set_mcontext.
- Don't make assumptions about the alignment of the mcontext inside of the
ucontext; we have to save the floating point registers to the pcb and then
copy to the mcontext.
a pointer that is in user space. It will be used as the basic primitive
for a kernel supported user space lock implementation.
- Implement this function in x86's support.s
- Provide stubs that return -1 in all other architectures. Implementations
will follow along shortly.
Reviewed by: jake
a follow on commit to kern_sig.c
- signotify() now operates on a thread since unmasked pending signals are
stored in the thread.
- PS_NEEDSIGCHK moves to TDF_NEEDSIGCHK.
- Change all consumers to pass in a thread.
Right now this does not cause any functional changes but it will be important
later when signals can be delivered to specific threads.
be overridden by setting hw.physmem.
- Fix a vm_map_find arg, we don't want to find space.
- Add tracing and statistics for off colored pages.
- Detect "stupid" pmap_kenters (same virtual and physical as existing
mapping), and do nothing in that case.
pages which represent actual physical memory we must strip off the fake
page in order to allow illegal aliases to be detected. Otherwise we map
uncacheable in the virtual and physical caches and set the side effect bit,
as is required for mapping device memory.
This fixes gstat on sparc64, which wants to mmap kernel memory through a
character device.
where physical addresses larger than virtual addresses, such as i386s
with PAE.
- Use this to represent physical addresses in the MI vm system and in the
i386 pmap code. This also changes the paddr parameter to d_mmap_t.
- Fix printf formats to handle physical addresses >4G in the i386 memory
detection code, and due to kvtop returning vm_paddr_t instead of u_long.
Note that this is a name change only; vm_paddr_t is still the same as
vm_offset_t on all currently supported platforms.
Sponsored by: DARPA, Network Associates Laboratories
Discussed with: re, phk (cdevsw change)
in busdma tags. There are currently no tags shared accross
different drivers so this isn't needed at the moment, but it
will be required when we'll have a proper newbus method to get
the parent busdma tag.
on future UltraSPARC cpus for which the data cache is not direct mapped.
- Move UltraSPARC I and II (spitfire, blackbird, sapphire, sabre) specific
functions to spitfire.c, and add cheetah.c for UltraSPARC III specific
functions. Initially just cache flushing, but there are a few other
functions that will need to move here.
- Add an ipi handler for data cache flushing on UltraSPARC III.
- Use function pointers to select the right cache flushing functions based
on cpu_impl.
With this it is possible to boot single user from an mfs root on UltraSPARC
III systems, including spinning up secondary processors. There is currently
no support for the host to pci bridge, and no documentation for it is
publically available.
Thanks to Oleg Derevenetz for providing access to a system with UltraSPARC
III+ cpus.
UltraSPARC III and higher cpus and do needed setup.
- Disable the "system tick" interrupt for UltraSPARC III. This avoids
an interrupt storm on startup since we're not prepared for these at
all. This feature has questionable use anyway.
- Clear tick on startup and then leave it alone.
are machine dependent because they are not required to update the tlb when
mappings are added or removed, and doing so is machine dependent.
In addition, an implementation may require that pages mapped with pmap_kenter
have a backing vm_page_t, which is not necessarily true of all physical
pages, and so may choose to pass the vm_page_t to pmap_kenter instead of the
physical address in order to make this requirement clear.
branches:
Initialize struct cdevsw using C99 sparse initializtion and remove
all initializations to default values.
This patch is automatically generated and has been tested by compiling
LINT with all the fields in struct cdevsw in reverse order on alpha,
sparc64 and i386.
Approved by: re(scottl)
Fixed memory leak in the "nodevice" option implementation.
Use these instead of sed(1) in MD NOTES.
Use a single makefile (sys/conf/makeLINT.mk) to generate
LINT for all architectures. (Previous versions missed
the LINT dependency on Makefile, and i386 version also
missed the dependency on ${NOTES}.)
Fixed bugs in the previous NOTES conversion using the
"nodevice" token and sed(1):
- i386 LINT lost "device pst".
- pc98 LINT lost SC_*, MAXCONS and KBD_DISABLE_KEYMAP_LOAD
options, and got needless DPT_* options.
- Added nooptions PPC_DEBUG, PPC_PROBE_CHIPSET, KBD_INSTALL_CDEV
to sparc64 LINT so that it has a chance to config(8).
This basically returns us to where we were before.
- Get rid of the useless atop() / pmap_phys_address() detour. The
device mmap handlers must now give back the physical address
without atop()'ing it.
- Don't borrow the physical address of the mapping in the returned
int. Now we properly pass a vm_offset_t * and expect it to be
filled by the mmap handler when the mapping was successful. The
mmap handler must now return 0 when successful, any other value
is considered as an error. Previously, returning -1 was the only
way to fail. This change thus accidentally fixes some devices
which were bogusly returning errno constants which would have been
considered as addresses by the device pager.
- Garbage collect the poorly named pmap_phys_address() now that it's
no longer used.
- Convert all the d_mmap_t consumers to the new API.
I'm still not sure wheter we need a __FreeBSD_version bump for this,
since and we didn't guarantee API/ABI stability until 5.1-RELEASE.
Discussed with: alc, phk, jake
Reviewed by: peter
Compile-tested on: LINT (i386), GENERIC (alpha and sparc64)
Runtime-tested on: i386
group number properly based on the board id. Perform dummy reads of
registers after writing to flush the hardware write buffers.
This gets the soon to be committed zs attachment working.
UltraSPARCs, and an eeprom attachment for fhc, which allows the date
to be set properly on these machines. Central is a wierd bus which
seems to only ever have 1 fhc attached to it. FHC (FireHose Controller)
is another wierd bus with various things on it depending where its attached.
The fhc attached to central has eeprom and zs, and the fhcs which attach
directly to nexus have simm-status, environment and other nodes, none of
which I'll probably ever have documentation for.
Thanks to Ade Lovett for providing access to an 8 cpu e4500.