It was only used by ufs and ext2 and I have really strong doubts that
there are other pieces of code that also use this function. If it turns
out that external drivers use this code as well, I'd be happy to migrate
or revert.
Bump __FreeBSD_version while there.
It seems two of the file system drivers we have in the tree, namely ufs
and ext3, use a function called `skpc()'. The meaning of this function
does not seem to be documented in FreeBSD, but it turns out one needs to
be a VAX programmer to understand what it does.
SPKC is an instruction on the VAX that does the opposite of memchr(). It
searches for the non-equal character. Add a new function called
memcchr() to the tree that has the following advantages over skpc():
- It has a name that makes more sense than skpc(). Just like strcspn()
matches the complement of strspn(), memcchr() is the complement of
memchr().
- It is faster than skpc(). Similar to our strlen() in libc, it compares
entire words, instead of single bytes. It seems that for this routine
this yields a sixfold performance increase on amd64.
- It has a man page.
All of these are harmless, and are in fact used to shut up warnings from
lint.
While here, remove -Wno-missing-prototypes from the xfs module
Makefile, as I could not reproduce those warnings either with gcc or
clang.
MFC after: 1 week
with clang. There are several macros in these files that return values,
and in some cases nothing is done with them, but it is completely
harmless. For some other files, also disable -Wconstant-conversion,
since that triggers a false positive with the DMA_BIT_MASK() macro.
MFC after: 1 week
as it gets the following warning:
sys/dev/asr/asr.c:1836:29: warning: array index of '58' indexes past the end of an array (that contains 1 element) [-Warray-bounds]
while ((len > 0) && (sg < &((PPRIVATE_SCSI_SCB_EXECUTE_MESSAGE)
^
sys/dev/asr/i2omsg.h:934:8: note: array 'Simple' declared here
I2O_SGE_SIMPLE_ELEMENT Simple[1];
^
This is a false positive, since I2O_SG_ELEMENT::Simple is not declared
as a C99 flexible array member, but in the old (but more portable) way.
At run-time, the proper number of array elements will hopefully have
been allocated.
MFC after: 1 week
there are some places in the kernel where fixing them is too disruptive,
or where there is a false positive.
In this case, disable -Wconstant-conversion for two aic7xxx-related
files, as they get the following warning on i386 (and possibly on other
32-bit arches):
sys/dev/aic7xxx/ahc_pci.c:112:10: warning: implicit conversion from 'long long' to 'bus_addr_t' (aka 'unsigned int') changes value from 549755813887 to 4294967295 [-Wconstant-conversion]
? 0x7FFFFFFFFFLL
~~^~~~~~~~~~~~~~
This is a false positive, since the code only passes the 0x7FFFFFFFFFLL
argument, if sizeof(bus_addr_t) is larger than 4 (e.g. on 64 bit arches,
or when PAE is enabled on i386). The code could be refactored to do
compile-time checks, but that is more disruptive.
MFC after: 1 week
back after I fix the breakages on some of our more exotic platforms.
While here, add the driver to the amd64 NOTES, so it can be picked up in LINT
builds.
system calls to provide feed-forward clock management capabilities to
userspace processes. ffclock_getcounter() returns the current value of the
kernel's feed-forward clock counter. ffclock_getestimate() returns the current
feed-forward clock parameter estimates and ffclock_setestimate() updates the
feed-forward clock parameter estimates.
- Document the syscalls in the ffclock.2 man page.
- Regenerate the script-derived syscall related files.
Committed on behalf of Julien Ridoux and Darryl Veitch from the University of
Melbourne, Australia, as part of the FreeBSD Foundation funded "Feed-Forward
Clock Synchronization Algorithms" project.
For more information, see http://www.synclab.org/radclock/
Submitted by: Julien Ridoux (jridoux at unimelb edu au)
clocks. Each routine can output an upper bound on the absolute time or time
interval requested. Different flavours of absolute time can be requested, for
example with or without leap seconds, monotonic or not, etc.
Committed on behalf of Julien Ridoux and Darryl Veitch from the University of
Melbourne, Australia, as part of the FreeBSD Foundation funded "Feed-Forward
Clock Synchronization Algorithms" project.
For more information, see http://www.synclab.org/radclock/
Submitted by: Julien Ridoux (jridoux at unimelb edu au)
based on Solarflare SFC9000 family controllers. The driver supports jumbo
frames, transmit/receive checksum offload, TCP Segmentation Offload (TSO),
Large Receive Offload (LRO), VLAN checksum offload, VLAN TSO, and Receive Side
Scaling (RSS) using MSI-X interrupts.
This work was sponsored by Solarflare Communications, Inc.
My sincere thanks to Ben Hutchings for doing a lot of the hard work!
Sponsored by: Solarflare Communications, Inc.
MFC after: 3 weeks
replace amd(4) with the former in the amd64, i386 and pc98 GENERIC kernel
configuration files. Besides duplicating functionality, amd(4), which
previously also supported the AMD Am53C974, unlike esp(4) is no longer
maintained and has accumulated enough bit rot over time to always cause
a panic during boot as long as at least one target is attached to it
(see PR 124667).
PR: 124667
Obtained from: NetBSD (based on)
MFC after: 3 days
take advantage of it instead of duplicating it. This reduces the size of
the i386 GENERIC kernel by about 4k. The only potential in-tree user left
unconverted is xe(4), which generally should be changed to use miibus(4)
instead of implementing PHY handling on its own, as otherwise it makes not
much sense to add a dependency on miibus(4)/mii_bitbang(4) to xe(4) just
for the MII bitbang'ing code. The common MII bitbang'ing code also is
useful in the embedded space for using GPIO pins to implement MII access.
- Based on lessons learnt with dc(4) (see r185750), add bus barriers to the
MII bitbang read and write functions of the other drivers converted in
order to ensure the intended ordering. Given that register access via an
index register as well as register bank/window switching is subject to the
same problem, also add bus barriers to the respective functions of smc(4),
tl(4) and xl(4).
- Sprinkle some const.
Thanks to the following testers:
Andrew Bliznak (nge(4)), nwhitehorn@ (bm(4)), yongari@ (sis(4) and ste(4))
Thanks to Hans-Joerg Sirtl for supplying hardware to test stge(4).
Reviewed by: yongari (subset of drivers)
Obtained from: NetBSD (partially)
drivers that only ever attach to a particular MAC driver, i.e. inphy(4),
ruephy(4) and xlphy(4), to the directory where the respective MAC driver
lives and only compile it into the kernel when the latter is also there,
also removing it from miibus.ko and moving it into the module of the
respective MAC driver.
- While at it, rename exphy.c, which comes from NetBSD where the MAC driver
it corresponds to also is named ex(4) instead of xl(4) but that in FreeBSD
actually identifies itself as xlphy(4), and its function names accordingly
for consistency.
- Additionally while at it, fix some minor style issues like whitespace
in the register headers and add multi-inclusion protection to inphyreg.h.
thanks for their contiued support to FreeBSD.
This is version 10.80.00.003 from codeset 10.2.1 [1]
Obtained from: LSI http://kb.lsi.com/Download16574.aspx [1]
A "process descriptor" file descriptor is used to manage processes
without using the PID namespace. This is required for Capsicum's
Capability Mode, where the PID namespace is unavailable.
New system calls pdfork(2) and pdkill(2) offer the functional equivalents
of fork(2) and kill(2). pdgetpid(2) allows querying the PID of the remote
process for debugging purposes. The currently-unimplemented pdwait(2) will,
in the future, allow querying rusage/exit status. In the interim, poll(2)
may be used to check (and wait for) process termination.
When a process is referenced by a process descriptor, it does not issue
SIGCHLD to the parent, making it suitable for use in libraries---a common
scenario when using library compartmentalisation from within large
applications (such as web browsers). Some observers may note a similarity
to Mach task ports; process descriptors provide a subset of this behaviour,
but in a UNIX style.
This feature is enabled by "options PROCDESC", but as with several other
Capsicum kernel features, is not enabled by default in GENERIC 9.0.
Reviewed by: jhb, kib
Approved by: re (kib), mentor (rwatson)
Sponsored by: Google Inc
struct inpcbgroup. pcbgroups, or "connection groups", supplement the
existing inpcbinfo connection hash table, which when pcbgroups are
enabled, might now be thought of more usefully as a per-protocol
4-tuple reservation table.
Connections are assigned to connection groups base on a hash of their
4-tuple; wildcard sockets require special handling, and are members
of all connection groups. During a connection lookup, a
per-connection group lock is employed rather than the global pcbinfo
lock. By aligning connection groups with input path processing,
connection groups take on an effective CPU affinity, especially when
aligned with RSS work placement (see a forthcoming commit for
details). This eliminates cache line migration associated with
global, protocol-layer data structures in steady state TCP and UDP
processing (with the exception of protocol-layer statistics; further
commit to follow).
Elements of this approach were inspired by Willman, Rixner, and Cox's
2006 USENIX paper, "An Evaluation of Network Stack Parallelization
Strategies in Modern Operating Systems". However, there are also
significant differences: we maintain the inpcb lock, rather than using
the connection group lock for per-connection state.
Likewise, the focus of this implementation is alignment with NIC
packet distribution strategies such as RSS, rather than pure software
strategies. Despite that focus, software distribution is supported
through the parallel netisr implementation, and works well in
configurations where the number of hardware threads is greater than
the number of NIC input queues, such as in the RMI XLR threaded MIPS
architecture.
Another important difference is the continued maintenance of existing
hash tables as "reservation tables" -- these are useful both to
distinguish the resource allocation aspect of protocol name management
and the more common-case lookup aspect. In configurations where
connection tables are aligned with hardware hashes, it is desirable to
use the traditional lookup tables for loopback or encapsulated traffic
rather than take the expense of hardware hashes that are hard to
implement efficiently in software (such as RSS Toeplitz).
Connection group support is enabled by compiling "options PCBGROUP"
into your kernel configuration; for the time being, this is an
experimental feature, and hence is not enabled by default.
Subject to the limited MFCability of change dependencies in inpcb,
and its change to the inpcbinfo init function signature, this change
in principle could be merged to FreeBSD 8.x.
Reviewed by: bz
Sponsored by: Juniper Networks, Inc.
This is in no way a complete DFS/radar detection implementation!
It merely creates an abstracted interface which allows for future
development of the DFS radar detection code.
Note: Net80211 already handles the bulk of the DFS machinery,
all we need to do here is figure out that a radar event has occured
and inform it as such. It then drives the DFS state engine for us.
The "null" DFS radar detection module is included by default;
it doesn't require a device line.
This commit:
* Adds a simple abstracted layer for radar detection state -
sys/dev/ath/ath_dfs/;
* Implements a null DFS module which doesn't do anything;
(ie, implements the exact behaviour at the moment);
* Adds hooks to the ath driver to process received radar events
and gives the DFS module a chance to determine whether
a radar has been detected.
Obtained from: Atheros
filters working. (All other filters - switch without L2 info rewrite,
steer, and drop - were already fully-functional).
Some contrived examples of "switch" filters with L2 rewriting:
# cxgbetool t4nex0 iport 0 dport 80 action switch vlan +9 eport 3
Intercept all packets received on physical port 0 with TCP port 80 as
destination, insert a vlan tag with VID 9, and send them out of port 3.
# cxgbetool t4nex0 sip 192.168.1.1/32 ivlan 5 action switch \
vlan =9 smac aa:bb:cc:dd:ee:ff eport 0
Intercept all packets (received on any port) with source IP address
192.168.1.1 and VLAN id 5, rewrite the VLAN id to 9, rewrite source mac
to aa:bb:cc:dd:ee:ff, and send it out of port 0.
MFC after: 1 week
to get the files for an IPv6 only kernel as well, remove extra inet6
option where not needed.
Reviewed by: gnn
Sponsored by: The FreeBSD Foundation
Sponsored by: iXsystems
MFC after: 4 days
Add some comments at #endifs given more nestedness. To make the compiler
happy, some default initializations were added in accordance with the style
on the files.
Reviewed by: gnn
Sponsored by: The FreeBSD Foundation
Sponsored by: iXsystems
MFC after: 4 days
as well compiling out most functions adding or extending #ifdef INET
coverage.
Reviewed by: gnn
Sponsored by: The FreeBSD Foundation
Sponsored by: iXsystems
MFC after: 4 days
The AR9130 is an AR9160/AR5416 family WMAC which is glued directly
to the AR913x SoC peripheral bus (APB) rather than via a PCI/PCIe
bridge.
The specifics:
* A new build option is required to use the AR9130 - AH_SUPPORT_AR9130.
This is needed due to the different location the RTC registers live
with this chip; hopefully this will be undone in the future.
This does currently mean that enabling this option will break non-AR9130
builds, so don't enable it unless you're specifically building an image
for the AR913x SoC.
* Add the new probe, attach, EEPROM and PLL methods specific to Howl.
* Add a work-around to ah_eeprom_v14.c which disables some of the checks
for endian-ness and magic in the EEPROM image if an eepromdata block
is provided. This'll be fixed at a later stage by porting the ath9k
probe code and making sure it doesn't break in other setups (which
my previous attempt at this did.)
* Sprinkle Howl modifications throughput the interrupt path - it doesn't
implement the SYNC interrupt registers, so ignore those.
* Sprinkle Howl chip powerup/down throughout the reset path; the RTC methods
were
* Sprinkle some other Howl workarounds in the reset path.
* Hard-code an alternative setup for the AR_CFG register for Howl, that
sets up things suitable for Big-Endian MIPS (which is the only platform
this chip is glued to.)
This has been tested on the AR913x based TP-Link WR-1043nd mode, in
legacy, HT/20 and HT/40 modes.
Caveats:
* 2ghz has only been tested. I've not seen any 5ghz radios glued to this
chipset so I can't test it.
* AR5416_INTERRUPT_MITIGATION is not supported on the AR9130. At least,
it isn't implemented in ath9k. Please don't enable this.
* This hasn't been tested in MBSS mode or in RX/TX block-aggregation mode.
Expose ip_icmp.c to INET6 as well and only export badport_bandlim()
along with the two sysctls in the non-INET case.
The bandlim types work for all cases I reviewed in IPv6 as well and
the sysctls are available as we export net.inet.* from in_proto.c.
Reviewed by: gnn
Sponsored by: The FreeBSD Foundation
Sponsored by: iXsystems
MFC after: 4 days
set the f_flags field of "struct statfs". This had the interesting
effect of making the NFSv4 mounts "disappear" after r221014,
since NFSMNT_NFSV4 and MNT_IGNORE became the same bit.
Move the files used for a diskless NFS root from sys/nfsclient
to sys/nfs in preparation for them to be used by both NFS
clients. Also, move the declaration of the three global data
structures from sys/nfsclient/nfs_vfsops.c to sys/nfs/nfs_diskless.c
so that they are defined when either client uses them.
Reviewed by: jhb
MFC after: 2 weeks
unconditionally backing out r193997, so that they are available for
IPv6-only setups as well.
Reviewed by: gnn
Sponsored by: The FreeBSD Foundation
Sponsored by: iXsystems
MFC after: 5 days
This is destined to be a lightweight and optional set of ALQ
probes for debugging events which are just impossible to debug
with printf/log (eg packet TX/RX handling; AMPDU handling.)
The probes and operations themselves will appear in subsequent
commits.