of its argument before atomically replacing it, which could occasionally
return the wrong value on an SMP system. This resulted in user mutex
operations hanging when using threaded applications.
more. This provides three new sysctls to user space:
hw.cpu_features - A bitmask of available CPU features
hw.floatingpoint - Whether or not there is hardware FP support
hw.altivec - Whether or not Altivec is available
PR: powerpc/139154
MFC after: 10 days
while in kernel mode, and later changing signal mask to block the
signal, was fixed for sigprocmask(2) and ptread_exit(3). The same race
exists for sigreturn(2), setcontext(2) and swapcontext(2) syscalls.
Use kern_sigprocmask() instead of direct manipulation of td_sigmask to
reschedule newly blocked signals, closing the race.
Reviewed by: davidxu
Tested by: pho
MFC after: 1 month
at least on my Xserve, getting the decrementer and timebase on APs to tick
requires setting up a clock chip over I2C, which is not yet done.
While here, correct the 64-bit tlbie function to set the CPU to 64-bit
mode correctly.
Hardware donated by: grehan
the memory or D-cache, depending on the semantics of the platform.
vm_sync_icache() is basically a wrapper around pmap_sync_icache(),
that translates the vm_map_t argumument to pmap_t.
o Introduce pmap_sync_icache() to all PMAP implementation. For powerpc
it replaces the pmap_page_executable() function, added to solve
the I-cache problem in uiomove_fromphys().
o In proc_rwmem() call vm_sync_icache() when writing to a page that
has execute permissions. This assures that when breakpoints are
written, the I-cache will be coherent and the process will actually
hit the breakpoint.
o This also fixes the Book-E PMAP implementation that was missing
necessary locking while trying to deal with the I-cache coherency
in pmap_enter() (read: mmu_booke_enter_locked).
The key property of this change is that the I-cache is made coherent
*after* writes have been done. Doing it in the PMAP layer when adding
or changing a mapping means that the I-cache is made coherent *before*
any writes happen. The difference is key when the I-cache prefetches.
a device pager (OBJT_DEVICE) object in that it uses fictitious pages to
provide aliases to other memory addresses. The primary difference is that
it uses an sglist(9) to determine the physical addresses for a given offset
into the object instead of invoking the d_mmap() method in a device driver.
Reviewed by: alc
Approved by: re (kensmith)
MFC after: 2 weeks
- Modules and kernel code alike may use DPCPU_DEFINE(),
DPCPU_GET(), DPCPU_SET(), etc. akin to the statically defined
PCPU_*. Requires only one extra instruction more than PCPU_* and is
virtually the same as __thread for builtin and much faster for shared
objects. DPCPU variables can be initialized when defined.
- Modules are supported by relocating the module's per-cpu linker set
over space reserved in the kernel. Modules may fail to load if there
is insufficient space available.
- Track space available for modules with a one-off extent allocator.
Free may block for memory to allocate space for an extent.
Reviewed by: jhb, rwatson, kan, sam, grehan, marius, marcel, stas
pv entries surpasses the high water mark. The problem was that the page
daemon would only be awakened the first time that the high water mark was
surpassed. (The variable "pagedaemon_waken" is a non-working vestige of
FreeBSD 4.x, in which it was external and reset by the page daemon whenever
it ran. This reset allowed subsequent wakeups by the pv entry allocator.)
Without this fix pte_vatopa() was not able to retrieve physical address of
data structures inside kernel, for example EFAULT was reported while acessing
/dev/kmem ('netstat -nr').
Submitted by: Piotr Ziecik
Obtained from: Semihalf
possible future I-cache coherency operation can succeed. On ARM
for example the L1 cache can be (is) virtually mapped, which
means that any I/O that uses temporary mappings will not see the
I-cache made coherent. On ia64 a similar behaviour has been
observed. By flushing the D-cache, execution of binaries backed
by md(4) and/or NFS work reliably.
For Book-E (powerpc), execution over NFS exhibits SIGILL once in
a while as well, though cpu_flush_dcache() hasn't been implemented
yet.
Doing an explicit D-cache flush as part of the non-DMA based I/O
read operation eliminates the need to do it as part of the
I-cache coherency operation itself and as such avoids pessimizing
the DMA-based I/O read operations for which D-cache are already
flushed/invalidated. It also allows future optimizations whereby
the bcopy() followed by the D-cache flush can be integrated in a
single operation, which could be implemented using on-chips DMA
engines, by-passing the D-cache altogether.
- make mftb() shared, rewrite in C, provide complementary mttb()
- adjust SMP startup per the above, additional comments, minor naming
changes
- eliminate redundant TB defines, other minor cosmetics
Reviewed by: marcel, nwhitehorn
Obtained from: Freescale, Semihalf
new platform module. These are probed in early boot, and have the
responsibility of determining the layout of physical memory, determining
the CPU timebase frequency, and handling the zoo of SMP mechanisms
found on PowerPC.
Reviewed by: marcel, raj
Book-E parts by: raj
Include opt_ddb.h for that. Now you can actually boot with
-d and set breakpoints using function names.
o Make sure to include opt_msgbuf.h.
o Carve out the first 1MB of physical memory. The MPC85xx has
DMA problems with addresses below 1MB. Ideally busdma knows
how to avoid allocating below 1MB for MPC85xx, but that
requires a bit more work. For now, ignore the 1MB of DRAM.
provided, for example, on the PowerPC 970 (G5), as well as on related CPUs
like the POWER3 and POWER4.
This also adds support for various built-in hardware found on Apple G5
hardware (e.g. the IBM CPC925 northbridge).
Reviewed by: grehan
When copying big structures, LLVM generates calls to memmove(), because
it may not be able to figure out whether structures overlap. This caused
linker errors to occur. memmove() is now implemented using bcopy().
Ideally it would be the other way around, but that can be solved in the
future. On ARM we don't do add anything, because it already has
memmove().
Discussed on: arch@
Reviewed by: rdivacky
Previously, DBCR0 flags were set "globally", but this leads to problems
because Book-E fine grained debug settings work only in conjuction with the
debug master enable bit in MSR: in scenarios when the DBCR0 was set with
intention to debug one process, but another one with MSR[DE] set got
scheduled, the latter would immediately cause debug exceptions to occur upon
execution of its own code instructions (and not the one intended for
debugging).
To avoid such problems and properly handle debugging context, DBCR0 state
should be managed individually per process.
Submitted by: Grzegorz Bernacki gjb ! semihalf dot com
Reviewed by: marcel
o Eliminate tlb0[] (a s/w copy of TLB0)
- The table contents cannot be maintained reliably in multiple MMU
environments, where asynchronous events (invalidations from other cores)
can change our local TLB0 contents underneath.
- Simplify and optimize TLB flushing: system wide invalidations are
performed using tlbivax instruction (propagates to other cores), for
local MMU invalidations a new optimized routine (assembly) is introduced.
o Improve and simplify TID allocation and management.
- Let each core keep track of its TID allocations.
- Simplify TID recycling, eliminate dead code.
- Drop the now unused powerpc/booke/support.S file.
o Improve page tables management logic.
o Simplify TLB1 manipulation routines.
o Other improvements and polishing.
Obtained from: Freescale, Semihalf
of OFW access semantics, in order to allow future support for real-mode
OF access and flattened device frees. OF client interface modules are
implemented using KOBJ, in a similar way to the PPC PMAP modules.
Because we need Open Firmware to be available before mutexes can be used on
sparc64, changes are also included to allow KOBJ to be used very early in
the boot process by only using the mutex once we know it has been initialized.
Reviewed by: marius, grehan
- split bootstrap code into more modular routines, which will also be used for
the non-booting cores
- clean up registers usage
- improve comments to better reflect reality
- eliminate dead or redundant code
- other minor fixes
This refactoring is a preliminary step before importing dual-core (MPC8572)
support.
Obtained from: Freescale, Semihalf
- Allocate thread0.td_kstack in pmap_bootstrap(), provide guard page
- Switch to thread0.td_kstack as soon as possible i.e. right after return
from e500_init() and before mi_startup() happens
- Clean up temp stack area
- Other minor cosmetics in machdep.c
Obtained from: Semihalf