NICs. (Finally!) The PCMCIA, ISA and PCI varieties are all supported,
though only the ISA and PCI ones will work on the alpha for now.
PCCARD, ISA and PCI attachments are all provided. Also provided an
ancontrol(8) utility for configuring the NIC, man pages, and updated
pccard.conf.sample. ISA cards are supported in both ISA PnP and hard-wired
mode, although you must configure the kernel explicitly to support the
hardwired mode since you have to know the I/O address and port ahead
of time.
Special thanks to Doug Ambrisko for doing the initial newbus hackery
and getting it to work in infrastructure mode.
USB-EL1202A chipset. Between this and the other two drivers, we should
have support for pretty much every USB ethernet adapter on the market.
The only other USB chip that I know of is the SMC USB97C196, and right
now I don't know of any adapters that use it (including the ones made
by SMC :/ ).
Note that the CATC chip supports a nifty feature: read and write combining.
This allows multiple ethernet packets to be transfered in a single USB
bulk in/out transaction. However I'm again having trouble with large
bulk in transfers like I did with the ADMtek chip, which leads me to
believe that our USB stack needs some work before we can really make
use of this feature. When/if things improve, I intend to revisit the
aue and cue drivers. For now, I've lost enough sanity points.
ethernet adapters that are supported by the aue and kue drivers.
There are actually a couple more out there from Accton, Asante and
EXP Computer, however I was not able to find any Windows device
drivers for these on their servers, and hence could not harvest
their vendor/device ID info. If somebody has one of these things
and can look in the .inf file that comes with the Windows driver,
I'd appreciate knowing what it says for 'VID' and 'PID.'
Additional adapters include: the D-Link DSB-650 and DSB-650TX, the
SMC 2102USB, 2104USB and 2202USB, the ATen UC10T, and the Netgear EA101.
These are all mentioned in the man pages, relnotes and LINT.
Also correct the date in the kue(4) man page. I wrote this thing
on Jan, 4 2000, not 1999.
Kawasaki LSI KL5KUSB101B chip, including the LinkSys USB10T, the
Entrega NET-USB-E45, the Peracom USB Ethernet Adapter, the 3Com
3c19250 and the ADS Technologies USB-10BT. This device is 10mbs
half-duplex only, so there's miibus or ifmedia support. This device
also requires firmware to be loaded into it, however KLSI allows
redistribution of the firmware images (I specifically asked about
this; they said it was ok).
Special thanks to Annelise Anderson for getting me in touch with
KLSI (eventually) and thanks to KLSI for providing the necessary
programming info.
Highlights:
- Add driver files to /sys/dev/usb
- update usbdevs and regenerate attendate files
- update usb_quirks.c
- Update HARDWARE.TXT and RELNOTES.TXT for i386 and alpha
- Update LINT, GENERIC and others for i386, alpha and pc98
- Add man page
- Add module
- Update sysinstall and userconfig.c
USB ethernet chip. Adapters that use this chip include the LinkSys
USB100TX. There are a few others, but I'm not certain of their
availability in the U.S. I used an ADMtek eval board for development.
Note that while the ADMtek chip is a 100Mbps device, you can't really
get 100Mbps speeds over USB. Regardless, this driver uses miibus to
allow speed and duplex mode selection as well as autonegotiation.
Building and kldloading the driver as a module is also supported.
Note that in order to make this driver work, I had to make what some
may consider an ugly hack to sys/dev/usb/usbdi.c. The usbd_transfer()
function will use tsleep() for synchronous transfers that don't complete
right away. This is a problem since there are times when we need to
do sync transfers from an interrupt context (i.e. when reading registers
from the MAC via the control endpoint), where tsleep() us a no-no.
My hack allows the driver to have the code poll for transfer completion
subject to the xfer->timeout timeout rather that calling tsleep().
This hack is controlled by a quirk entry and is only enabled for the
ADMtek device.
Now, I'm sure there are a few of you out there ready to jump on me
and suggest some other approach that doesn't involve a busy wait. The
only solution that might work is to handle the interrupts in a kernel
thread, where you may have something resembling a process context that
makes it okay to tsleep(). This is lovely, except we don't have any
mechanism like that now, and I'm not about to implement such a thing
myself since it's beyond the scope of driver development. (Translation:
I'll be damned if I know how to do it.) If FreeBSD ever aquires such
a mechanism, I'll be glad to revisit the driver to take advantage of
it. In the meantime, I settled for what I perceived to be the solution
that involved the least amount of code changes. In general, the hit
is pretty light.
Also note that my only USB test box has a UHCI controller: I haven't
I don't have a machine with an OHCI controller available.
Highlights:
- Updated usb_quirks.* to add UQ_NO_TSLEEP quirk for ADMtek part.
- Updated usbdevs and regenerated generated files
- Updated HARDWARE.TXT and RELNOTES.TXT files
- Updated sysinstall/device.c and userconfig.c
- Updated kernel configs -- device aue0 is commented out by default
- Updated /sys/conf/files
- Added new kld module directory
which it replaces. The new driver supports all of the chips supported
by the ones it replaces, as well as many DEC/Intel 21143 10/100 cards.
This also completes my quest to convert things to miibus and add
Alpha support.
mention of the various devices that are supported.
Add some text and entry to LINT for 'controller mca0'.
I'd like to turn this option on in GENERIC as well as it
isn't impacting and has a small footprint.
- Add AMI and Mylex RAID controllers
- Reflect the demise of the 'eg' and 'ft' drivers
- Various minor cleanups
- Add some initial Microchannel information (this could do with some
fleshing out)
for the AN985 "Centaur" chip, which is apparently the next genetation
of the "Comet." The AN985 is also a tulip clone and is similar to the
AL981 except that it uses a 99C66 EEPROM and a serial MII interface
(instead of direct access to the PHY registers).
Also updated various documentation to mention the AN985 and created
a loadable module.
I don't think there are any cards that use this chip on the market yet:
the datasheet I got from ADMtek has boxes with big X's in them where the
diagrams should be, and the sample boards I got have chips without any
artwork on them.
the Davicom DM9100 and DM9102 chipsets, including the Jaton Corporation
XPressNet. Datasheet is available from www.davicom8.com.
The DM910x chips are still more tulip clones. The API is reproduced
pretty faithfully, unfortunately the performance is pretty bad. The
transmitter seems to have a lot of problems DMAing multi-fragment
packets. The only way to make it work reliably is to coalesce transmitted
packets into a single contiguous buffer. The Linux driver (written by
Davicom) actually does something similar to this. I can't recomment this
NIC as anything more than a "connectivity solution."
This driver uses newbus and miibus and is supported on both i386
and alpha platforms.
SiS 900 and SiS 7016 PCI fast ethernet chipsets. Full manuals for the
SiS chips can be found at www.sis.com.tw.
This is a fairly simple chipset. The receiver uses a 128-bit multicast
hash table and single perfect entry for the station address. Transmit and
receive DMA and FIFO thresholds are easily tuneable. Documentation is
pretty decent and performance is not bad, even on my crufty 486. This
driver uses newbus and miibus and is supported on both the i386 and
alpha architectures.
RealTek 8029, NetVin 5000, Winbond W89C940, Surecom NE-34, VIA VT86C926.
(checked with Bill Paul)
Mention the Brooktree Bt878 is supported by the Bt848 driver.
adapter (and some workalikes). Also add man pages and a wicontrol
utility to manipulate some of the card parameters.
This driver was written using information gleaned from the Lucent HCF Light
library, though it does not use any of the HCF Light code itself, mainly
because it's contaminated by the GPL (but also because it's pretty gross).
The HCF Light lacks certain featurs from the full (but proprietary) HCF
library, including 802.11 frame encapsulation support, however it has
just enough register information about the Hermes chip to allow someone
with enough spare time and energy to implement a proper driver. (I would
have prefered getting my hands on the Hermes manual, but that's proprietary
too. For those who are wondering, the Linux driver uses the proprietary
HCF library, but it's provided in object code form only.)
Note that I do not have access to a WavePOINT access point, so I have
only been able to test ad-hoc mode. The wicontrol utility can turn on
BSS mode, but I don't know for certain that the NIC will associate with
an access point correctly. Testers are encouraged to send their results
to me so that I can find out if I screwed up or not.
Networks Tigon 1 and Tigon 2 chipsets. There are a _lot_ of OEM'ed
gigabit ethernet adapters out there which use the Alteon chipset so
this driver covers a fair amount of hardware. I know that it works with
the Alteon AceNIC, 3Com 3c985 and Netgear GA620, however it should also
work with the DEC/Compaq EtherWORKS 1000, Silicon Graphics Gigabit
ethernet board, NEC Gigabit Ethernet board and maybe even the IBM and
and Sun boards. The Netgear board is the cheapest (~$350US) but still
yields fairly good performance.
Support is provided for jumbo frames with all adapters (just set the
MTU to something larger than 1500 bytes), as well as hardware multicast
filtering and vlan tagging (in conjunction with the vlan support in
-current, which I should merge into -stable soon). There are some hooks
for checksum offload support, but they're turned off for now since
FreeBSD doesn't have an officially sanctioned way to support checksum
offloading (yet).
I have not added the 'device ti0' entry to GENERIC since the driver
with all the firmware compiled in is quite large, and it doesn't really
fit into the category of generic hardware.
and Racore 8148 adapters are now supported by the ThunderLAN driver.
The 8165 is just a plain vanilla 10/100 card; the 8148 is a 'multi-
personality' adapter which can support 10baseT, 100baseTX and 100baseFX
if you include the proper modules.
Also update the tl man page to mention the Racore cards.
files. They are now both basically the same. I also modified the driver
list in HARDWARE.TXT: add the adw and isp drivers, and indicate that the
uha driver isn't yet supported under CAM.
This includes specific mention of all supported NCR and BusLogic models,
additional qualification of the supported DPT and QLogic models, and some
additions to the list of supported onboard Adaptec chips.
The hope is, of course, that this will lead to fewer questions like "is the
froboz SCSI controller supported?"
I think the formatting of the new entries looks okay, but someone with a
better eye for things like that might want to look at this.
rebadged Future Domain card that is not supported.
Also, only the DPT SmartRAID III and IV are supported. (The SmartRAID V
isn't yet supported by the DPT driver.)
on the ASIX AX88140A chip. Update /sys/conf/files, RELNOTES.TXT,
/sys/i388/i386/userconfig.c, sysinstall/devices.c, GENERIC and LINT
accordingly.
For now, the only board that I know of that uses this chip is the
Alfa Inc. GFC2204. (Its predecessor, the GFC2202, was a DEC tulip card.)
Thanks again to Ulf for obtaining the board for me. If anyone runs
across another, please feel free to update the man page and/or the
release notes. (The same applies for the other drivers.)
FreeBSD should now have support for all of the DEC tulip workalike
chipsets currently on the market (Macronix, Lite-On, Winbond, ASIX).
And unless I'm mistaken, it should also have support for all PCI fast
ethernet chipsets in general (except maybe the SMC FEAST chip, which
nobody seems to ever use, including SMC). Now if only we could convince
3Com, Intel or whoever to cough up some documentation for gigabit
ethernet hardware.
Also updated RELNOTEX.TXT to mention that the SVEC PN102TX is supported
by the Macronix driver (assuming you actually have an SVEC PN102TX with
a Macronix chip on it; I tried to order a PN102TX once and got a box
labeled 'Hawking Technology PN102TX' that had a VIA Rhine board inside
it).
as a RealTek 8139
if_rlreg.h: use bus_space_read_X() in CSR_READ_X() macros instead of
directly calling inb()/outb() etc...
rl.4 + RELNOTES.TXT: mention that SMC EtherEZ PCI 1211-TX is supported
by the RealTek driver
PCI fast ethernet adapters, plus man pages.
if_pn.c: Netgear FA310TX model D1, LinkSys LNE100TX, Matrox FastNIC 10/100,
various other PNIC devices
if_mx.c: NDC Communications SOHOware SFA100 (Macronix 98713A), various
other boards based on the Macronix 98713, 98713A, 98715, 98715A
and 98725 chips
if_vr.c: D-Link DFE530-TX, other boards based on the VIA Rhine and
Rhine II chips (note: the D-Link and certain other cards
that actually use a Rhine II chip still return the PCI
device ID of the Rhine I. I don't know why, and it doesn't
really matter since the driver treats both chips the same
anyway.)
if_wb.c: Trendware TE100-PCIE and various other cards based on the
Winbond W89C840F chip (the Trendware card is identical to
the sample boards Winbond sent me, so who knows how many
clones there are running around)
All drivers include support for ifmedia, BPF and hardware multicast
filtering.
Also updated GENERIC, LINT, RELNOTES.TXT, userconfig and
sysinstall device list.
I also have a driver for the ASIX AX88140A in the works.