and moving the default initialization of prec into the else clause.
The clang static analyzer erroneously thought that nsec can be used
uninitialized here; it was not actually possible, but better to make
the code clearer. (Clang can't know that sprintf() won't modify *pi
behind the scenes.)
uninitialized. Initialize it to a safe value so that there's no
chance of returning an error if stack garbage happens to be equal to
(size_t)-1 or (size_t)-2.
Found by: Clang static analyzer
MFC after: 7 days
of the last tick we incremented on.
Submitted by: matthew.fleming/at/isilon.com, is/at/rambler-co.ru
Reviewed by: jeff (who thinks there should be a better way in the future)
Approved by: gnn (mentor)
MFC after: 3 weeks
- fix a system deadlock on process exit when the sample buffer
is full (pmclog_loop blocked in fo_write) and pmcstat exit.
Reviewed by: jkoshy
MFC after: 3 weeks
bits on seems to confuse hardware TX engine.
- For 350 chips, set TX desc's buffer physical address before turning on the
TX desc valid bit.
Submitted by: Jeremy O'Brien obrien654j | gmail, sephe
Obtained from: DragonFly BSD
- Extend XPT-SIM transfer settings control API. Now it allows to report to
SATA SIM number of tags supported by each device, implement ATA mode and
SATA revision negotiation for both SATA and PATA SIMs.
- Make ahci(4) and siis(4) to use submitted maximum tag number, when
scheduling requests. It allows to support NCQ on devices with lower tags
count then controller supports.
- Make PMP driver to report attached devices connection speeds.
- Implement ATA mode negotiation between user settings, device and
controller capabilities.
When PAGE_SIZE is 16K, MJUMPAGESIZE equals MJUM16BYTES and
causes build breakages.
For PAGE_SIZE < 2K, define MJUMPAGESIZE as MCLBYTES.
For PAGE_SIZE > 8K, define MJUMPAGESIZE as 8K.
Everywhere inbetween, define MJUMPAGESIZE as PAGE_SIZE.
Thus MCLBYTES <= MJUMPAGESIZE <= 8KB.
the kernel stack at all. The new USB stack simply caused a change
in timing that triggered a firmware bug more often. The addition
of PRINTF_BUFR_SIZE apparently triggered the same firmware bug
even more reliably.
But even with KSTACK_PAGES=5, one instance of the firmware bug
remained: booting with a CD inserted. This problem was run into
by accident after installing Debian and having to boot FreeBSD
to fixup the GPT partitioning (Thanks... not). After bumping
KSTACK_PAGES to 5, it was pretty unbelievable that the stack was
still being too small.
After updating the firmware we could boot with a CD inserted and
KSTACK_PAGES could be lowered back to 4 pages without problems.
Note: It is believed to be a timing related firmware bug, because
the machine check information showed access to the serial console
on one CPU and access to the EHCI HCD on the other CPU. Since
both are devices on the management unit and thus virtualized in
some way, any execution trace that does not include concurrent
access to the BMC from both CPUs is fine.
Note also that it's not understood exactly how increasing the
kernel stack avoided hitting the firmware bug. A change in page
faults does change timing, but it's not known if that's what's
happening here.
In any case: the problem is being monitored. Reverting back to
4 pages for the kernel stack is preferred, because it makes it
easier to switch to 16K pages (double the page size) without
wasting too much memory by not being able to half the number of
pages...
using VOP_LOOKUP() when VFS_VGET() returns EOPNOTSUPP in the
ReaddirPlus RPC. This patch is based upon one by pjd@ for the
regular nfs server which has not yet been committed. It is needed
when a ZFS volume is exported and ReaddirPlus (which almost
always happens for NFSv4) is performed by a client. The patch
also simplifies vnode lock handling somewhat.
MFC after: 2 weeks
This adds zfsloader which will be called by zfsboot/gptzfsboot code rather
than the tradional loader. This eliminates the need to set the
LOADER_ZFS_SUPPORT variable in order to get a ZFS enabled loader.
Note however, that you must reinstall your bootcode (zfsboot/gptzfsboot)
in order for the boot process to use the new loader.
New installations will no longer be required to build a ZFS enabled
loader for a working ZFS boot system. Installing zfsboot/gptzfsboot is
sufficient for acknowledging the use of CDDL code and therefore the ZFS
enabled loader.
Based on a previous patch from jhb@
Reviewed by: jhb@
MFC after: 2 weeks
Tx/Rx/Rx return ring such that large part of status block was not
used at all. All bge(4) controllers except BCM5700 AX/BX has a
feature to control the size of status block. So use minimum status
block size allowed in controller. This reduces number of DMAed
status block size to 32 bytes from 80 bytes.
seem to require a special firmware to use TSO. But the firmware is
not available to FreeBSD and Linux claims that the TSO performed by
the firmware is slower than hardware based TSO. Moreover the
firmware based TSO has one known bug which can't handle TSO if
ethernet header + IP/TCP header is greater than 80 bytes. The
workaround for the TSO bug exist but it seems it's too expensive
than not using TSO at all. Some hardwares also have the TSO bug so
limit the TSO to the controllers that are not affected TSO issues
(e.g. 5755 or higher).
While I'm here set VLAN tag bit to all descriptors that belengs to
a frame instead of the first descriptor of a frame. The datasheet
is not clear how to handle VLAN tag bit but it worked either way in
my testing. This makes it simplify TSO configuration a little bit.
Big thanks to davidch@ who sent me detailed TSO information.
Without this I was not able to implement it.
Tested by: current
have a DMA bug when buffer address crosses a multiple of the 4GB
boundary(e.g. 4GB, 8GB, 12GB etc). Limit DMA address to be within
4GB address for these controllers. The second DMA bug limits DMA
address to be within 40bit address space. This bug applies to
BCM5714 and BCM5715 and 5708(bce(4) controller). This is not
actually a MAC controller bug but an issue with the embedded PCIe
to PCI-X bridge in the device. So for BCM5714/BCM5715 controllers
also limit the DMA address to be within 40bit address space.
Special thanks to davidch@ who gave me detailed errata information.
I think this change will fix long standing bge(4) instability
issues on systems with more than 4GB memory.
Reviewed by: davidch
PCI flush to get correct status block update. Add an optimized
interrupt handler that is activated for MSI case. Actual interrupt
handling is done by taskqueue such that the handler does not
require driver lock for Rx path. The MSI capable bge(4) controllers
automatically disables further interrupt once it enters interrupt
state so we don't need PIO access to disable interrupt in interrupt
handler.
update and then clear status block. Previously it used to access
these index without synchronization which may cause problems when
bounce buffers are used. Also add missing bus_dmamap_sync(9) in
polling handler. Since we now update status block in driver, adjust
bus_dmamap_sync(9) for status block.
checking IFF_DRV_RUNNING and IFF_DRV_OACTIVE flags. Also if we
have less than 16 free send BDs set IFF_DRV_OACTIVE and try it
later. Previously bge(4) used to reserve 16 free send BDs after
loading dma maps but hardware just need one reserved send BD. If
prouder index has the same value of consumer index it means the Tx
queue is empty.
While I'm here check IFQ_DRV_IS_EMPTY first to save one lock
operation.
directly access them at fixed address. While I'm here don't touch
other bits of PCIe device control register except max payload size.
Reviewed by: marius