is the physical memory size so may be larger than a u_long can hold, e.g.
on ARM with LPAE we could see an address space of up to 40 bits. On ARM
u_long is only 32 bits so the memory size will be truncated, possibly to
zero.
Reported by: bz
Sponsored by: ABT Systems Ltd
Use u_long instead of uint32_t variables to avoid overflow
in case of PA space bigger than 32-bit.
Obtained from: Semihalf
Submitted by: Michal Stanek <mst@semihalf.com>
Sponsored by: Annapurna Labs
Approved by: cognet (mentor)
Reviewed by: andrew, br, wma
Differential revision: https://reviews.freebsd.org/D5393
This simplifies checking for default resource range for bus_alloc_resource(),
and improves readability.
This is part of, and related to, the migration of rman_res_t from u_long to
uintmax_t.
Discussed with: jhb
Suggested by: marcel
Summary:
Migrate to using the semi-opaque type rman_res_t to specify rman resources. For
now, this is still compatible with u_long.
This is step one in migrating rman to use uintmax_t for resources instead of
u_long.
Going forward, this could feasibly be used to specify architecture-specific
definitions of resource ranges, rather than baking a specific integer type into
the API.
This change has been broken out to facilitate MFC'ing drivers back to 10 without
breaking ABI.
Reviewed By: jhb
Sponsored by: Alex Perez/Inertial Computing
Differential Revision: https://reviews.freebsd.org/D5075
providing compiled-in static environment data that is used instead of any
data passed in from a boot loader.
Previously 'env' worked only on i386 and arm xscale systems, because it
required the MD startup code to examine the global envmode variable and
decide whether to use static_env or an environment obtained from the boot
loader, and set the global kern_envp accordingly. Most startup code wasn't
doing so. Making things even more complex, some mips startup code uses an
alternate scheme that involves calling init_static_kenv() to pass an empty
buffer and its size, then uses a series of kern_setenv() calls to populate
that buffer.
Now all MD startup code calls init_static_kenv(), and that routine provides
a single point where envmode is checked and the decision is made whether to
use the compiled-in static_kenv or the values provided by the MD code.
The routine also continues to serve its original purpose for mips; if a
non-zero buffer size is passed the routine installs the empty buffer ready
to accept kern_setenv() values. Now if the size is zero, the provided buffer
full of existing env data is installed. A NULL pointer can be passed if the
boot loader provides no env data; this allows the static env to be installed
if envmode is set to do so.
Most of the work here is a near-mechanical change to call the init function
instead of directly setting kern_envp. A notable exception is in xen/pv.c;
that code was originally installing a buffer full of preformatted env data
along with its non-zero size (like mips code does), which would have allowed
kern_setenv() calls to wipe out the preformatted data. Now it passes a zero
for the size so that the buffer of data it installs is treated as
non-writeable.
Add a check to preload_search_info to make sure mod is set. Most of the
callers of preload_search_info don't check that the mod parameter is
set, which can cause page faults. While at it, remove some now unnecessary
checks before calling preload_search_info.
Sponsored by: Citrix Systems R&D
Reviewed by: kib
Differential Revision: https://reviews.freebsd.org/D3440
commit 6d3c4c09226ad6bdd662e3e52489ef294a6ce298
Add terasic_mtl vt(4) framebuffer driver
terasic_mtl can be built with syscons(4) and vt(4) attachments, selected
at compile time.
commit 33240259b47a7c990a5a88a19f133a5600432a4c
Clear terasic_mtl text buffer on attach
commit d188c2d2412953f949624aa35cd07082830943c9
Update terasic vt(4) driver for FreeBSD r269783
commit d1cc54eee852fa4fc9d359d5bb2171d24ec73369
Safety belt to ensure vt(4) fb parameters are correct
commit 76e6d468ef45711d7952786095fc4791289ebb4b
Improve terasic_mtl_vt fdt parsing
- Use OF_getencprop to avoid need for explicit endian handling
(submitted by ray@freebsd.org)
- Check for expected length and correct pointer type
commit 3e2524b8995ab66e8a9295e4c87cbc7126eeddf4
Correct device_printf usage
commit 9e53e3c8e0766414e25662c95b09cc51c92443b0
Switch framebuffer to match host endianness
Xorg and xf86-video-scfb work much better with a native-endian
framebuffer.
commit 0f49259d596321ed85288ac0e1fb4ee1c966df48
Switch DE4 to vt(4) and enable kbdmux
commit 5bc96ebc89db7d134ad478335090c8477c1677c7
Add missing \n in device_printf calls
Submitted by: emaste
Sponsored by: DARPA, AFRL
node's interrupts=<...> property creating resource list entries with a
single common implementation. This change makes ofw_bus_intr_to_rl() the
one true copy of that code and removes the copies of it from other places.
This also adds handling of the interrupts-extended property, which allows
specifying multiple interrupts for a node where each interrupt can have a
separate interrupt-parent. The bindings for this state that the property
cells contain an xref phandle to the interrupt parent followed by whatever
interrupt info that parent normally expects. This leads to having a
variable number of icells per interrupt in the property. For example you
could have <&intc1 1 &intc2 26 9 0 &intc3 9 4>.
Differential Revision: https://reviews.freebsd.org/D803
platforms which do not use loaders or kernels that want to hardcode
options or for FDT passed in by loader.
Also fix a build issue by putting the kmdp variable accessed back under
the #ifdef FDT; we may wish to revisit decision in which case more
code needs changing.
Submitted by: brooks
commit 003649d9622ce252a2794ae5891ee7e7c209caca
Author: Robert N. M. Watson <robert.watson@cl.cam.ac.uk>
Date: Wed Feb 5 18:32:09 2014 +0000
Teach the FreeBSD/beri boot to "auto-detect" whether argument 4 (a3) is a
memory size of pointer to a struct bootinfo * by looking at its value and
seeing whether it is pointer-like. If a pointer, assume it's a bootinfo
and extract memsize from it instead; otherwise, use it as memsize directly.
This allows kernels to support bootinfo being passed by loader (and boot2)
while still supporting older Miniboot setups.
commit f7045af9a1e92b6bd92541fe5d25abf66d824e8f
Author: Robert N. M. Watson <robert.watson@cl.cam.ac.uk>
Date: Thu Feb 6 13:45:34 2014 +0000
When the module metadata pointer is available from loader, use it in the
kernel.
commit 52e0e1ff2cba9dfcfab9e1d0a31fb7fdf7317450
Author: Robert N. M. Watson <robert.watson@cl.cam.ac.uk>
Date: Thu Feb 6 19:57:48 2014 +0000
In the BERI kernel boot code, extract 'boothowto' (which includes boot flags
such as '-s') and 'envp' from passed module data. Booting to single-user
mode using boot flags now works.
Sponsored by: DARPA, AFRL
boot/mips/beri/loader/metadata.c allow FDT configuration to set
command line options.
This leads to an interesting quesiton of future interactions with loader.
However for configurations without loader this allows bootverbose or boot
single user to be set by compiling a new kernel, which is good enough for
testing and debugging.
Reviewed by: rwatson
MFC after: 1 week
NetFPGA-10G Embedded CPU Ethernet Core.
The current version operates on a simple PIO based interface connected
to a NetFPGA-10G port.
To avoid confusion: this driver operates on a CPU running on the FPGA,
e.g. BERI/mips, and is not suited for the PCI host interface.
MFC after: 1 week
Relnotes: yes
Sponsored by: DARPA/AFRL
a sub-node of nexus (ofwbus) rather than direct attach under nexus. This
fixes FDT on x86 and will make coexistence with ACPI on ARM systems easier.
SPARC is unchanged.
Reviewed by: imp, ian
to check the status property in their probe routines.
Simplebus used to only instantiate its children whose status="okay"
but that was improper behavior, fixed in r261352. Now that it doesn't
check anymore and probes all its children; the children all have to
do the check because really only the children know how to properly
interpret their status property strings.
Right now all existing drivers only understand "okay" versus something-
that's-not-okay, so they all use the new ofw_bus_status_okay() helper.
get the Routerboard 800 up and running with the vendor device tree. This
does not implement some BERI-specific features (which hopefully won't be
necessary soon), so move the old code to mips/beri, with a higher attach
priority when built, until MIPS interrupt domain support is rearranged.
Change 228019 by bz@bz_zenith on 2013/04/23 13:55:30
Add kernel side support for large TLB on BERI/CHERI.
Modelled similar to NLM
MFC after: 3 days
Sponsored by: DAPRA/AFRL
230523, 1123614
Implement a driver for Robert Norton's PIC as an FDT interrupt
controller. Devices whose interrupt-parent property points to a beripic
device will have their interrupt allocation, activation , and setup
operations routed through the IC rather than down the traditional bus
hierarchy.
This driver largely abstracts the underlying CPU away allowing the
PIC to be implemented on CPU's other than BERI. Due to insufficient
abstractions a small amount of MIPS specific code is currently required
in fdt_mips.c and to implement counters.
MFC after: 3 days
Sponsored by: DARPA/AFRL
221804, 221805, 222004, 222006, 222055, 222820, 1135077, 1135118, 1136259
Add atse(4), a driver for the Altera Triple Speed Ethernet MegaCore.
The current driver support gigabit Ethernet speeds only and works with
the MegaCore only in the internal FIFO configuration in the soon to be
open sourced BERI CPU configuration.
Submitted by: bz
MFC after: 3 days
Sponsored by: DARPA/AFRL
Change 227630 by bz@bz_zenith on 2013/04/12 08:50:27
Implement soft reset setting sr in sr and just in case loop
endlessly afterwards.
MFC after: 3 days
Sponsored by: DARPA/AFRL
Write FDT attachment for the Terasic MTL (multitouch LCD) driver.
Exploit the fact that FDT allows multiple memory ranges to be
assigned to a device, giving us a cleaner description than
device.hints does.
Portions of this changeset that remove mtl from BERI device.hints and
add to DTS will be merged separately.
Sponsored by: DARPA, AFRL
Add code so that the BERI boot process can ask the kernel linker for
DTB blobs that may have been left for it by the boot loader, as done
on PowerPC and ARM. This will require both a more mature boot
loader, and more mature boot loader argument passing mechanism,
than currently supported on BERI.
Sponsored by: DARPA, AFRL
Initialise Openfirmware/FDT code earlier in the FreeBSD/beri boot,
so that the results will be available for configuring the console
UART (eventually).
Suggested by: thompsa
Sponsored by: DARPA, AFRL
FDT headers can't be included if the kernel is compiled without
FDT support, due to dependence on generated kobj headers. BERI
supports both FDT and non-FDT kernels.
Spotted by: bz
Terasic DE-4 board. Allow LED configuration to be set using loader
tunables, not just from userspace, and preconfigure LED 8 as a kernel
heartbeat. For now, this is a Nexus-attached, BERI-only driver, but it
could be used with other hard and soft cores on Altera FPGAs as well, in
principle.
Sponsored by: DARPA, AFRL
used with Terasic's DE-4 and other similar FPGA boards. This display
is 800x480 and includes a capacitive touch screen, multi-touch
gesture recognition, etc. This device driver depends on a Cambridge-
provided IP core that allows the MTL device to be hooked up to the
Altera Avalon SoC bus, and also provides a VGA-like text frame buffer.
Although it is compiled as a single device driver, it actually
implements a number of different device nodes exporting various
aspects of this multi-function device to userspace:
- Simple memory-mapped driver for the MTL 24-bit pixel frame buffer.
- Simple memory-mapped driver for the MTL control register set.
- Simple memory-mapped driver for the MTL text frame buffer.
- syscons attachment for the MTL text frame buffer.
This driver attaches directly to Nexus as is common for SoC device
drivers, and for the time being is considered BERI-specific, although
in principle it might be used with other hard and soft cores on
Altera FPGAs.
Control registers, including touchscreen input, are simply memory
mapped; in the future it would be desirable to hook up a more
conventional device node that can stream events, support kqueue(2)/
poll(2)/select(2), etc.
This is the first use of syscons on MIPS, as far as I can tell, and
there are some loose ends, such as an inability to use the hardware
cursor. More fundamentally, it appears that syscons(4) assumes that
either a host is PC-like (i386, amd64) *or* it must be using a
graphical frame buffer. While the MTL supports a graphical frame
buffer, using the text frame buffer is preferable for console use.
Fixing this issue in syscons(4) requires non-trivial changes, as the
text frame buffer support assumes that direct memory access can be
done to the text frame buffer without using bus accessor methods,
which is not the case on MIPS. As a workaround for this, we instead
double-buffer and pretend to be a graphical frame buffer exposing
text accessor methods, leading to some quirks in syscons behaviour.
Sponsored by: DARPA, AFRL
which presents a UART-like interface over the Avalon bus that can be
addressed over JTAG. This IP core proves extremely useful, allowing us to
connect trivially to the FreeBSD console over JTAG for FPGA-embedded hard
and soft cores. As interrupts are optionally configured for this soft
core, we support both interrupt-driven and polled modes of operation,
which must be selected using device.hints. UART instances appear in /dev
as ttyu0, ttyu1, etc.
However, it also contains a number of quirks, which make it difficult to
tell when JTAG is connected, and some buffering issues. We work around
these as best we can, using various heuristics.
While the majority of this device driver is not only not BERI-specific,
but also not MIPS-specific, for now add its defines in the BERI files
list, as the console-level parts are aware of where the first JTAG UART
is mapped on Avalon, and contain MIPS-specific address translation, to
use before Newbus and device.hints are available.
Sponsored by: DARPA, AFRL
Bluespec Extensible RISC Implementation (BERI) processor. BERI is a 64-bit
MIPS ISA soft CPU core that can be synthesised to Altera and Xilinx FPGAs,
and is being used for CPU and OS research at several institutions.
Sponsored by: DARPA, AFRL