When a cylinder group runs short of inodes, a new block for inodes is
allocated, zero'ed, and written to the disk. The zero'ed inodes must
be on the disk before the cylinder group can be updated to claim them.
If the cylinder group claiming the new inodes were written before the
zero'ed block of inodes, the system could crash with the filesystem in
an unrecoverable state.
Rather than adding a soft updates dependency to ensure that the new
inode block is written before it is claimed by the cylinder group
map, we just do a barrier write of the zero'ed inode block to ensure
that it will get written before the updated cylinder group map can
be written. This change should only slow down bulk loading of newly
created filesystems since that is the primary time that new inode
blocks need to be created.
Reported by: Robert Watson
Reviewed by: kib
Tested by: Peter Holm
function, implementing the sysctl vfs.ffs.set_bufoutput (not used in
the tree yet).
- The current directory vnode dereference is unsafe since fd_cdir
could be changed and unreferenced, lock the filedesc around and vref
the fd_cdir.
- The VTOI() conversion of the fd_cdir is unsafe without first
checking that the vnode is indeed from an FFS mount, otherwise
the code dereferences a random memory.
- The cdir could be reclaimed from under us, lock it around the
checks.
- The type of the fp vnode might be not a disk, or it might have
changed while the thread was in flight, check the type.
Reviewed and tested by: mckusick
MFC after: 2 weeks
has gone below zero after the blocks in its inode are freed is a
no-op which the compiler fails to warn about because of the use of
the DIP macro. Change the sanity check to compare the number of
blocks being freed against the value i_blocks. If the number of
blocks being freed exceeds i_blocks, just set i_blocks to zero.
Reported by: Pedro Giffuni (pfg@)
MFC after: 2 weeks
mount, which means that is must not be called while the snaplock is
owned. The vfs_write_resume(9) does call the function as the
VFS_SUSP_CLEAN() method, which is too early and falls into the region
still protected by snaplock.
Add yet another flag for the vfs_write_resume_flags() to avoid calling
suspension cleanup handler after the suspend is lifted, and use it in
the ffs_snapshot() call to vfs_write_resume.
Reported and tested by: pho
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
the write start, by adding a variation of the vfs_write_resume(9)
which accepts flags.
Use the new function to prevent a deadlock between parallel suspension
and snapshotting a UFS mount. The ffs_snapshot() code performed
vfs_write_resume() followed by vn_start_write() while owning the
snaplock. If the suspension intervene between resume and
vn_start_write(), the deadlock occured after the suspending thread
tried to lock the snaplock, most typically during the write in the
ffs_copyonwrite().
Reported and tested by: Andreas Longwitz <longwitz@incore.de>
Reviewed by: mckusick
MFC after: 2 weeks
X-MFC-note: make the vfs_write_resume(9) function a macro after the MFC,
in HEAD
When kern_yield() was introduced with the possibility to specify
a new priority, the behaviour changed by not lowering priority at all
in the consumers, making the yielding mechanism highly ineffective for
high priority kthreads like bufdaemon, syncer, vlrudaemon, etc.
There are no evidences that consumers could bear with such change in
semantic and this situation could finally lead to bugs similar to the
ones fixed in r244240.
Re-specify userland pri for kthreads involved.
Tested by: pho
Reviewed by: kib, mdf
MFC after: 1 week
received granular locking) but the comment present in UFS has been
copied all over other filesystems code incorrectly for several times.
Removes comments that makes no sense now.
Reviewed by: kib
MFC after: 3 days
crash. When truncating a file that never made it to disk we use the
canceled allocation dependencies to hold the journal records until
the truncation completes. Previously allocdirect dependencies on
the id_bufwait list were not considered and their journal space
could expire before the bitmaps were written. Cancel them and attach
them to the freeblks as we do for other allocdirects.
- Add KTR traces that were used to debug this problem.
- When adding jsegdeps, always use jwork_insert() so we don't have more
than one segdep on a given jwork list.
Sponsored by: EMC / Isilon Storage Division
When a background copy of a cg is written we complete any work associated
with that bmsafemap. If new work has been added to the non-background
copy of the buffer it will be completed before the next write happens.
The solution is to do the rollbacks when we make the copy so only those
dependencies that were present at the time of writing will be completed
when the background write completes. This would've resulted in various
bitmap related corruptions and panics. It also would've expired journal
entries early causing journal replay to miss some records.
MFC after: 2 weeks
solve power loss problems with dishonest write caches. However, it
should improve the situation and force a full fsck when it is unable
to resolve with the journal.
- Resolve a case where the journal could wrap in an unsafe way causing
us to prematurely lose journal entries in very specific scenarios.
Discussed with: mckusick
MFC after: 1 month
(implemented by ffs_reallocblks_ufs[12]) relocates the file's blocks
so as to cluster them together into a contiguous set of blocks on
the disk.
When the cluster crosses the boundary into the first indirect block,
the first indirect block is initially allocated in a position
immediately following the last direct block. Block reallocation
would usually destroy locality by moving the indirect block out of
the way to keep the data blocks contiguous. This change compensates
for this problem by noting that the first indirect block should be
left immediately following the last direct block. It then tries
to start a new cluster of contiguous blocks (referenced by the
indirect block) immediately following the indirect block.
We should also do this for other indirect block boundaries, but it
is only important for the first one.
Suggested by: Bruce Evans
MFC: 2 weeks
the previous diradd had already finished it could have been reclaimed
already. This would only happen under heavy dependency pressure.
Reported by: Andrey Zonov <zont@FreeBSD.org>
Discussed with: mckusick
MFC after: 1 week
was still possible to open for write from the lower filesystem. There
is a symmetric situation where the binary could already has file
descriptors opened for write, but it can be executed from the nullfs
overlay.
Handle the issue by passing one v_writecount reference to the lower
vnode if nullfs vnode has non-zero v_writecount. Note that only one
write reference can be donated, since nullfs only keeps one use
reference on the lower vnode. Always use the lower vnode v_writecount
for the checks.
Introduce the VOP_GET_WRITECOUNT to read v_writecount, which is
currently always bypassed to the lower vnode, and VOP_ADD_WRITECOUNT
to manipulate the v_writecount value, which manages a single bypass
reference to the lower vnode. Caling the VOPs instead of directly
accessing v_writecount provide the fix described in the previous
paragraph.
Tested by: pho
MFC after: 3 weeks
extended using growfs(8). The problem here is that geom_label checks if
the filesystem size recorded in UFS superblock is equal to the provider
(i.e. device) size. This check cannot be removed due to backward
compatibility. On the other hand, in most cases growfs(8) cannot set
fs_size in the superblock to match the provider size, because, differently
from newfs(8), it cannot recompute cylinder group sizes.
To fix this problem, add another superblock field, fs_providersize, used
only for this purpose. The geom_label(4) will attach if either fs_size
(filesystem created with newfs(8)) or fs_providersize (filesystem expanded
using growfs(8)) matches the device size.
PR: kern/165962
Reviewed by: mckusick
Sponsored by: FreeBSD Foundation
with softupdates went away. Note that this does not fix the problem
entirely; I'm committing it now to make it easier for someone to pick
up the work.
Reviewed by: mckusick
In particular, do not lock Giant conditionally when calling into the
filesystem module, remove the VFS_LOCK_GIANT() and related
macros. Stop handling buffers belonging to non-mpsafe filesystems.
The VFS_VERSION is bumped to indicate the interface change which does
not result in the interface signatures changes.
Conducted and reviewed by: attilio
Tested by: pho
to pull vm_param.h was removed. Other big dependency of vm_page.h on
vm_param.h are PA_LOCK* definitions, which are only needed for
in-kernel code, because modules use KBI-safe functions to lock the
pages.
Stop including vm_param.h into vm_page.h. Include vm_param.h
explicitely for the kernel code which needs it.
Suggested and reviewed by: alc
MFC after: 2 weeks
now fully encapsulates all accesses to f_offset, and extends f_offset
locking to other consumers that need it, in particular, to lseek() and
variants of getdirentries().
Ensure that on 32bit architectures f_offset, which is 64bit quantity,
always read and written under the mtxpool protection. This fixes
apparently easy to trigger race when parallel lseek()s or lseek() and
read/write could destroy file offset.
The already broken ABI emulations, including iBCS and SysV, are not
converted (yet).
Tested by: pho
No objections from: jhb
MFC after: 3 weeks
is performed before exact size of the buffer is calculated, but the
buffer cannot have size greater then the total space allocated for
extended attributes. The existing check is executing with precise
size, but it is too late, since buffer needs to be allocated in
advance.
Also, adapt to uio_resid being of ssize_t type. Use lblktosize instead of
multiplying by fs block size by hand as well.
Reported and tested by: pho
MFC after: 1 week
and bmsafemap dependency structures in inodedep_lookup() and
bmsafemap_lookup() respectively. The setup of these structures must
be done while holding the soft-dependency mutex. If the inodedep is
allocated first, it may be freed in the I/O completion callback when
the mutex is released to allocate the bmsafemap. If the bmsafemap is
allocated first, it may be freed in the I/O completion callback when
the mutex is released to allocate the inodedep.
To resolve this problem, bmsafemap_lookup has had a parameter added
that allows a pre-malloc'ed bmsafemap to be passed in so that it does
not need to release the mutex to create a new bmsafemap. The
softdep_setup_inomapdep() routine pre-malloc's a bmsafemap dependency
before acquiring the mutex and starting to build the inodedep with a
call to inodedep_lookup(). The subsequent call to bmsafemap_lookup()
is passed this pre-allocated bmsafemap entry so that it need not
release the mutex if it needs to create a new one.
Reported by: Peter Holm
Tested by: Peter Holm
MFC after: 1 week
over just the active vnodes associated with a mount point to replace
MNT_VNODE_FOREACH_ALL in the vfs_msync, ffs_sync_lazy, and qsync
routines.
The vfs_msync routine is run every 30 seconds for every writably
mounted filesystem. It ensures that any files mmap'ed from the
filesystem with modified pages have those pages queued to be
written back to the file from which they are mapped.
The ffs_lazy_sync and qsync routines are run every 30 seconds for
every writably mounted UFS/FFS filesystem. The ffs_lazy_sync routine
ensures that any files that have been accessed in the previous
30 seconds have had their access times queued for updating in the
filesystem. The qsync routine ensures that any files with modified
quotas have those quotas queued to be written back to their
associated quota file.
In a system configured with 250,000 vnodes, less than 1000 are
typically active at any point in time. Prior to this change all
250,000 vnodes would be locked and inspected twice every minute
by the syncer. For UFS/FFS filesystems they would be locked and
inspected six times every minute (twice by each of these three
routines since each of these routines does its own pass over the
vnodes associated with a mount point). With this change the syncer
now locks and inspects only the tiny set of vnodes that are active.
Reviewed by: kib
Tested by: Peter Holm
MFC after: 2 weeks
The primary changes are that the user of the interface no longer
needs to manage the mount-mutex locking and that the vnode that
is returned has its mutex locked (thus avoiding the need to check
to see if its is DOOMED or other possible end of life senarios).
To minimize compatibility issues for third-party developers, the
old MNT_VNODE_FOREACH interface will remain available so that this
change can be MFC'ed to 9. Following the MFC to 9, MNT_VNODE_FOREACH
will be removed in head.
The reason for this update is to prepare for the addition of the
MNT_VNODE_FOREACH_ACTIVE interface that will loop over just the
active vnodes associated with a mount point (typically less than
1% of the vnodes associated with the mount point).
Reviewed by: kib
Tested by: Peter Holm
MFC after: 2 weeks
static and declare its prototype in sys/vnode.h) so that it can be
called from process_deferred_inactive() (in ufs/ffs/ffs_snapshot.c)
instead of the body of vinactive() being cut and pasted into
process_deferred_inactive().
Reviewed by: kib
MFC after: 2 weeks
privilege attempts to toggle SF_SETTABLE flags.
- Use the '^' operator in the SF_SNAPSHOT anti-toggling check.
Flags are now stored to ip->i_flags in one place after all checks.
Submitted by: bde
and it is no longer referenced by a user process. The inode for a
file whose name has been removed, but is still referenced at the
time of a crash will still be allocated in the filesystem, but will
have no references (e.g., they will have no names referencing them
from any directory).
With traditional soft updates these unreferenced inodes will be
found and reclaimed when the background fsck is run. When using
journaled soft updates, the kernel must keep track of these inodes
so that it can find and reclaim them during the cleanup process.
Their existence cannot be stored in the journal as the journal only
handles short-term events, and they may persist for days. So, they
are tracked by keeping them in a linked list whose head pointer is
stored in the superblock. The journal tracks them only until their
linked list pointers have been commited to disk. Part of the cleanup
process involves traversing the list of unreferenced inodes and
reclaiming them.
This bug was triggered when confusion arose in the commit steps
of keeping the unreferenced-inode linked list coherent on disk.
Notably, a race between the link() system call adding a link-count
to a file and the unlink() system call removing a link-count to
the file. Here if the unlink() ran after link() had looked up
the file but before link() had incremented the link-count of the
file, the file's link-count would drop to zero before the link()
incremented it back up to one. If the file was referenced by a
user process, the first transition through zero made it appear
that it should be added to the unreferenced-inode list when in
fact it should not have been added. If the new name created by
link() was deleted within a few seconds (with the file still
referenced by a user process) it would legitimately be a candidate
for addition to the unreferenced-inode list. The result was that
there were two attempts to add the same inode to the unreferenced-inode
list which scrambled the unreferenced-inode list's pointers leading
to a panic. The fix is to detect and avoid the false attempt at
adding it to the unreferenced-inode list by having the link()
system call check to see if the link count is zero before it
increments it. If it is, the link() fails with ENOENT (showing that
it has failed the link()/unlink() race).
While tracking down this bug, we have added additional assertions
to detect the problem sooner and also simplified some of the code.
Reported by: Kirk Russell
Fix submitted by: Jeff Roberson
Tested by: Peter Holm
PR: kern/159971
MFC (to 9 only): 2 weeks