The change introduced a dependency between genassym.c and header files
generated from .m files, but that dependency is not specified in the
make files.
Also, the change could be not as useful as I thought it was.
Reported by: dchagin, Manfred Antar <null@pozo.com>, and many others
The change is more intrusive than I would like because the feature
requires that a vector number is written to a special register.
Thus, now the vector number has to be provided to lapic_eoi().
It was readily available in the IO-APIC and MSI cases, but the IPI
handlers required more work.
Also, we now store the VMM IPI number in a global variable, so that it
is available to the justreturn handler for the same reason.
Reviewed by: kib
MFC after: 6 weeks
Differential Revision: https://reviews.freebsd.org/D9880
Currently the feature is implemented only for a subset of errors
reported via Bank 4. The subset includes only DRAM-related errors.
The new code builds upon and reuses the Intel CMC (Correctable MCE
Counters) support code. However, the AMD feature is quite different
and, unfortunately, much less regular.
For references please see AMD BKDGs for models 10h - 16h.
Specifically, see MSR0000_0413 NB Machine Check Misc (Thresholding)
Register (MC4_MISC0).
http://developer.amd.com/resources/developer-guides-manuals/
Reviewed by: jhb
MFC after: 1 month
Differential Revision: https://reviews.freebsd.org/D9613
Renumber cluase 4 to 3, per what everybody else did when BSD granted
them permission to remove clause 3. My insistance on keeping the same
numbering for legal reasons is too pedantic, so give up on that point.
Submitted by: Jan Schaumann <jschauma@stevens.edu>
Pull Request: https://github.com/freebsd/freebsd/pull/96
The extended LVT entries can be used to configure interrupt delivery
for various events that are internal to a processor and can use this
feature.
All current processors that support the feature have four of such entries.
The entries are all masked upon the processor reset, but it's possible
that firmware may use some of them.
BIOS and Kernel Developer's Guides for some processor models do not assign
any particular names to the extended LVTs, while other BKDGs provide names
and suggested usage for them.
However, there is no fixed mapping between the LVTs and the processor
events in any processor model that supports the feature. Any entry can be
assigned to any event. The assignment is done by programming an offset
of an entry into configuration bits corresponding to an event.
This change does not expose the flexibility that the feature offers.
The change adds just a single method to configure a hardcoded extended LVT
entry to deliver APIC_CMC_INT. The method is designed to be used with
Machine Check Error Thresholding mechanism on supported processor models.
For references please see BKDGs for families 10h - 16h and specifically
descriptions of APIC30, APIC400, APIC[530:500] registers.
For a description of the Error Thresholding mechanism see, for example,
BKDG for family 10h, section 2.12.1.6.
http://developer.amd.com/resources/developer-guides-manuals/
Thanks to jhb and kib for their suggestions.
Reviewed by: kib
Discussed with: jhb
MFC after: 5 weeks
Relnotes: maybe
Differential Revision: https://reviews.freebsd.org/D9612
The types are for the byte offset and page index in vm object. They
are similar to off_t, which is defined as 64bit MI integer. Using MI
definitions will allow to provide consistent MD values of vm
object-related maximum sizes.
Reviewed by: alc
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
This 6 times gettimeofday performance, as measured by
tools/tools/syscall_timing
Reviewed by: kib
MFC after: 1 week
Sponsored by: Microsoft
Differential Revision: https://reviews.freebsd.org/D8789
Reject attempts to read from or memory map offsets in /dev/mem that are
beyond the maximum-supported physical address of the current CPU.
Reviewed by: kib
MFC after: 1 month
Differential Revision: https://reviews.freebsd.org/D7408
- Make !KDB config buildable.
- Simplify interface to nmi_handle_intr() by evaluating panic_on_nmi
in one place, namely nmi_call_kdb(). This allows to remove do_panic
argument from the functions, and to remove i386/amd64 duplication of
the variable and sysctl definitions. Note that now NMI causes
panic(9) instead of trap_fatal() reporting and then panic(9),
consistently for NMIs delivered while CPU operated in ring 0 and 3.
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
On several Intel chipsets, diagnostic NMIs sent from BMC or NMIs
reporting hardware errors are broadcasted to all CPUs.
When kernel is configured to enter kdb on NMI, the outcome is
problematic, because each CPU tries to enter kdb. All CPUs are
executing NMI handlers, which set the latches disabling the nested NMI
delivery; this means that stop_cpus_hard(), used by kdb_enter() to
stop other cpus by broadcasting IPI_STOP_HARD NMI, cannot work. One
indication of this is the harmless but annoying diagnostic "timeout
stopping cpus".
Much more harming behaviour is that because all CPUs try to enter kdb,
and if ddb is used as debugger, all CPUs issue prompt on console and
race for the input, not to mention the simultaneous use of the ddb
shared state.
Try to fix this by introducing a pseudo-lock for simultaneous attempts
to handle NMIs. If one core happens to enter NMI trap handler, other
cores see it and simulate reception of the IPI_STOP_HARD. More,
generic_stop_cpus() avoids sending IPI_STOP_HARD and avoids waiting
for the acknowledgement, relying on the nmi handler on other cores
suspending and then restarting the CPU.
Since it is impossible to detect at runtime whether some stray NMI is
broadcast or unicast, add a knob for administrator (really developer)
to configure debugging NMI handling mode.
The updated patch was debugged with the help from Andrey Gapon (avg)
and discussed with him.
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Differential revision: https://reviews.freebsd.org/D8249
Reduce the cost of TLB invalidation on x86 by using per-CPU completion flags
Reduce contention during TLB invalidation operations by using a per-CPU
completion flag, rather than a single atomically-updated variable.
On a Westmere system (2 sockets x 4 cores x 1 threads), dtrace measurements
show that smp_tlb_shootdown is about 50% faster with this patch; observations
with VTune show that the percentage of time spent in invlrng_single_page on an
interrupt (actually doing invalidation, rather than synchronization) increases
from 31% with the old mechanism to 71% with the new one. (Running a basic file
server workload.)
Submitted by: Anton Rang <rang at acm.org>
Reviewed by: cem (earlier version)
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8041
Reduce contention during TLB invalidation operations by using a per-CPU
completion flag, rather than a single atomically-updated variable.
On a Westmere system (2 sockets x 4 cores x 1 threads), dtrace measurements
show that smp_tlb_shootdown is about 50% faster with this patch; observations
with VTune show that the percentage of time spent in invlrng_single_page on an
interrupt (actually doing invalidation, rather than synchronization) increases
from 31% with the old mechanism to 71% with the new one. (Running a basic file
server workload.)
Submitted by: Anton Rang <rang at acm.org>
Reviewed by: cem (earlier version), kib
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8041
If BIOS performed hand-off to OS with BSP LAPIC in the x2APIC mode,
system usually consumes such configuration without a notice, since
x2APIC is turned on by OS if possible (nop). But if BIOS
simultaneously requested OS to not use x2APIC, code assumption that
that xAPIC is active breaks.
In my opinion, we cannot safely turn off x2APIC if control is passed
in this mode. Make madt.c ignore user or BIOS requests to turn x2APIC
off, and do not check the x2APIC black list. Just trust the config
and try to continue, giving a warning in dmesg.
Reported and tested by: Slawa Olhovchenkov <slw@zxy.spb.ru> (previous version)
Diagnosed by and discussed with: avg
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
i386-only section, and fix a comment about the amd64 kernel trapframe
not having stackregs.
tf_rsp doesn't need decoding on amd64, but had an old clone of i386
code to do this in 1 place, and since the amd64 kernel trapframe does
have stackregs, the result was an off-by-16 error for %rsp in an error
message.
The 'cpu' and 'cpu_class' variables were always set to the same value
on amd64 and are legacy holdovers from i386. Remove them entirely on
amd64.
Reviewed by: imp, kib (older version)
Differential Revision: https://reviews.freebsd.org/D7888
SEL_UPL and sometimes PSL_VM. This is just a style change on amd64,
but on i386 it fixes 1 unimportant place where the PSL_VM check was
missing and starts fixing 1 important place where the PSL_VM check
had a logic error.
Fix logic errors in treating vm86 bioscall mode as kernel mode. The
main place checked all the necessary flags, but put the necessary
parentheses for the PSL_VM and PCB_VM86CALL checks in the wrong
place. The broken case is only reached if a vm86 bioscall uses a
%cs which is nonzero mod 4, but that is unusual -- most bios calls
start with %cs = 0xc000 or 0xf000 and rarely change it. Another
place was missing the check for PCB_VM86CALL, but was only reachable
if there are bugs virtualizing PSL_I.
Add a macro TF_HAS_STACKREGS() and use this instead of converting
open-coded checks of SEL_UPL, etc. to TRAPF_USERMODE() when we only
care about whether the frame has stack registers. This fixes 3
places in my recent fix for register variables in vm86 mode where I
messed up the PSL_VM check and cleans up other places.
Right now, userspace (fast) gettimeofday(2) on x86 only works for
RDTSC. For older machines, like Core2, where RDTSC is not C2/C3
invariant, and which fall to HPET hardware, this means that the call
has both the penalty of the syscall and of the uncached hw behind the
QPI or PCIe connection to the sought bridge. Nothing can me done
against the access latency, but the syscall overhead can be removed.
System already provides mappable /dev/hpetX devices, which gives
straight access to the HPET registers page.
Add yet another algorithm to the x86 'vdso' timehands. Libc is updated
to handle both RDTSC and HPET. For HPET, the index of the hpet device
to mmap is passed from kernel to userspace, index might be changed and
libc invalidates its mapping as needed.
Remove cpu_fill_vdso_timehands() KPI, instead require that
timecounters which can be used from userspace, to provide
tc_fill_vdso_timehands{,32}() methods. Merge i386 and amd64
libc/<arch>/sys/__vdso_gettc.c into one source file in the new
libc/x86/sys location. __vdso_gettc() internal interface is changed
to move timecounter algorithm detection into the MD code.
Measurements show that RDTSC even with the syscall overhead is faster
than userspace HPET access. But still, userspace HPET is three-four
times faster than syscall HPET on several Core2 and SandyBridge
machines.
Tested by: Howard Su <howard0su@gmail.com>
Sponsored by: The FreeBSD Foundation
MFC after: 1 month
Differential revision: https://reviews.freebsd.org/D7473
The existing version depends on register_t and uintptr_t, which are only
available when including headers such as <sys/types.h>. As this macro is
used by <sys/socket.h>, for example, it should be written in such a way
that it doesn't depend on those types.
In r227474, this header file was changed to define SIG_ATOMIC_{MIN,MAX}
in terms of LONG_{MIN,MAX}. Unlike all of the definitions in this header
file, LONG_{MIN,MAX} is provided by <limits.h>. Remove the dependency on
<limits.h> by using __LONG_{MIN,MAX} instead and including
<machine/_limits.h>.
This change is needed to make SIG_ATOMIC_{MIN,MAX} work without
including any other header files.
This header uses __INT_MIN and __INT_MAX, which is provided by
<machine/_limits.h>. This is needed to make <stdint.h>'s WCHAR_MIN and
WCHAR_MAX work without including other headers as well.
Some BIOSes disable AMD Topology extension on AMD Family 15h notebook
processors. We re-enable the extension, so that we can properly discover
core and cache topology. Linux seems to do the same.
Reported by: Johannes Dieterich <dieterich.joh@gmail.com>
Reviewed by: jhb, kib
Tested by: Johannes Dieterich <dieterich.joh@gmail.com>
(earlier version)
MFC after: 3 weeks
Differential Revision: https://reviews.freebsd.org/D5883
Simplify and unify placeholder type definitions.
Reviewed by: jhb
Sponsored by: The FreeBSD Foundation
Differential revision: https://reviews.freebsd.org/D5771
ucontext_t available. Our code even has XXX comment about this.
Add a bit of compliance by moving struct __ucontext definition into
sys/_ucontext.h and including it into signal.h and sys/ucontext.h.
Several machine/ucontext.h headers were changed to use namespace-safe
types (like uint64_t->__uint64_t) to not depend on sys/types.h.
struct __stack_t from sys/signal.h is made always visible in private
namespace to satisfy sys/_ucontext.h requirements.
Apparently mips _types.h pollutes global namespace with f_register_t
type definition. This commit does not try to fix the issue.
PR: 207079
Reported and tested by: Ting-Wei Lan <lantw44@gmail.com>
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Summary:
Migrate to using the semi-opaque type rman_res_t to specify rman resources. For
now, this is still compatible with u_long.
This is step one in migrating rman to use uintmax_t for resources instead of
u_long.
Going forward, this could feasibly be used to specify architecture-specific
definitions of resource ranges, rather than baking a specific integer type into
the API.
This change has been broken out to facilitate MFC'ing drivers back to 10 without
breaking ABI.
Reviewed By: jhb
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D5075
While here, move the common bits of <machine/cputypes.h> to
<x86/cputypes.h> as well.
Reviewed by: kib
Differential Revision: https://reviews.freebsd.org/D4670
new headers x86/include x86_var.h and x86_smp.h.
Reviewed by: emaste, jhb
Sponsored by: The FreeBSD Foundation
Differential revision: https://reviews.freebsd.org/D4358
xen/hypervisor.h:
- Remove unused helpers: MULTI_update_va_mapping, is_initial_xendomain,
is_running_on_xen
- Remove unused define CONFIG_X86_PAE
- Remove unused variable xen_start_info: note that it's used inpcifront
which is not built at all
- Remove forward declaration of HYPERVISOR_crash
xen/xen-os.h:
- Remove unused define CONFIG_X86_PAE
- Drop unused helpers: test_and_clear_bit, clear_bit,
force_evtchn_callback
- Implement a generic version (based on ofed/include/linux/bitops.h) of
set_bit and test_bit and prefix them by xen_ to avoid any use by other
code than Xen. Note that It would be worth to investigate a generic
implementation in FreeBSD.
- Replace barrier() by __compiler_membar()
- Replace cpu_relax() by cpu_spinwait(): it's exactly the same as rep;nop
= pause
xen/xen_intr.h:
- Move the prototype of xen_intr_handle_upcall in it: Use by all the
platform
x86/xen/xen_intr.c:
- Use BITSET* for the enabledbits: Avoid to use custom helpers
- test_bit/set_bit has been renamed to xen_test_bit/xen_set_bit
- Don't export the variable xen_intr_pcpu
dev/xen/blkback/blkback.c:
- Fix the string format when XBB_DEBUG is enabled: host_addr is typed
uint64_t
dev/xen/balloon/balloon.c:
- Remove set but not used variable
- Use the correct type for frame_list: xen_pfn_t represents the frame
number on any architecture
dev/xen/control/control.c:
- Return BUS_PROBE_WILDCARD in xs_probe: Returning 0 in a probe callback
means the driver can handle this device. If by any chance xenstore is the
first driver, every new device with the driver is unset will use
xenstore.
dev/xen/grant-table/grant_table.c:
- Remove unused cmpxchg
- Drop unused include opt_pmap.h: Doesn't exist on ARM64 and it doesn't
contain anything required for the code on x86
dev/xen/netfront/netfront.c:
- Use the correct type for rx_pfn_array: xen_pfn_t represents the frame
number on any architecture
dev/xen/netback/netback.c:
- Use the correct type for gmfn: xen_pfn_t represents the frame number on
any architecture
dev/xen/xenstore/xenstore.c:
- Return BUS_PROBE_WILDCARD in xctrl_probe: Returning 0 in a probe callback
means the driver can handle this device. If by any chance xenstore is the
first driver, every new device with the driver is unset will use xenstore.
Note that with the changes, x86/include/xen/xen-os.h doesn't contain anymore
arch-specific code. Although, a new series will add some helpers that differ
between x86 and ARM64, so I've kept the headers for now.
Submitted by: Julien Grall <julien.grall@citrix.com>
Reviewed by: royger
Differential Revision: https://reviews.freebsd.org/D3921
Sponsored by: Citrix Systems R&D
amd64 and i386 platform code contain very similar xen/xen-os.h
The only differences are:
- Functions/variables/types which were unused in i386/xen/xen-os.h:
* xen_xchg
* __xchg_dummy
* __xg
* __xchg
* atomic_t
* atomic_inc
* rdtscll
The functions/variables/types unused in xen-os.h can be dropped and there
is no more differences betwen amd64 and i386.
The new header is placed in x86/include/xen and each platform will have
dummy headers include x86/xen/*.h. This is to be able to include
machine/xen/*.h in the PV drivers.
Submitted by: Julien Grall <julien.grall@citrix.com>
Reviewed by: royger
Differential Revision: https://reviews.freebsd.org/D3880
Sponsored by: Citrix Systems R&D
running thread.
It is currently implemented only on amd64 and i386; on these
architectures, it is implemented by raising an NMI on the CPU on which
the target thread is currently running. Unlike stack_save_td(), it may
fail, for example if the thread is running in user mode.
This change also modifies the kern.proc.kstack sysctl to use this function,
so that stacks of running threads are shown in the output of "procstat -kk".
This is handy for debugging threads that are stuck in a busy loop.
Reviewed by: bdrewery, jhb, kib
Sponsored by: EMC / Isilon Storage Division
Differential Revision: https://reviews.freebsd.org/D3256
since on amd64 the first argument to a function is generally not on the
stack.
Revert an old DTrace bug fix to some code that assumed that
sizeof(struct amd64_frame) == 16.
Reviewed by: jhb, kib
Sponsored by: EMC / Isilon Storage Division
Differential Revision: https://reviews.freebsd.org/D3255
frame buffers and memory mapped UARTs.
1. Delay calling cninit() until after pmap_bootstrap(). This makes
sure we have PMAP initialized enough to add translations. Keep
kdb_init() after cninit() so that we have console when we need
to break into the debugger on boot.
2. Unfortunately, the ATPIC code had be moved as well so as to
avoid a spurious trap #30. The reason for which is not known
at this time.
3. In pmap_mapdev_attr(), when we need to map a device prior to the
VM system being initialized, use virtual_avail as the KVA to map
the device at. In particular, avoid using the direct map on amd64
because we can't demote by virtue of not being able to allocate
yet. Keep track of the translation.
Re-use the translation after the VM has been initialized to not
waste KVA and to satisfy the assumption in uart(4) that the handle
returned for the low-level console is the same as later returned
when the device is probed and attached.
4. In pmap_unmapdev() remove the mapping from the table when called
pre-init. Otherwise keep the mapping. During bus probe and attach
device resources are mapped and unmapped multiple times, which
would have us destroy the mapping used by the low-level console.
5. In pmap_init(), set pmap_initialized to signal that we're not
pre-init anymore. On amd64, bring the direct map in sync with the
translations created at that time.
6. Implement bus_space_map() and bus_space_unmap() for real: when
the tag corresponds to memory space, call the corresponding
pmap_mapdev() and pmap_unmapdev() functions to construct and
actual handle.
7. In efifb.c and vt_vga.c, remove the crutches and hacks and simply
call pmap_mapdev_attr() or bus_space_map() as desired.
Notes:
1. uart(4) already used bus_space_map() during low-level console
setup but since serial ports have traditionally been I/O port
based, the lack of a proper implementation for said function
was not a problem. It has always supported memory mapped UARTs
for low-level consoles by setting hw.uart.console accordingly.
2. The use of the direct map on amd64 without setting caching
attributes has been a bigger problem than previously thought.
This change has the fortunate (and unexpected) side-effect of
fixing various EFI frame buffer problems (though not all).
PR: 191564, 194952
Special thanks to:
1. XipLink, Inc -- generously donated an Intel Bay Trail E3800
based eval board (ADLE3800PC).
2. The FreeBSD Foundation, in particular emaste@ -- for UEFI
support in general and testing.
3. Everyone who tested the proposed for PR 191564.
4. jhb@ and kib@ for being a soundboard and applying a clue bat
if so needed.
obtain the thread %fs and %gs bases. Add x86 PT_SETFSBASE and
PT_SETGSBASE requests to set the bases from debuggers. The set
requests, similarly to the sysarch({I386,AMD64}_SET_FSBASE),
override the corresponding segment registers.
The main purpose of the operations is to retrieve and modify the tcb
address for debuggee.
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
the Vahalia' "Unix Internals" section 15.12 "Other TLB Consistency
Algorithms". The same algorithm is already utilized by the MIPS pmap
to handle ASIDs.
The PCID for the address space is now allocated per-cpu during context
switch to the thread using pmap, when no PCID on the cpu was ever
allocated, or the current PCID is invalidated. If the PCID is reused,
bit 63 of %cr3 can be set to avoid TLB flush.
Each cpu has PCID' algorithm generation count, which is saved in the
pmap pcpu block when pcpu PCID is allocated. On invalidation, the
pmap generation count is zeroed, which signals the context switch code
that already allocated PCID is no longer valid. The implication is
the TLB shootdown for the given cpu/address space, due to the
allocation of new PCID.
The pm_save mask is no longer has to be tracked, which (significantly)
reduces the targets of the TLB shootdown IPIs. Previously, pm_save
was reset only on pmap_invalidate_all(), which made it accumulate the
cpuids of all processors on which the thread was scheduled between
full TLB shootdowns.
Besides reducing the amount of TLB shootdowns and removing atomics to
update pm_saves in the context switch code, the algorithm is much
simpler than the maintanence of pm_save and selection of the right
address space in the shootdown IPI handler.
Reviewed by: alc
Tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 3 weeks
interacts with interrupts, query ACPI and use MWAIT for entrance into
Cx sleep states. Support C1 "I/O then halt" mode. See Intel'
document 302223-007 "Intelб╝ Processor Vendor-Specific ACPI Interface
Specification" for description.
Move the acpi_cpu_c1() function into x86/cpu_machdep.c and use
it instead of inlining "sti; hlt" sequence in several places.
In the acpi(4) man page, besides documenting the dev.cpu.N.cx_methods
sysctl, correct the names for dev.cpu.N.{cx_usage,cx_lowest,cx_supported}
sysctls.
Both jkim and avg have some other patches implementing the mwait
functionality; this work is unrelated. Linux does not rely on the
ACPI to provide correct tables describing Cx modes. Instead, the
driver has pre-defined knowledge of the CPU models, it was supplied by
Intel.
Tested by: pho (previous versions)
Sponsored by: The FreeBSD Foundation