ccb.h: Rename the CAM_DIR_RESV flag to CAM_DIR_BOTH. SMP
commands are by nature bi-directional, and we may
need to support bi-directional SCSI commands later.
Add the XPT_SMP_IO CCB. Since SMP commands are
bi-directional, there are pointers for both the
request and response.
Add a fill routine for SMP CCBs.
Add the XPT_GDEV_ADVINFO CCB. This is currently
used to fetch cached page 0x83 data from the
transport later, but is extensible to fetch many
other types of data.
cam_periph.c: Add support in cam_periph_mapmem() for XPT_SMP_IO
and XPT_GDEV_ADVINFO CCBs.
cam_xpt.c: Add support for executing XPT_SMP_IO CCBs.
cam_xpt_internal.h: Add fields for VPD pages 0x00 and 0x83 in struct
cam_ed.
scsi_all.c: Add scsi_get_sas_addr(), a function that parses
VPD page 0x83 data and pulls out a SAS address.
scsi_all.h: Add VPD page 0x00 and 0x83 structures, and a
prototype for scsi_get_sas_addr().
scsi_pass.c: Add support for mapping buffers in XPT_SMP_IO and
XPT_GDEV_ADVINFO CCBs.
scsi_xpt.c: In the SCSI probe code, first ask the device for
VPD page 0x00. If any VPD pages are supported,
that page is required to be implemented. Based on
the response, we may probe for the serial number
(page 0x80) or device id (page 0x83).
Add support for the XPT_GDEV_ADVINFO CCB.
sys/conf/files: Add smp_all.c.
mps.c: Add support for passing in a uio in mps_map_command(),
so we can map a S/G list at once.
Add support for SMP passthrough commands in
mps_data_cb(). SMP is a special case, because the
first buffer in the S/G list is outbound and the
second buffer is inbound.
Add support for warning the user if the busdma code
comes back with more buffers than will work for the
command. This will, for example, help the user
determine why an SMP command failed if busdma comes
back with three buffers.
mps_pci.c: Add sys/uio.h.
mps_sas.c: Add the SAS address and the parent handle to the
list of fields we pull from device page 0 and cache
in struct mpssas_target. These are needed for SMP
passthrough.
Add support for the XPT_SMP_IO CCB. For now, this
CCB is routed to the addressed device if it supports
SMP, or to its parent if it does not and the parent
does. This is necessary because CAM does not
currently support SMP-only nodes in the topology.
Make SMP passthrough support conditional on
__FreeBSD_version >= 900026. This will make it
easier to MFC this change to the driver without
MFCing the CAM changes as well.
mps_user.c: Un-staticize mpi_init_sge() so we can use it for
the SMP passthrough code.
mpsvar.h: Add a uio and iovecs into struct mps_command for
SMP passthrough commands.
Add a cm_max_segs field to struct mps_command so
that we can warn the user if busdma comes back with
too many segments.
Clear the cm_reply when a command gets freed. If
it is not cleared, reply frames will eventually get
freed into the pool multiple times and corrupt the
pool. (This fix is from scottl.)
Add a prototype for mpi_init_sge().
sys/param.h: Bump __FreeBSD_version to 900026 for the for the
inclusion of the XPT_GDEV_ADVINFO and XPT_SMP_IO
CAM CCBs.
- This adds a VM SRIOV interface, ixv, it is however
transparent to the user, it links with the ixgbe.ko,
but when ixgbe is loaded in a virtualized guest with
SRIOV configured this will be detected.
- Sync shared code to latest
- Many bug fixes and improvements, thanks to everyone
who has been using the driver and reporting issues.
packets which go through each USB host controllers. Its implementations
are almost based on BPF code and very similar with it except it's
little bit customized for USB packet only. The userland program
usbdump(8) would be committed soon.
Discussed with: hps, thompsa, yongari
Move logic of building ACPI headers for acpi_wakeup.c into better places,
remove intermediate makefile and shell script, and reduce diff between i386
and amd64.
Control Algorithms for FreeBSD" FreeBSD Foundation funded project. More details
about the project are available at: http://caia.swin.edu.au/freebsd/5cc/
- Add a KPI and supporting infrastructure to allow modular congestion control
algorithms to be used in the net stack. Algorithms can maintain per-connection
state if required, and connections maintain their own algorithm pointer, which
allows different connections to concurrently use different algorithms. The
TCP_CONGESTION socket option can be used with getsockopt()/setsockopt() to
programmatically query or change the congestion control algorithm respectively
from within an application at runtime.
- Integrate the framework with the TCP stack in as least intrusive a manner as
possible. Care was also taken to develop the framework in a way that should
allow integration with other congestion aware transport protocols (e.g. SCTP)
in the future. The hope is that we will one day be able to share a single set
of congestion control algorithm modules between all congestion aware transport
protocols.
- Introduce a new congestion recovery (TF_CONGRECOVERY) state into the TCP stack
and use it to decouple the meaning of recovery from a congestion event and
recovery from packet loss (TF_FASTRECOVERY) a la RFC2581. ECN and delay based
congestion control protocols don't generally need to recover from packet loss
and need a different way to note a congestion recovery episode within the
stack.
- Remove the net.inet.tcp.newreno sysctl, which simplifies some portions of code
and ensures the stack always uses the appropriate mechanisms for recovering
from packet loss during a congestion recovery episode.
- Extract the NewReno congestion control algorithm from the TCP stack and
massage it into module form. NewReno is always built into the kernel and will
remain the default algorithm for the forseeable future. Implementations of
additional different algorithms will become available in the near future.
- Bump __FreeBSD_version to 900025 and note in UPDATING that rebuilding code
that relies on the size of "struct tcpcb" is required.
Many thanks go to the Cisco University Research Program Fund at Community
Foundation Silicon Valley and the FreeBSD Foundation. Their support of our work
at the Centre for Advanced Internet Architectures, Swinburne University of
Technology is greatly appreciated.
In collaboration with: David Hayes <dahayes at swin edu au> and
Grenville Armitage <garmitage at swin edu au>
Sponsored by: Cisco URP, FreeBSD Foundation
Reviewed by: rpaulo
Tested by: David Hayes (and many others over the years)
MFC after: 3 months
mappings need to end up in the kernel anyway since the kernel begins
executing in OF context. Separating them adds needless complexity,
especially since the powerpc64 and mmu_oea64 code gave up on it a long
time ago.
As a side effect, the PPC ofw_machdep code is no longer AIM-specific,
so move it to powerpc/ofw.
TARGET_BIG_ENDIAN is now completely dead, except where it was
originally supposed to be used (internally in the toolchain building).
TARGET_ARCH has changed in three cases:
(1) Little endian mips has changed to mipsel.
(2) Big endian mips has changed to mipseb.
(3) Big endian arm has changed to armeb.
Some additional changes are needed to make 'make universe' work on arm
and mips after this change, so those are commented out for now.
UPDATING information will be forthcoming. Any remaining rough edges
will be hammered out in -current.
ELF_MAXPAGESIZE for amd64 from 0x00100000 to 0x00200000. This caused
the kernel to be incorrectly linked, using the existing linker script,
resulting in a virtual address of 0xffffffff80000000 for the LOAD
program header.
The boot loader will load such a kernel at a real address of 0x00000000,
which either causes protection faults in btx, crashes the machine, or
(in case of a VMware guest) even makes it power down. :)
Fix this by partially synchronizing the amd64 linker script with
binutils own updated version, in particular replacing a hardcoded
value of 0x00100000 by CONSTANT(MAXPAGESIZE).
to amd64, i386, and pc98. The headers are installed to /usr/include/x86
during an installworld, and an 'x86' symlink is created for kernel builds
similar to 'machine' so that the headers can be included as <x86/foo.h>.
Reviewed by: imp
enhancements (1). Switch to a standard 2-clause BSD license for this (2).
Unfortunately we have to un-static the ifindex_table for this but do not
publicly export it.
Suggested by: rwatson (1) a while back.
Approved by: thompsa (2) for the change from r204279.
MFC after: 6 days
o Add support for backend devices (e.g. blkback)
o Implement extensions to the Xen para-virtualized block API to allow
for larger and more outstanding I/Os.
o Import a completely rewritten block back driver with support for fronting
I/O to both raw devices and files.
o General cleanup and documentation of the XenBus and XenStore support code.
o Robustness and performance updates for the block front driver.
o Fixes to the netfront driver.
Sponsored by: Spectra Logic Corporation
sys/xen/xenbus/init.txt:
Deleted: This file explains the Linux method for XenBus device
enumeration and thus does not apply to FreeBSD's NewBus approach.
sys/xen/xenbus/xenbus_probe_backend.c:
Deleted: Linux version of backend XenBus service routines. It
was never ported to FreeBSD. See xenbusb.c, xenbusb_if.m,
xenbusb_front.c xenbusb_back.c for details of FreeBSD's XenBus
support.
sys/xen/xenbus/xenbusvar.h:
sys/xen/xenbus/xenbus_xs.c:
sys/xen/xenbus/xenbus_comms.c:
sys/xen/xenbus/xenbus_comms.h:
sys/xen/xenstore/xenstorevar.h:
sys/xen/xenstore/xenstore.c:
Split XenStore into its own tree. XenBus is a software layer built
on top of XenStore. The old arrangement and the naming of some
structures and functions blurred these lines making it difficult to
discern what services are provided by which layer and at what times
these services are available (e.g. during system startup and shutdown).
sys/xen/xenbus/xenbus_client.c:
sys/xen/xenbus/xenbus.c:
sys/xen/xenbus/xenbus_probe.c:
sys/xen/xenbus/xenbusb.c:
sys/xen/xenbus/xenbusb.h:
Split up XenBus code into methods available for use by client
drivers (xenbus.c) and code used by the XenBus "bus code" to
enumerate, attach, detach, and service bus drivers.
sys/xen/reboot.c:
sys/dev/xen/control/control.c:
Add a XenBus front driver for handling shutdown, reboot, suspend, and
resume events published in the XenStore. Move all PV suspend/reboot
support from reboot.c into this driver.
sys/xen/blkif.h:
New file from Xen vendor with macros and structures used by
a block back driver to service requests from a VM running a
different ABI (e.g. amd64 back with i386 front).
sys/conf/files:
Adjust kernel build spec for new XenBus/XenStore layout and added
Xen functionality.
sys/dev/xen/balloon/balloon.c:
sys/dev/xen/netfront/netfront.c:
sys/dev/xen/blkfront/blkfront.c:
sys/xen/xenbus/...
sys/xen/xenstore/...
o Rename XenStore APIs and structures from xenbus_* to xs_*.
o Adjust to use of M_XENBUS and M_XENSTORE malloc types for allocation
of objects returned by these APIs.
o Adjust for changes in the bus interface for Xen drivers.
sys/xen/xenbus/...
sys/xen/xenstore/...
Add Doxygen comments for these interfaces and the code that
implements them.
sys/dev/xen/blkback/blkback.c:
o Rewrite the Block Back driver to attach properly via newbus,
operate correctly in both PV and HVM mode regardless of domain
(e.g. can be in a DOM other than 0), and to deal with the latest
metadata available in XenStore for block devices.
o Allow users to specify a file as a backend to blkback, in addition
to character devices. Use the namei lookup of the backend path
to automatically configure, based on file type, the appropriate
backend method.
The current implementation is limited to a single outstanding I/O
at a time to file backed storage.
sys/dev/xen/blkback/blkback.c:
sys/xen/interface/io/blkif.h:
sys/xen/blkif.h:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/blkfront/block.h:
Extend the Xen blkif API: Negotiable request size and number of
requests.
This change extends the information recorded in the XenStore
allowing block front/back devices to negotiate for optimal I/O
parameters. This has been achieved without sacrificing backward
compatibility with drivers that are unaware of these protocol
enhancements. The extensions center around the connection protocol
which now includes these additions:
o The back-end device publishes its maximum supported values for,
request I/O size, the number of page segments that can be
associated with a request, the maximum number of requests that
can be concurrently active, and the maximum number of pages that
can be in the shared request ring. These values are published
before the back-end enters the XenbusStateInitWait state.
o The front-end waits for the back-end to enter either the InitWait
or Initialize state. At this point, the front end limits it's
own capabilities to the lesser of the values it finds published
by the backend, it's own maximums, or, should any back-end data
be missing in the store, the values supported by the original
protocol. It then initializes it's internal data structures
including allocation of the shared ring, publishes its maximum
capabilities to the XenStore and transitions to the Initialized
state.
o The back-end waits for the front-end to enter the Initalized
state. At this point, the back end limits it's own capabilities
to the lesser of the values it finds published by the frontend,
it's own maximums, or, should any front-end data be missing in
the store, the values supported by the original protocol. It
then initializes it's internal data structures, attaches to the
shared ring and transitions to the Connected state.
o The front-end waits for the back-end to enter the Connnected
state, transitions itself to the connected state, and can
commence I/O.
Although an updated front-end driver must be aware of the back-end's
InitWait state, the back-end has been coded such that it can
tolerate a front-end that skips this step and transitions directly
to the Initialized state without waiting for the back-end.
sys/xen/interface/io/blkif.h:
o Increase BLKIF_MAX_SEGMENTS_PER_REQUEST to 255. This is
the maximum number possible without changing the blkif
request header structure (nr_segs is a uint8_t).
o Add two new constants:
BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK, and
BLKIF_MAX_SEGMENTS_PER_SEGMENT_BLOCK. These respectively
indicate the number of segments that can fit in the first
ring-buffer entry of a request, and for each subsequent
(sg element only) ring-buffer entry associated with the
"header" ring-buffer entry of the request.
o Add the blkif_request_segment_t typedef for segment
elements.
o Add the BLKRING_GET_SG_REQUEST() macro which wraps the
RING_GET_REQUEST() macro and returns a properly cast
pointer to an array of blkif_request_segment_ts.
o Add the BLKIF_SEGS_TO_BLOCKS() macro which calculates the
number of ring entries that will be consumed by a blkif
request with the given number of segments.
sys/xen/blkif.h:
o Update for changes in interface/io/blkif.h macros.
o Update the BLKIF_MAX_RING_REQUESTS() macro to take the
ring size as an argument to allow this calculation on
multi-page rings.
o Add a companion macro to BLKIF_MAX_RING_REQUESTS(),
BLKIF_RING_PAGES(). This macro determines the number of
ring pages required in order to support a ring with the
supplied number of request blocks.
sys/dev/xen/blkback/blkback.c:
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/blkfront/block.h:
o Negotiate with the other-end with the following limits:
Reqeust Size: MAXPHYS
Max Segments: (MAXPHYS/PAGE_SIZE) + 1
Max Requests: 256
Max Ring Pages: Sufficient to support Max Requests with
Max Segments.
o Dynamically allocate request pools and segemnts-per-request.
o Update ring allocation/attachment code to support a
multi-page shared ring.
o Update routines that access the shared ring to handle
multi-block requests.
sys/dev/xen/blkfront/blkfront.c:
o Track blkfront allocations in a blkfront driver specific
malloc pool.
o Strip out XenStore transaction retry logic in the
connection code. Transactions only need to be used when
the update to multiple XenStore nodes must be atomic.
That is not the case here.
o Fully disable blkif_resume() until it can be fixed
properly (it didn't work before this change).
o Destroy bus-dma objects during device instance tear-down.
o Properly handle backend devices with powef-of-2 sector
sizes larger than 512b.
sys/dev/xen/blkback/blkback.c:
Advertise support for and implement the BLKIF_OP_WRITE_BARRIER
and BLKIF_OP_FLUSH_DISKCACHE blkif opcodes using BIO_FLUSH and
the BIO_ORDERED attribute of bios.
sys/dev/xen/blkfront/blkfront.c:
sys/dev/xen/blkfront/block.h:
Fix various bugs in blkfront.
o gnttab_alloc_grant_references() returns 0 for success and
non-zero for failure. The check for < 0 is a leftover
Linuxism.
o When we negotiate with blkback and have to reduce some of our
capabilities, print out the original and reduced capability before
changing the local capability. So the user now gets the correct
information.
o Fix blkif_restart_queue_callback() formatting. Make sure we hold
the mutex in that function before calling xb_startio().
o Fix a couple of KASSERT()s.
o Fix a check in the xb_remove_* macro to be a little more specific.
sys/xen/gnttab.h:
sys/xen/gnttab.c:
Define GNTTAB_LIST_END publicly as GRANT_REF_INVALID.
sys/dev/xen/netfront/netfront.c:
Use GRANT_REF_INVALID instead of driver private definitions of the
same constant.
sys/xen/gnttab.h:
sys/xen/gnttab.c:
Add the gnttab_end_foreign_access_references() API.
This API allows a client to batch the release of an array of grant
references, instead of coding a private for loop. The implementation
takes advantage of this batching to reduce lock overhead to one
acquisition and release per-batch instead of per-freed grant reference.
While here, reduce the duration the gnttab_list_lock is held during
gnttab_free_grant_references() operations. The search to find the
tail of the incoming free list does not rely on global state and so
can be performed without holding the lock.
sys/dev/xen/xenpci/evtchn.c:
sys/dev/xen/evtchn/evtchn.c:
sys/xen/xen_intr.h:
o Implement the bind_interdomain_evtchn_to_irqhandler API for HVM mode.
This allows an HVM domain to serve back end devices to other domains.
This API is already implemented for PV mode.
o Synchronize the API between HVM and PV.
sys/dev/xen/xenpci/xenpci.c:
o Scan the full region of CPUID space in which the Xen VMM interface
may be implemented. On systems using SuSE as a Dom0 where the
Viridian API is also exported, the VMM interface is above the region
we used to search.
o Pass through bus_alloc_resource() calls so that XenBus drivers
attaching on an HVM system can allocate unused physical address
space from the nexus. The block back driver makes use of this
facility.
sys/i386/xen/xen_machdep.c:
Use the correct type for accessing the statically mapped xenstore
metadata.
sys/xen/interface/hvm/params.h:
sys/xen/xenstore/xenstore.c:
Move hvm_get_parameter() to the correct global header file instead
of as a private method to the XenStore.
sys/xen/interface/io/protocols.h:
Sync with vendor.
sys/xeninterface/io/ring.h:
Add macro for calculating the number of ring pages needed for an N
deep ring.
To avoid duplication within the macros, create and use the new
__RING_HEADER_SIZE() macro. This macro calculates the size of the
ring book keeping struct (producer/consumer indexes, etc.) that
resides at the head of the ring.
Add the __RING_PAGES() macro which calculates the number of shared
ring pages required to support a ring with the given number of
requests.
These APIs are used to support the multi-page ring version of the
Xen block API.
sys/xeninterface/io/xenbus.h:
Add Comments.
sys/xen/xenbus/...
o Refactor the FreeBSD XenBus support code to allow for both front and
backend device attachments.
o Make use of new config_intr_hook capabilities to allow front and back
devices to be probed/attached in parallel.
o Fix bugs in probe/attach state machine that could cause the system to
hang when confronted with a failure either in the local domain or in
a remote domain to which one of our driver instances is attaching.
o Publish all required state to the XenStore on device detach and
failure. The majority of the missing functionality was for serving
as a back end since the typical "hot-plug" scripts in Dom0 don't
handle the case of cleaning up for a "service domain" that is not
itself.
o Add dynamic sysctl nodes exposing the generic ivars of
XenBus devices.
o Add doxygen style comments to the majority of the code.
o Cleanup types, formatting, etc.
sys/xen/xenbus/xenbusb.c:
Common code used by both front and back XenBus busses.
sys/xen/xenbus/xenbusb_if.m:
Method definitions for a XenBus bus.
sys/xen/xenbus/xenbusb_front.c:
sys/xen/xenbus/xenbusb_back.c:
XenBus bus specialization for front and back devices.
MFC after: 1 month
This can happen if the algos are built as modules but are not loaded. If
the selected ratectl algo is not available, try to load it (The load
module functions does nothing currently). Add a dummy ratectl algo which
always selects the first available rate. Use that one if the desired algo
is not available.
MFC after: 1 week
PowerMac7,2.
- The fcu driver lets us read and write the fan RPMs for all fans in the
PowerMac7,2. This driver is PowerMac specific.
- The ds1775 is a driver to read the temperature for the drive bay sensor.
- The max6690 is another driver to read temperatures. Here it is used to
read the inlet, the backside and the U3 heatsink temperature.
An additional driver, the ad7417, will follow later.
Thanks to nwhitehorn for guiding me through this driver development.
Approved by: nwhitehorn (mentor)
dev.bce.<unit>.nvram_dump
Add the capability to write the complete contents of the NVRAM via sysctl
dev.bce.<unit>.nvram_write
These are only available if the kernel option BCE_DEBUG is enabled.
The nvram_write sysctl also requires the kernel option
BCE_NVRAM_WRITE_SUPPORT to be enabled. These are to be used at your
own caution. Since the MAC addresses are stored in the NVRAM, if you
dump one NIC and restore it on another NIC the destination NIC's
MAC addresses will not be preserved. A tool can be made using these
sysctl's to manage the on-chip firmware.
Reviewed by: davidch, yongari
Unlike actual MTRR, this only controls the mapping attributes for
subsequent mmap() of /dev/mem. Nonetheless, the support is sufficiently
MTRR-like that Xorg can use it, which translates into an enormous increase
in graphics performance on PowerPC.
MFC after: 2 weeks
it (the root mount code) into a new file called vfs_mountroot.c
The split is almost trivial, as the code is almost perfectly
non-intertwined. The only adjustment needed was to move the UMA
zone allocation out of vfs_mountroot() [in vfs_mountroot.c] and
into vfs_mount.c, where it had to be done as a SYSINIT [see
vfs_mount_init()].
There are no functional changes with this commit.
- GPIO bus controller interface
- GPIO bus interface
- Implementation of GPIO led(4) compatible device
- Implementation of iic(4) bus over GPIO (author: Luiz Otavio O Souza)
Tested by: Luiz Otavio O Souza, Alexandr Rybalko
links. The reference counting is needed to be able to determine if a
specific devfs path exists. For true device file paths we can traverse
the cdevp_list but a separate directory list is needed for user created
symbolic links.
Add a new directory entry flag DE_USER to mark entries which should
unreference their parent directory on deletion.
A new function to traverse cdevp_list and the directory list will be
introduced in a separate commit.
Idea from: kib
Reviewed by: kib
in the kernel (just as inet_ntoa() and inet_aton()) are and sync their
prototype accordingly with already mentioned functions.
Sponsored by: Sandvine Incorporated
Reviewed by: emaste, rstone
Approved by: dfr
MFC after: 2 weeks
or some variation in the path, the new version assumes that $0 is
newvers.sh path, and that dirname $0/.. is the same as $S aka $SYSDIR.
It also removes knowledge of ${MACHINE} and ${MACHINE_ARCH}, which is
also good.
# I've had this in my tree for about 6 months now, which is why I
# didn't notice that I broke it in r209510 and that was fixed in
# r212954. This should finally resolve the issues people had with
# r204824 as well as address the issues that motivated r204824.
Now when one does 'make kernel ; make kernel' the second invocation
only does: `kernel.ko' is up to date.
rather than reproduce all the .fw files and relink the kernel.
Bring in a driver for the LSI Logic MPT2 6Gb SAS controllers.
This driver supports basic I/O, and works with SAS and SATA drives and
expanders.
Basic error recovery works (i.e. timeouts and aborts) as well.
Integrated RAID isn't supported yet, and there are some known bugs.
So this isn't ready for production use, but is certainly ready for
testing and additional development. For the moment, new commits to this
driver should go into the FreeBSD Perforce repository first
(//depot/projects/mps/...) and then get merged into -current once
they've been vetted.
This has only been added to the amd64 GENERIC, since that is the only
architecture I have tested this driver with.
Submitted by: scottl
Discussed with: imp, gibbs, will
Sponsored by: Yahoo, Spectra Logic Corporation
the existing code was very platform specific, and broken for SMP systems
trying to reboot from KDB.
- Add a new PLATFORM_RESET() method to the platform KOBJ interface, and
migrate existing reset functions into platform modules.
- Modify the OF_reboot() routine to submit the request by hand to avoid
the IPIs involved in the regular openfirmware() routine. This fixes
reboot from KDB on SMP machines.
- Move non-KDB reset and poweroff functions on the Powermac platform
into the relevant power control drivers (cuda, pmu, smu), instead of
using them through the Open Firmware backdoor.
- Rename platform_chrp to platform_powermac since it has become
increasingly Powermac specific. When we gain support for IBM systems,
we will grow a new platform_chrp.
provide PCI devices for various hardware such as memory controllers, etc.
These PCI buses are not enumerated via ACPI however. Add qpi(4) psuedo
bus and Host-PCI bridge drivers to enumerate these buses. Currently the
driver uses the CPU ID to determine the bridges' presence.
In collaboration with: Joseph Golio @ Isilon Systems
MFC after: 2 weeks
Makefiles or *.mk files, use ${CC:T:Mfoo} instead, so only the basename
of the compiler command (excluding any arguments) is considered.
This allows you to use, for example, CC="/nondefault/path/clang -xxx",
and still have the various tests in bsd.*.mk identify your compiler as
clang correctly.
ICC if cases were also changed.
Submitted by: Dimitry Andric <dimitry at andric.com>
As des noted, the section on SCTP would benefit from
a rewrite by a native speaker (which I am not).
Any volunteers?
Approved by: des (mentor)
MFC after: 1 week
zones for each malloc bucket size. The purpose is to isolate
different malloc types into hash classes, so that any buffer overruns
or use-after-free will usually only affect memory from malloc types in
that hash class. This is purely a debugging tool; by varying the hash
function and tracking which hash class was corrupted, the intersection
of the hash classes from each instance will point to a single malloc
type that is being misused. At this point inspection or memguard(9)
can be used to catch the offending code.
Add MALLOC_DEBUG_MAXZONES=8 to -current GENERIC configuration files.
The suggestion to have this on by default came from Kostik Belousov on
-arch.
This code is based on work by Ron Steinke at Isilon Systems.
Reviewed by: -arch (mostly silence)
Reviewed by: zml
Approved by: zml (mentor)
module that can be used by both the regular and experimental nfs
clients. This fixes the problem reported by jh@ where /dev/nfslock
would be registered twice when both nfs clients were used.
I also defined the size of the lm_fh field to be the correct value,
as it should be the maximum size of an NFSv3 file handle.
Reviewed by: jh
MFC after: 2 weeks
The aeskeys_{amd64,i386}.S content was mostly obtained from OpenBSD,
no objections to the license from core.
Hardware provided by: Sentex Communications
Tested by: fabient, pho (previous versions)
MFC after: 1 month
library:
o) Increase inline unit / large function growth limits for MIPS to accommodate
the needs of the Simple Executive, which uses a shocking amount of inlining.
o) Remove TARGET_OCTEON and use CPU_CNMIPS to do things required by cnMIPS and
the Octeon SoC.
o) Add OCTEON_VENDOR_LANNER to use Lanner's allocation of vendor-specific
board numbers, specifically to support the MR320.
o) Add OCTEON_BOARD_CAPK_0100ND to hard-wire configuration for the CAPK-0100nd,
which improperly uses an evaluation board's board number and breaks board
detection at runtime. This board is sold by Portwell as the CAM-0100.
o) Add support for the RTC available on some Octeon boards.
o) Add support for the Octeon PCI bus. Note that rman_[sg]et_virtual for IO
ports can not work unless building for n64.
o) Clean up the CompactFlash driver to use Simple Executive macros and
structures where possible (it would be advisable to use the Simple Executive
API to set the PIO mode, too, but that is not done presently.) Also use
structures from FreeBSD's ATA layer rather than structures copied from
Linux.
o) Print available Octeon SoC features on boot.
o) Add support for the Octeon timecounter.
o) Use the Simple Executive's routines rather than local copies for doing reads
and writes to 64-bit addresses and use its macros for various device
addresses rather than using local copies.
o) Rename octeon_board_real to octeon_is_simulation to reduce differences with
Cavium-provided code originally written for Linux. Also make it use the
same simplified test that the Simple Executive and Linux both use rather
than our complex one.
o) Add support for the Octeon CIU, which is the main interrupt unit, as a bus
to use normal interrupt allocation and setup routines.
o) Use the Simple Executive's bootmem facility to allocate physical memory for
the kernel, rather than assuming we know which addresses we can steal.
NB: This may reduce the amount of RAM the kernel reports you as having if
you are leaving large temporary allocations made by U-Boot allocated
when starting FreeBSD.
o) Add a port of the Cavium-provided Ethernet driver for Linux. This changes
Ethernet interface naming from rgmxN to octeN. The new driver has vast
improvements over the old one, both in performance and functionality, but
does still have some features which have not been ported entirely and there
may be unimplemented code that can be hit in everyday use. I will make
every effort to correct those as they are reported.
o) Support loading the kernel on non-contiguous cores.
o) Add very conservative support for harvesting randomness from the Octeon
random number device.
o) Turn SMP on by default.
o) Clean up the style of the Octeon kernel configurations a little and make
them compile with -march=octeon.
o) Add support for the Lanner MR320 and the CAPK-0100nd to the Simple
Executive.
o) Modify the Simple Executive to build on FreeBSD and to build without
executive-config.h or cvmx-config.h. In the future we may want to
revert part of these changes and supply executive-config.h and
cvmx-config.h and access to the options contained in those files via
kernel configuration files.
o) Modify the Simple Executive USB routines to support getting and setting
of the USB PID.
MACHINE_CPUARCH isn't defined. I believe that this will cover all
options.
I didn't define it in kern.mk because $M is set to MACHINE_CPUARCH and
then is expanded for the genassym.o rule in kern.post.mk and kern.mk
is included after this, so the expansion isn't quite right. I think
this is a bug in make, but don't have the time to track it to ground
(and even if I did, fixing it would require a MFC of the change to the
very old systems we're targetting with this fix).
Kernel sources for 64-bit PowerPC, along with build-system changes to keep
32-bit kernels compiling (build system changes for 64-bit kernels are
coming later). Existing 32-bit PowerPC kernel configurations must be
updated after this change to specify their architecture.
(exec_setregs, etc.) in order to simplify the addition of 64-bit support,
and possible future extension of the Book-E code to handle hard floating
point and Altivec.
MFC after: 1 month
The following systems are affected:
- MPC8555CDS
- MPC8572DS
This overhaul covers the following major changes:
- All integrated peripherals drivers for Freescale MPC85XX SoC, which are
currently in the FreeBSD source tree are reworked and adjusted so they
derive config data out of the device tree blob (instead of hard coded /
tabelarized values).
- This includes: LBC, PCI / PCI-Express, I2C, DS1553, OpenPIC, TSEC, SEC,
QUICC, UART, CFI.
- Thanks to the common FDT infrastrucutre (fdtbus, simplebus) we retire
ocpbus(4) driver, which was based on hard-coded config data.
Note that world for these platforms has to be built WITH_FDT.
Reviewed by: imp
Sponsored by: The FreeBSD Foundation
the core changes but left out the shared code, lol.
Well, and a couple fixes to the core... hopefully
this will all be complete now.
Happy happy joy joy :)
It has more features than acpi_aiboost(4) and it will eventually replace
acpi_aiboost(4).
Submitted by: Constantine A. Murenin <cnst at FreeBSD.org>
Reviewed by: freebsd-acpi, imp
MFC after: 1 month
writing event timer drivers, for choosing best possible drivers by machine
independent code and for operating them to supply kernel with hardclock(),
statclock() and profclock() events in unified fashion on various hardware.
Infrastructure provides support for both per-CPU (independent for every CPU
core) and global timers in periodic and one-shot modes. MI management code
at this moment uses only periodic mode, but one-shot mode use planned for
later, as part of tickless kernel project.
For this moment infrastructure used on i386 and amd64 architectures. Other
archs are welcome to follow, while their current operation should not be
affected.
This patch updates existing drivers (i8254, RTC and LAPIC) for the new
order, and adds event timers support into the HPET driver. These drivers
have different capabilities:
LAPIC - per-CPU timer, supports periodic and one-shot operation, may
freeze in C3 state, calibrated on first use, so may be not exactly precise.
HPET - depending on hardware can work as per-CPU or global, supports
periodic and one-shot operation, usually provides several event timers.
i8254 - global, limited to periodic mode, because same hardware used also
as time counter.
RTC - global, supports only periodic mode, set of frequencies in Hz
limited by powers of 2.
Depending on hardware capabilities, drivers preferred in following orders,
either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC.
User may explicitly specify wanted timers via loader tunables or sysctls:
kern.eventtimer.timer1 and kern.eventtimer.timer2.
If requested driver is unavailable or unoperational, system will try to
replace it. If no more timers available or "NONE" specified for second,
system will operate using only one timer, multiplying it's frequency by few
times and uing respective dividers to honor hz, stathz and profhz values,
set during initial setup.
This information can be very valuable for CPU sleep-time (and respectively
idle power consumption) optimization.
Add counters for timer-related IPIs.
Reviewed by: jhb@ (previous version)
The following systems are involved:
- DB-88F5182
- DB-88F5281
- DB-88F6281
- DB-78100
- SheevaPlug
This overhaul covers the following major changes:
- All integrated peripherals drivers for Marvell ARM SoC, which are
currently in the FreeBSD source tree are reworked and adjusted so they
derive config data out of the device tree blob (instead of hard coded /
tabelarized values).
- Since the common FDT infrastrucutre (fdtbus, simplebus) is used we say
good by to obio / mbus drivers and numerous hard-coded config data.
Note that world needs to be built WITH_FDT for the affected platforms.
Reviewed by: imp
Sponsored by: The FreeBSD Foundation.
passing through. Modifications are restricted to a subset of C language
operations on unsigned integers of 8, 16, 32 or 64 bit size.
These are: set to new value (=), addition (+=), subtraction (-=),
multiplication (*=), division (/=), negation (= -), bitwise AND (&=),
bitwise OR (|=), bitwise eXclusive OR (^=), shift left (<<=),
shift right (>>=). Several operations are all applied to a packet
sequentially in order they were specified by user.
Submitted by: Maxim Ignatenko <gelraen.ua at gmail.com>
Vadim Goncharov <vadimnuclight at tpu.ru>
Discussed with: net@
Approved by: mav (mentor)
MFC after: 1 month
The driver is stub. It just creates device entry and feeds
reassembled packets from hardware into it.
If in future we would port wsmouse(4) from NetBSD, or make
sysmouse(4) to support absolute motion events, then the driver
can be extended to act as system mouse. Meanwhile, it just
presents a /dev/uep0, that can be utilized by X driver, that
I am going to commit to ports tree soon.
The name for the driver is chosen to be the same as in NetBSD,
however, due to different USB stacks this driver isn't a port.
Extend struct sysvec with three new elements:
sv_fetch_syscall_args - the method to fetch syscall arguments from
usermode into struct syscall_args. The structure is machine-depended
(this might be reconsidered after all architectures are converted).
sv_set_syscall_retval - the method to set a return value for usermode
from the syscall. It is a generalization of
cpu_set_syscall_retval(9) to allow ABIs to override the way to set a
return value.
sv_syscallnames - the table of syscall names.
Use sv_set_syscall_retval in kern_sigsuspend() instead of hardcoding
the call to cpu_set_syscall_retval().
The new functions syscallenter(9) and syscallret(9) are provided that
use sv_*syscall* pointers and contain the common repeated code from
the syscall() implementations for the architecture-specific syscall
trap handlers.
Syscallenter() fetches arguments, calls syscall implementation from
ABI sysent table, and set up return frame. The end of syscall
bookkeeping is done by syscallret().
Take advantage of single place for MI syscall handling code and
implement ptrace_lwpinfo pl_flags PL_FLAG_SCE, PL_FLAG_SCX and
PL_FLAG_EXEC. The SCE and SCX flags notify the debugger that the
thread is stopped at syscall entry or return point respectively. The
EXEC flag augments SCX and notifies debugger that the process address
space was changed by one of exec(2)-family syscalls.
The i386, amd64, sparc64, sun4v, powerpc and ia64 syscall()s are
changed to use syscallenter()/syscallret(). MIPS and arm are not
converted and use the mostly unchanged syscall() implementation.
Reviewed by: jhb, marcel, marius, nwhitehorn, stas
Tested by: marcel (ia64), marius (sparc64), nwhitehorn (powerpc),
stas (mips)
MFC after: 1 month
hook it up to ada(4) also. While at it, rename *ad_firmware_geom_adjust()
to *ata_disk_firmware_geom_adjust() etc now that these are no longer
limited to ad(4).
Reviewed by: mav
MFC after: 3 days
Powermac G5 systems. MSI and several other things are not presently
supported.
The U3/U4 internal device support portions of this change were contributed
by Andreas Tobler.
MFC after: 1 week
HAL/Fujitsu) CPUs. For the most part this consists of fleshing out the
MMU and cache handling, it doesn't add pmap optimizations possible with
these CPU, yet, though.
With these changes FreeBSD runs stable on Fujitsu Siemens PRIMEPOWER 250
and likely also other models based on SPARC64 V like 450, 650 and 850.
Thanks go to Michael Moll for providing access to a PRIMEPOWER 250.
driver for CAM ATA subsystem. This driver supports same hardware as
atamarvell, ataadaptec and atamvsata drivers from ata(4), but provides
many additional features, such as NCQ, PMP, etc.
that generates a fatal bus trap. Normally, the chips are setup to do
128 byte DMA bursts, but when on this CPU, they can only safely due
4-byte DMA bursts due to this bug. Details of the exact nature of the
bug are sketchy, but some can be found at
https://forum.openwrt.org/viewtopic.php?pid=70060 on pages 4, 5 and 6.
There's a small performance penalty associated with this workaround,
so it is only enabled when needed on the Atheros AR71xx platforms.
Unfortunately, this condition is impossible to detect at runtime
without MIPS specific ifdefs. Rather than cast an overly-broad net
like Linux/OpenWRT dues (which enables this workaround all the time on
MIPS32 platforms), we put this option in the kernel for just the
affected machines. Sam didn't like this aspect of the patch when he
reviewed it, and I'd love to hear sane proposals on how to fix it :)
Reviewed by: sam@
with all other corresponding CTF places by changing the corresponding
code which is generated by config(8). Or in short, move the '@' from
the variable definition to the use of the variable. [1]
While I'm here break up a long line. [2]
Discussed with: imp [1,2], bde [2]
This driver was written by Alexander Pohoyda and greatly enhanced
by Nikolay Denev. I don't have these hardwares but this driver was
tested by Nikolay Denev and xclin.
Because SiS didn't release data sheet for this controller, programming
information came from Linux driver and OpenSolaris. Unlike other open
source driver for SiS190/191, sge(4) takes full advantage of TX/RX
checksum offloading and does not require additional copy operation in
RX handler.
The controller seems to have advanced offloading features like VLAN
hardware tag insertion/stripping, TCP segmentation offload(TSO) as
well as jumbo frame support but these features are not available
yet. Special thanks to xclin <xclin<> cs dot nctu dot edu dot tw>
who sent fix for receiving VLAN oversized frames.
StarCat systems which provides time-of-day services for both as well as
console service for Serengeti, i.e. Sun Fire V1280. While the latter is
described with a device type of serial in the OFW device tree, it isn't
actually an UART. Nevertheless the console service is handled by uart(4)
as this allowed to re-use quite a bit of MD and MI code. Actually, this
idea is stolen from Linux which interfaces the sun4v hypervisor console
with the Linux counterpart of uart(4).
This framework allows drivers to abstract the rate control algorithm and
just feed the framework with the usable parameters. The rate control
framework will now deal with passing the parameters to the selected
algorithm. Right now we have AMRR (the default) and RSSADAPT but there's
no way to select one with ifconfig, yet.
The objective is to have more rate control algorithms in the net80211
stack so all drivers[0] can use it. Ideally, we'll have the well-known
sample rate control algorithm in the net80211 at some point so all
drivers can use it (not just ath).
[0] all drivers that do rate control in software, that is.
Reviewed by: bschmidt, thompsa, weyongo
MFC after: 1 months
domain clock, 8 programmable PMC.
- Westmere based CPU (Xeon 5600, Corei7 980X) support.
- New man pages with events list for core and uncore.
- Updated Corei7 events with Intel 253669-033US December 2009 doc.
There is some removed events in the documentation, they have been
kept in the code but documented in the man page as obsolete.
- Offcore response events can be setup with rsp token.
Sponsored by: NETASQ
are some problems with static executables), make.conf (would also
affect ports which do not use GNU make and do not override the
compile targets) or in the kernel config (via "makeoptions
WITH_CTF=yes").
Additional (related) changes:
- propagate WITH_CTF to module builds
- do not add -g to the linker flags, it's a noop there anyway
(at least according to the man page of ld)
- do not add -g to CFLAGS unconditionally
we need to have a look if it is really needed (IMO not) or if there
is a way to add it only when WITH_CTF is used
Note: ctfconvert / ctfmerge lines will not appear in the build output,
to protect the innocent (those which do not build with WITH_CTF would
see the shell-test and may think WITH_CTF is used).
Reviewed by: imp, jhb, scottl (earlier version)
Discussed on: arch@
em revision 7.0.0:
- Using driver devclass, seperate legacy (pre-pcie) code
into a seperate source file. This will at least help
protect against regression issues. It compiles along
with em, and is transparent to end use, devices in each
appear to be 'emX'. When using em in a modular form this
also allows the legacy stuff to be defined out.
- Add tx and rx rings as in igb, in the 82574 this becomes
actual multiqueue for the first time (2 queues) while in
other PCIE adapters its just make code cleaner.
- Add RX mbuf handling logic that matches igb, this will
eliminate packet drops due to temporary mbuf shortage.
igb revision 1.9.3:
- Following the ixgbe code, use a new approach in what
was called 'get_buf', the routine now has been made
independent of rxeof, it now does the update to the
engine TDT register, this design allows temporary
mbuf resources to become non-critical, not requiring
a packet to be discarded, instead it just returns and
does not increment the tail pointer.
- With the above change it was also unnecessary to keep
'spare' maps around, since we do not have the discard
issue.
- Performance tweaks and improvements to the code also.
MFC in a week
for upcoming 64-bit PowerPC and MIPS support. This renames the COMPAT_IA32
option to COMPAT_FREEBSD32, removes some IA32-specific code from MI parts
of the kernel and enhances the freebsd32 compatibility code to support
big-endian platforms.
Reviewed by: kib, jhb