as an EDMA check function.
For the AR9003 and later NICs, different TX/RX DMA and descriptor handling
code will be conditional on the EDMA check.
Obtained from: Qualcomm Atheros
* Add a new ANI variable, for AR9003 and later chips;
* The AR9003 and later series chips support two RX queues now, so start
down the road of supporting that;
* Add some new TX queue types - uAPSD is possible on earlier chips,
but PAPRD is relevant to AR9003 and later.
Obtained from: Qualcomm Atheros, Linux ath9k
with AMPDU aggregate delimiters.
If there's an OFDM restart during an aggregate, the hardware ACKs
the previous frame, but communicates the RXed frame to the hardware
as having had CRC delimiter error + OFDM_RESTART phy error.
The frame however didn't have a CRC error and since the hardware ACKed
the aggregate to the sender, it thinks the frame was received.
Since I have no idea how often this occurs in the real world, add a
debug statement so trigger whenever this occurs. I'd appreciate an
email if someone finds this particular situation is triggered.
The Linux ath9k btcoex code is based off of this code.
Note this doesn't actually implement functional btcoex; there's some
driver glue and a whole lot of verification that is required.
On the other hand, I do have the AR9285+BT and AR9287+BT NICs which
this code supports..
Obtained from: Qualcomm Atheros, Linux ath9k
the assumption that ath_softc doesn't change size based on build time
configuration.
I picked up on this because suddenly radar stuff didn't work; and
although the ath_dfs code was setting sc_dodfs=1, the main ath driver
saw sc_dodfs=0.
So for now, include opt_ath.h in driver source files. This seems like
the sane thing to do anyway.
I'll have to do a pass over the code at some later stage and turn
the radiotap TX/RX structs into malloc'ed memory, rather than in-line
inside of ath_softc. I'd rather like to keep ath_softc the same
layout regardless of configuration parameters.
Pointy hat to: adrian
a buffer pointer.
For large radar pulses, the AR9130 and later will return a series of
FFT results for software processing. These can overflow a single 2KB
buffer on longer pulses. This would result in undefined buffer behaviour.
This includes a few new fields in each RXed frame:
* per chain RX RSSI (ctl and ext);
* current RX chainmask;
* EVM information;
* PHY error code;
* basic RX status bits (CRC error, PHY error, etc).
This is primarily to allow me to do some userland PHY error processing
for radar and spectral scan data. However since EVM and per-chain RSSI
is provided, others may find it useful for a variety of tasks.
The default is to not compile in the radiotap vendor extensions, primarily
because tcpdump doesn't seem to handle the particular vendor extension
layout I'm using, and I'd rather not break existing code out there that
may be (badly) parsing the radiotap data.
Instead, add the option 'ATH_ENABLE_RADIOTAP_VENDOR_EXT' to your kernel
configuration file to enable these options.
and the CRC error bits set. The radar payload is correct.
When this happens, the stack doesn't see them PHY error frames and
isn't interpreted as a PHY error. So, no radar detection and no radiotap
PHY error handling.
Now, this may introduce some weird issues if the MAC sends up some other
combination of CRC error + PHY error frames; this commit would break that
and mark them as PHY errors instead of CRC errors.
I may tinker with this a little more to pass radar/early radar/spectral
frames up as PHY errors if the CRC bit is set, to restore the previous
behaviour (where if CRC is set on a PHY error frame, it's marked as a CRC
error rather than PHY error.)
Tested on: AR5416, over the air, to a USRP N200 which is generating a
large number of a variety of radar pulses.
TODO: Test on AR9130, AR9160, AR9280 (and maybe radar pulses on
2GHz on AR9285/AR9287.)
PR: kern/169362
* Add an OS_A_REG_WRITE() routine - analog writes require a 100usec delay
on AR9280 and later, so create a method to do it.
* Use it for the AR9287 analog writes.
* Re-indent and style(9) the code.
This just requires a little HAL change (add a new config parameter) and
some glue in if_ath_pci.c, however I'm leaving this up for someone else
to do.
Obtained from: Qualcomm Atheros
* Use ATH_RC_NUM instead of '4' when iterating over the ratecontrol series
array.
* A few style(9) fixes, hopefully no regressions here.
* Add some comments that better describe what's going on.
The existing code tries to use the beacon miss timer to signal that the AP
has gone away. Unfortunately this doesn't seem to be behaving itself.
I'll try to investigate why this is for the sake of completeness.
The result is the STA will stay "associated" to the AP it was associated
with when it suspended. It never receives a bmiss notification so it
never tries reassociating.
PR: kern/169084
* Resize some types. In particular, bfs_seqno can be uint16_t for now.
Previous work would assign the unassigned seqno a value of -1, which
I obviously can't do here.
* Remove bfs_pktdur. It was in the original code but nothing so far uses
it.
This gets ath_buf down (on my i386 system) to 292 bytes from 300 bytes.
I'd rather it be much, much smaller.
fixed for 802.11n TX, this needs to be disabled or users wlil see randomly
hanging aggregation sessions.
Whilst I'm here, remove the warning about 802.11n being full of dragons.
It's nowhere near that scary now.
ath_start() is called.
This (defaults to 10 frames) gives for a little headway in the TX ath_buf
allocation, so buffer cloning is still possible.
This requires a lot omre experimenting and tuning.
It also doesn't stop a node/TID from consuming all of the available
ath_buf's, especially when the node is going through high packet loss
or only talking at a low TX rate. It also doesn't stop a paused TID
from taking all of the ath_bufs. I'll look at fixing that up in subsequent
commits.
PR: kern/168170
traffic.
* Create sc_mgmt_txbuf and sc_mgmt_txdesc, initialise/free them appropriately.
* Create an enum to represent buffer types in the API.
* Extend ath_getbuf() and _ath_getbuf_locked() to take the above enum.
* Right now anything sent via ic_raw_xmit() allocates via ATH_BUFTYPE_MGMT.
This may not be very useful.
* Add ATH_BUF_MGMT flag (ath_buf.bf_flags) which indicates the current buffer
is a mgmt buffer and should go back onto the mgmt free list.
* Extend 'txagg' to include debugging output for both normal and mgmt txbufs.
* When checking/clearing ATH_BUF_BUSY, do it on both TX pools.
Tested:
* STA mode, with heavy UDP injection via iperf. This filled the TX queue
however BARs were still going out successfully.
TODO:
* Initialise the mgmt buffers with ATH_BUF_MGMT and then ensure the right
type is being allocated and freed on the appropriate list. That'd save
a write operation (to bf->bf_flags) on each buffer alloc/free.
* Test on AP mode, ensure that BAR TX and probe responses go out nicely
when the main TX queue is filled (eg with paused traffic to a TID,
awaiting a BAR to complete.)
PR: kern/168170
(or direct dispatch) behind the TXQ lock (which, remember, is doubling
as the TID lock too for now.)
This ensures that:
(a) the sequence number and the CCMP PN allocation is done together;
(b) overlapping transmit paths don't interleave frames, so we don't
end up with the original issue that triggered kern/166190.
Ie, that we don't end up with seqno A, B in thread 1, C, D in
thread 2, and they being queued to the software queue as "A C D B"
or similar, leading to the BAW stalls.
This has been tested:
* both STA and AP modes with INVARIANTS and WITNESS;
* TCP and UDP TX;
* both STA->AP and AP->STA.
STA is a Routerstation Pro (single CPU MIPS) and the AP is a dual-core
Centrino.
PR: kern/166190
scheduled from the head of the software queue rather than trying to
queue the newly given frame.
This leads to some rather unfortunate out of order (but still valid
as it's inside the BAW) frame TX.
This now:
* Always queues the frame at the end of the software queue;
* Tries to direct dispatch the frame at the head of the software queue,
to try and fill up the hardware queue.
TODO:
* I should likely try to queue as many frames to the hardware as I can
at this point, rather than doing one at a time;
* ath_tx_xmit_aggr() may fail and this code assumes that it'll schedule
the TID. Otherwise TX may stall.
PR: kern/166190
This is an unfortunate byproduct of how the routine is used - it's called
with the head frame on the queue, but if the frame is failed, it's inserted
into the tail of the queue.
Because of this, the sequence numbers would get all shuffled around and
the BAW would be bumped past this sequence number, that's now at the
end of the software queue. Then, whenever it's time for that frame
to be transmitted, it'll be immediately outside of the BAW and TX will
stall until the BAW catches up.
It can also result in all kinds of weird duplicate BAW frames, leading
to hilarious panics.
PR: kern/166190
This showed up when doing heavy UDP throughput on SMP machines.
The problem with this is because the 802.11 sequence number is being
allocated separately to the CCMP PN replay number (which is assigned
during ieee80211_crypto_encap()).
Under significant throughput (200+ MBps) the TX path would be stressed
enough that frame TX/retry would force sequence number and PN allocation
to be out of order. So once the frames were reordered via 802.11 seqnos,
the CCMP PN would be far out of order, causing most frames to be discarded
by the receiver.
I've fixed this in some local work by being forced to:
(a) deal with the issues that lead to the parallel TX causing out of
order sequence numbers in the first place;
(b) fix all the packet queuing issues which lead to strange (but mostly
valid) TX.
I'll begin fixing these in a subsequent commit or five.
PR: kern/166190
it turns out that it negatively affects performance. I'm stil investigating
exactly why deferring the IO causes such negative TCP performance but
doesn't affect UDP preformance.
Leave the ath_tx_kick() change in there however; it's going to be useful
to have that there for if_transmit() work.
PR: kern/168649
called to "kick" along TX.
For now, schedule a taskqueue call.
Later on I may go back to the direct call of ath_rx_tasklet() - but for
now, this will do.
I've tested UDP and TCP TX. UDP TX still achieves 240MBit, but TCP
TX gets stuck at around 100MBit or so, instead of the 150MBit it should
be at. I'll re-test with no ACPI/power/sleep states enabled at startup
and see what effect it has.
This is in preparation for supporting an if_transmit() path, which will
turn ath_tx_kick() into a NUL operation (as there won't be an ifnet
queue to service.)
Tested:
* AR9280 STA
TODO:
* test on AR5416, AR9160, AR928x STA/AP modes
PR: kern/168649