This seems to make 5G work better.
It doesn't fix powersave handling though, that still sees the PHY get
stuck during initial calibration and everything goes pear shaped.
I'll look into that later.
Tested:
* QCAFN222 NIC, STA mode, 5GHz
Obtained from: Linux ath9k
Turns out I wasn't even initialising or programming a lot of stuff
for the AR9462 2.1 chip. Oops.
This mostly gets it working. powersave scan results in some pretty
hilarious NFcal hangs and I don't see beacons reliably.
There are still some xlna gain tables missing that ath9k has; I'll
follow up with some fixes and then see if the QCAFN222 NIC I have
tests this path.
Tested:
* QCAFN222 NIC, STA mode, 2GHz and 5GHz
These are apparently conditional on there being a shared PA/LNA, which
at least on AR9462/QCA9535 devices I have isn't a thing.
I'm .. not yet sure which devices it /is/ a thing, so I'll come back
to that.
Tested:
* QCA9565 STA + bluetooth
Obtained from: Linux ath9k
* Add extra debugging - the weights debugging is really useful to ensure
things are programmed into the wlan coexistence table. The weights are
what traffic priority each of the various modes get (tx, tx-high-priority,
rx-beacon, etc) if they're all zero, things work very poorly.
* Add in coex init routines from ath9k for AR9462 and QCA9565 1ANT and 2ANT.
This control things like beacon stomping, ACK handling, antennas, PA/LNA
shared, etc.
* Some ancillary bits.
TODO:
* There's some conditional stuff around MCI_ANT_ARCH_PA_LNA_SHARED() in ath9k
which doesn't always enable force-on LNA. That'll have to be examined
and merged in as appropriate.
Obtained from: linux ath9k
Notably, this also sets AR_BTCOEX_WL_LNADIV to FORCE_ON, so LNA diversity
is always enabled and under control of the wifi chip.
Tested:
* QCA9565, STA + bluetooth mode
Obtained from: Linux ath9k
This configures the LNA antenna diversity control, which should be on
if wlan owns the LNA for bluetooth coexistence. Otherwise, make sure
it's off.
I think this is eventually intended to allow 1-antenna bluetooth +
wifi setups for QCA9565, but I'm not sure where that's actually configured
in ath9k.
Obtained from: Linux ath9k
It turns out that the srev checks can't be done in the early attach
in ar9300_freebsd.c, because the poweron and srev check hasn't yet
happened.
So:
* Re-add the MCI overrides in attach
* Add QCA9565 (Aphrodite) check for the LNA diversity stuff.
Tested:
* QCA9565, STA mode + bluetooth
ip_frag tuneables aren't registered in the ipf_tuners linked list.
This commmit enables the two existing ip_frag tuneables by registering
them.
MFC after: 1 month
for bad packets are named ipf_fi_bad_*. An example of its use might be:
dtrace -n 'sdt:::ipf_fi_bad_* { stack(); }'
Reviewed by: Darren Reed <darrenr@reed.wattle.id.au>
We're currently seeing how hard it would be to run CloudABI binaries on
operating systems cannot be modified easily (Windows, Mac OS X). The
idea is that we want to just run them without any sandboxing. Now
that CloudABI executables are PIE, this is already a bit easier, but TLS
is still problematic:
- CloudABI executables want to write to the %fs, which typically
requires extra system calls by the emulator every time it needs to
switch between CloudABI's and its own TLS.
- If CloudABI executables overwrite the %fs base unconditionally, it
also becomes harder for the emulator to store a backup of the old
value of %fs. To solve this, let's no longer overwrite %fs, but just
%fs:0.
As CloudABI's C library does not use a TCB, this space can now be used
by an emulator to keep track of its internal state. The executable can
now safely overwrite %fs:0, as long as it makes sure that the TCB is
copied over to the new TLS area.
Ensure that there is an initial TLS area set up when the process starts,
only containing a bogus TCB. We don't really care about its contents on
FreeBSD.
Reviewed by: kib
Differential Revision: https://reviews.freebsd.org/D5836
Some time ago I made a change to merge together the memory scope
definitions used by mmap (MAP_{PRIVATE,SHARED}) and lock objects
(PTHREAD_PROCESS_{PRIVATE,SHARED}). Though that sounded pretty smart
back then, it's backfiring. In the case of mmap it's used with other
flags in a bitmask, but for locking it's an enumeration. As our plan is
to automatically generate bindings for other languages, that looks a bit
sloppy.
Change all of the locking functions to use separate flags instead.
Obtained from: https://github.com/NuxiNL/cloudabi
requests if cb->state is not IDLE.
Submitted by: Krishnamraju Eraparaju @ Chelsio
Reviewed by: Steve Wise @ Open Grid Computing
Sponsored by: Chelsio Communications
The type definitions and constants that were used by COMPAT_CLOUDABI64
are a literal copy of some headers stored inside of CloudABI's C
library, cloudlibc. What is annoying is that we can't make use of
cloudlibc's system call list, as the format is completely different and
doesn't provide enough information. It had to be synced in manually.
We recently decided to solve this (and some other problems) by moving
the ABI definitions into a separate file:
https://github.com/NuxiNL/cloudabi/blob/master/cloudabi.txt
This file is processed by a pile of Python scripts to generate the
header files like before, documentation (markdown), but in our case more
importantly: a FreeBSD system call table.
This change discards the old files in sys/contrib/cloudabi and replaces
them by the latest copies, which requires some minor changes here and
there. Because cloudabi.txt also enforces consistent names of the system
call arguments, we have to patch up a small number of system call
implementations to use the new argument names.
The new header files can also be included directly in FreeBSD kernel
space without needing any includes/defines, so we can now remove
cloudabi_syscalldefs.h and cloudabi64_syscalldefs.h. Patch up the
sources to include the definitions directly from sys/contrib/cloudabi
instead.
Freescale's QorIQ line includes a new ethernet controller, based on their
Datapath Acceleration Architecture (DPAA). This uses a combination of a Frame
manager, Buffer manager, and Queue manager to improve performance across all
interfaces by being able to pass data directly between hardware acceleration
interfaces.
As part of this import, Freescale's Netcomm Software (ncsw) driver is imported.
This was an attempt by Freescale to create an OS-agnostic sub-driver for
managing the hardware, using shims to interface to the OS-specific APIs. This
work was abandoned, and Freescale's primary work is in the Linux driver (dual
BSD/GPL license). Hence, this was imported directly to sys/contrib, rather than
going through the vendor area. Going forward, FreeBSD-specific changes may be
made to the ncsw code, diverging from the upstream in potentially incompatible
ways. An alternative could be to import the Linux driver itself, using the
linuxKPI layer, as that would maintain parity with the vendor-maintained driver.
However, the Linux driver has not been evaluated for reliability yet, and may
have issues with the import, whereas the ncsw-based driver in this commit was
completed by Semihalf 4 years ago, and is very stable.
Other SoC modules based on DPAA, which could be added in the future:
* Security and Encryption engine (SEC4.x, SEC5.x)
* RAID engine
Additional work to be done:
* Implement polling mode
* Test vlan support
* Add support for the Pattern Matching Engine, which can do regular expression
matching on packets.
This driver has been tested on the P5020 QorIQ SoC. Others listed in the
dtsec(4) manual page are expected to work as the same DPAA engine is included in
all.
Obtained from: Semihalf
Relnotes: Yes
Sponsored by: Alex Perez/Inertial Computing
Files required for the NIC driver
Import from vendor-sys/alpine-hal/2.7
SVN rev.: 294828
HAL version: 2.7
Obtained from: Semihalf
Sponsored by: Annapurna Labs
The synth programming here requires the real centre frequency,
which for HT20 channels is the normal channel, but HT40 is
/not/ the primary channel. Everything else was using 'freq',
which is the correct centre frequency, but the hornet config
was using 'ichan' to do the lookup which was also the primary
channel.
So, modify the HAL call that does the mapping to take a frequency
in MHz and return the channel number.
Tested:
* Carambola 2, AR9331, tested both HT/20 and HT/40 operation.
This is a 2x2 2GHz 802.11n part. It works enough at the moment to
bring up, scan and associate. I haven't started using this as
a day to day AP.
The specifics:
* add honeybee initvals
* add in changes; a mix from the QCA HAL and ath9k;
* fix a bug in AR_SREV_AR9580_10_OR_LATER(), which is only used
for one capability check and we don't even implement it - so it's
a big no-op.
Shady things:
* ath9k has the "platform data" define the 25/40MHz clock.
This HAL .. doesn't. Honeybee gets hard-coded to 25MHz which
it likely shouldn't be. I'll have to go and identify/fix those.
Tested:
* Qualcomm Atheros AP143 reference design board.
Obtained from: Qualcomm Atheros; Linux ath9k
Right now the only way to force a cold reset is:
* The HAL itself detects it's needed, or
* The sysctl, setting all resets to be cold.
Trouble is, cold resets take quite a bit longer than warm resets.
However, there are situations where a cold reset would be nice.
Specifically, after a stuck beacon, BB/MAC hang, stuck calibration results,
etc.
The vendor HAL has a separate method to set the reset reason (which is
how HAL_RESET_BBPANIC gets set) which informs the HAL during the reset path
why it occured. This is almost but not quite the same; I may eventually
unify both approaches in the future.
This commit just extends HAL_RESET_TYPE to include both status (eg BBPANIC)
and type (eg do COLD.) None of the HAL code uses it yet though; that'll
come later.
It also is a big no-op in each HAL - I need to go teach each of the HALs
about cold/warm reset through this path.
by bus_dmamem_alloc() which creates associated bus_dmamap_t map for us.
When this memory is freed by bus_dmamem_free(), the map is freed as well.
Thus there is no need to free it explicitly by bus_dmamap_destroy(),
which leads to double freeing.
Discussed with: gonzo
Approved by: kib (mentor)
- Emulate Linux mutex API using sx(9) locks with only exclusive operations
instead of mutex(9), in Linux mutexes are sleepable.
- Emulate Linux rwlock_t using rwlock(9) instead of sx(9). rwlock_t
in Linux are spin locks
- Use pmap_quick_enter_page/pmap_quick_remove_page to bounce non-cacheline
aligned head and tail fragments
- Switch from static fragment size to configurable one, newer firmware
passes cache line size as cache_line_size DTB parameter.
With these changes both RPi and RPi2 pass functinal part of vchiq_test
We can't use copyout because destination memory is userland address
in another process but we have reference to respective page so map
the page into kernel address space and copy fragments there
This was off because the net80211 aggregation code was using the same
state pointers for both fast frames and ampdu tx support which led to some
pretty unfortunate panic-y behaviour.
Now that net80211 doesn't panic, let's flip this back on.
It doesn't (yet) do the horrific sounding thing of A-MPDU aggregates
of fast frames; that'll come next. It's a pre-requisite to supporting
AMSDU + AMPDU anyway, which actually speeds things up quite considerably
(think packing lots of little ACK frames into a single AMSDU.)
Tested:
* QCA955x SoC, AP mode
* AR5416, STA mode
* AR9170, STA mode (with local fast frame patches)
Atheros.
Thanks to OpenBSD for providing a driver based on the original
Atheros open source driver circa 2008. This uses the early, pre-carl9170
atheros provided firmware.
It only supports 11bg at the moment. I've not tested it with 11a
(and so the TX rate control logic may be slightly wrong!) so if
you do have the dual-band version of this hardware please do let me know.
Tested:
* AR9170, TP-Link WN821N 2GHz.
TODO:
* Hook this up to a non-module build.
- Add
nvlist_{add,get,take,move,exists,free}_{number,bool,string,nvlist,
descriptor} functions.
- Add support for (un)packing arrays.
- Add the nvl_array_next field to the nvlist structure.
If an array is added by the nvlist_{move,add}_nvlist_array function
this field will contains next element in the array.
- Add the nitems field to the nvpair and nvpair_header structure.
This field contains number of elements in the array.
- Add special flag (NV_FLAG_IN_ARRAY) which is set if nvlist is a part of
an array.
- Add special type (NV_TYPE_NVLIST_ARRAY_NEXT).This type is used only
on packing/unpacking.
- Add new API for traversing arrays (nvlist_get_array_next).
- Add the nvlist_get_pararr function which combines the
nvlist_get_array_next and nvlist_get_parent functions. If nvlist is in
the array it will return next element from array. If nvlist is last
element in array or it isn't in array it will return his
container (parent). This function should simplify traveling over nvlist.
- Add tests for new features.
- Add documentation for new functions.
- Add my copyright.
- Regenerate the sys/cddl/compat/opensolaris/sys/nvpair.h file.
PR: 191083
Reviewed by: allanjude (doc)
Approved by: pjd (mentor)
- the nvlist error is set, or
- the nvlist case ignore flag is not set and there is attend to
add element with duplicated name.
In both cases the nvlist_move_nvpair() function free nvpair structure.
If library will try to unpack a binary blob which contains duplicated
names it will end up with using memory after free.
To prevent that, the nvlist_move_nvpair() function interface is changed
to report about failure and checks are added to the nvpair_xunpack()
function.
Discovered thanks to the american fuzzy lop.
Approved by: pjd (mentor)
There are still several bugs, but I've been using it for a while now.
Thanks to all the testers and to Adrian for his help with this
driver.
This driver isn't connected to the build yet, but it will be soon.
There's no MFC planned because the driver isn't very stable yet.
Reviewed by: adrian
Obtained from: https://github.com/rpaulo/iwm
Tested by: adrian, gjb, dumbbell (others that I forgot).
Relnotes: yes
This is required for (more) correct TDMA support. Without it, the
code tries to calculate the required guard interval based on the
current rate, and since this is an 11n NIC and people try using
11n, it calls ath_hal_computetxtime() on an 11n rate which then
panics.
This doesn't fix TDMA slave mode on AR9300 - it just makes it
have one less bug.
Reported by: Berislav Purgar <bpurgar@gmail.com>
Futex object scopes have been renamed from using their own constants to
simply reusing the existing CLOUDABI_MAP_{PRIVATE,SHARED} flags, as they
are more accurate in this context.
Add support for the <sys/mman.h> functions by wrapping around our own
implementations. There are no kern_*() variants of these system calls,
but we also don't need them in this case. It is sufficient to just call
into the sys_*() functions.
Differential Revision: https://reviews.freebsd.org/D3033
Reviewed by: brooks
Summary:
For CloudABI we need to put two things on the stack of new processes:
the argument data (a binary blob; not strings) and a startup data
structure. The startup data structure contains interesting things such
as a pointer to the ELF program header, the thread ID of the initial
thread, a stack smashing protection canary, and a pointer to the
argument data.
Fetching system call arguments and setting the return value is similar
to FreeBSD. The only differences are that system call 0 does not exist
and that we call into cloudabi_convert_errno() to convert the error
code. We also need this function in a couple of other places, so we'd
better reuse it here.
Reviewers: dchagin, kib
Reviewed By: kib
Subscribers: imp
Differential Revision: https://reviews.freebsd.org/D3098
CloudABI is a pure capability-based runtime environment for UNIX. It
works similar to Capsicum, except that processes already run in
capabilities mode on startup. All functionality that conflicts with this
model has been omitted, making it a compact binary interface that can be
supported by other operating systems without too much effort.
CloudABI is 'secure by default'; the idea is that it should be safe to
run arbitrary third-party binaries without requiring any explicit
hardware virtualization (Bhyve) or namespace virtualization (Jails). The
rights of an application are purely determined by the set of file
descriptors that you grant it on startup.
The datatypes and constants used by CloudABI's C library (cloudlibc) are
defined in separate files called syscalldefs_mi.h (pointer size
independent) and syscalldefs_md.h (pointer size dependent). We import
these files in sys/contrib/cloudabi and wrap around them in
cloudabi*_syscalldefs.h.
We then add stubs for all of the system calls in sys/compat/cloudabi or
sys/compat/cloudabi64, depending on whether the system call depends on
the pointer size. We only have nine system calls that depend on the
pointer size. If we ever want to support 32-bit binaries, we can simply
add sys/compat/cloudabi32 and implement these nine system calls again.
The next step is to send in code reviews for the individual system call
implementations, but also add a sysentvec, to allow CloudABI executabled
to be started through execve().
More information about CloudABI:
- GitHub: https://github.com/NuxiNL/cloudlibc
- Talk at BSDCan: https://www.youtube.com/watch?v=SVdF84x1EdA
Differential Revision: https://reviews.freebsd.org/D2848
Reviewed by: emaste, brooks
Obtained from: https://github.com/NuxiNL/freebsd
directory sys/contrib/libnv.
The goal of this operation is to NOT install header files which shouldn't
be used outside the nvlist library.
Approved by: pjd (mentor)
This dramatically improves RX sensitivity and behaviour on the
AR9331 hardware I have, including the Carambola 2.
Tested:
* AR9331, Carambola 2 board
Submitted by: Zilvinas Valinskas <zilvinas.valinskas@gmail.com>