savectx() is only used for panic dump (dumppcb) and kdb (stoppcbs). Thus,
saving additional information does not hurt and it may be even beneficial.
Unfortunately, struct pcb has grown larger to accommodate more data.
Move 512-byte long pcb_user_save to the end of struct pcb while I am here.
- savectx() now saves FPU state unconditionally and copy it to the PCB of
FPU thread if necessary. This gives panic dump and kdb a chance to take
a look at the current FPU state even if the FPU is "supposedly" not used.
- Resuming CPU now unconditionally reinitializes FPU. If the saved FPU
state was irrelevant, it could be in an unknown state.
Suggested by: bde [1]
Xeon 5500/5600 series:
- Utilize IA32_TEMPERATURE_TARGET, a.k.a. Tj(target) in place
of Tj(max) when a sane value is available, as documented
in Intel whitepaper "CPU Monitoring With DTS/PECI"; (By sane
value we mean 70C - 100C for now);
- Print the probe results when booting verbose;
- Replace cpu_mask with cpu_stepping;
- Use CPUID_* macros instead of rolling our own.
Approved by: rpaulo
MFC after: 1 month
from the inline assembly. This allows the compiler to cache invocations of
curthread since it's value does not change within a thread context.
Submitted by: zec (i386)
MFC after: 1 week
for crash dump (dumppcb) and kdb (stoppcbs). For both cases, there cannot
have a valid pointer in pcb_save. This should restore the previous
behaviour.
zones for each malloc bucket size. The purpose is to isolate
different malloc types into hash classes, so that any buffer overruns
or use-after-free will usually only affect memory from malloc types in
that hash class. This is purely a debugging tool; by varying the hash
function and tracking which hash class was corrupted, the intersection
of the hash classes from each instance will point to a single malloc
type that is being misused. At this point inspection or memguard(9)
can be used to catch the offending code.
Add MALLOC_DEBUG_MAXZONES=8 to -current GENERIC configuration files.
The suggestion to have this on by default came from Kostik Belousov on
-arch.
This code is based on work by Ron Steinke at Isilon Systems.
Reviewed by: -arch (mostly silence)
Reviewed by: zml
Approved by: zml (mentor)
now it uses a very dumb first-touch allocation policy. This will change in
the future.
- Each architecture indicates the maximum number of supported memory domains
via a new VM_NDOMAIN parameter in <machine/vmparam.h>.
- Each cpu now has a PCPU_GET(domain) member to indicate the memory domain
a CPU belongs to. Domain values are dense and numbered from 0.
- When a platform supports multiple domains, the default freelist
(VM_FREELIST_DEFAULT) is split up into N freelists, one for each domain.
The MD code is required to populate an array of mem_affinity structures.
Each entry in the array defines a range of memory (start and end) and a
domain for the range. Multiple entries may be present for a single
domain. The list is terminated by an entry where all fields are zero.
This array of structures is used to split up phys_avail[] regions that
fall in VM_FREELIST_DEFAULT into per-domain freelists.
- Each memory domain has a separate lookup-array of freelists that is
used when fulfulling a physical memory allocation. Right now the
per-domain freelists are listed in a round-robin order for each domain.
In the future a table such as the ACPI SLIT table may be used to order
the per-domain lookup lists based on the penalty for each memory domain
relative to a specific domain. The lookup lists may be examined via a
new vm.phys.lookup_lists sysctl.
- The first-touch policy is implemented by using PCPU_GET(domain) to
pick a lookup list when allocating memory.
Reviewed by: alc
name of 32bit sibling architecture instead of the host one. Do the
same for hw.machine on amd64.
Add a safety belt debug.adaptive_machine_arch sysctl, to turn the
substitution off.
Reviewed by: jhb, nwhitehorn
MFC after: 2 weeks
systems with PnP/ACPI not reporting i8254 timer. In some cases it can be
fatal, as i8254 can be the only available time counter hardware. From other
side we are now heavily depend on i8254 timer and till the last time it's
init/usage was completely hardcoded. So this change just restores previous
behavior in more regular fashion.
instead of calling pmap_invalidate_page() for each PG_G mapping, call
pmap_invalidate_range() for each range of PG_G mappings. In addition,
eliminate a redundant call to pmap_invalidate_page(). Both
pmap_remove_pte() and pmap_remove_page() called pmap_invalidate_page()
when the mapping had the PG_G attribute. Now, only pmap_remove_page()
calls pmap_invalidate_page(). Altogether, these changes eliminate 53%
of the TLB shootdowns for a "buildworld" on a ZFS file system. On
FFS, the reduction is 3%.
MFC after: 6 weeks
into the pcb before disabling watchpoints. Otherwise, when the
thread is restored on a processor, watchpoints are still disabled.
Submitted by: Tijl Coosemans <tijl coosemans org>
(I would be much happier if Tijl commited this himself)
MFC after: 1 week
Specifically, teach pmap_qenter() to recognize the case when it is being
asked to replace a mapping with the very same mapping and not generate
a shootdown. Unfortunately, the buffer cache commonly passes an entire
buffer to pmap_qenter() when only a subset of the mappings are changing.
For the extension of buffers in allocbuf() this was resulting in
unnecessary shootdowns. The addition of new pages to the end of the
buffer need not and did not trigger a shootdown, but overwriting the
initial mappings with the very same mappings was seen as a change that
necessitated a shootdown. With this change, that is no longer so.
For a "buildworld" on amd64, this change eliminates 14-15% of the
pmap_invalidate_range() shootdowns, and about 4% of the overall
shootdowns.
MFC after: 3 weeks
- change the type of pm_active to cpumask_t, which it is;
- in pmap_remove_pages(), compare with PCPU(curpmap), instead of
dereferencing the long chain of pointers [1].
For amd64 pmap, remove the unneeded checks for validity of curpmap
in pmap_activate(), since curpmap should be always valid after
r209789.
Submitted by: alc [1]
Reviewed by: alc
MFC after: 3 weeks
do on i386. The consequences of not doing so on amd64 became apparent
with the introduction of the COUNT_IPIS and COUNT_XINVLTLB_HITS
options. Specifically, single-threaded applications were generating
unnecessary IPIs to shoot-down the TLB on other processors. However,
this is clearly nonsensical because a single-threaded application is
only running on the current processor. The reason that this happens
is that pmap_activate() is unable to properly update the old pmap's
field "pm_active" without the correct "curpmap". So, in effect, stale
bits in "pm_active" were leading pmap_protect(), pmap_remove(),
pmap_remove_pages(), etc. to flush the TLB contents on some arbitrary
processor that wasn't even running the same application.
Reviewed by: kib
MFC after: 3 weeks
ABI specifies the DF should be zero, and newer compilers do not clear
DF before using DF-sensitive instructions.
The DF clearing for signal handlers was done some time ago.
MFC after: 1 week
get_fpcontext(), and npxsetuserregs() for set_fpcontext). Also,
note that usercontext is not initialized anymore in fpstate_drop().
Systematically replace references to npxgetregs() and npxsetregs()
by npxgetuserregs() and npxsetuserregs() in comments.
Noted by: bde
writing event timer drivers, for choosing best possible drivers by machine
independent code and for operating them to supply kernel with hardclock(),
statclock() and profclock() events in unified fashion on various hardware.
Infrastructure provides support for both per-CPU (independent for every CPU
core) and global timers in periodic and one-shot modes. MI management code
at this moment uses only periodic mode, but one-shot mode use planned for
later, as part of tickless kernel project.
For this moment infrastructure used on i386 and amd64 architectures. Other
archs are welcome to follow, while their current operation should not be
affected.
This patch updates existing drivers (i8254, RTC and LAPIC) for the new
order, and adds event timers support into the HPET driver. These drivers
have different capabilities:
LAPIC - per-CPU timer, supports periodic and one-shot operation, may
freeze in C3 state, calibrated on first use, so may be not exactly precise.
HPET - depending on hardware can work as per-CPU or global, supports
periodic and one-shot operation, usually provides several event timers.
i8254 - global, limited to periodic mode, because same hardware used also
as time counter.
RTC - global, supports only periodic mode, set of frequencies in Hz
limited by powers of 2.
Depending on hardware capabilities, drivers preferred in following orders,
either LAPIC, HPETs, i8254, RTC or HPETs, LAPIC, i8254, RTC.
User may explicitly specify wanted timers via loader tunables or sysctls:
kern.eventtimer.timer1 and kern.eventtimer.timer2.
If requested driver is unavailable or unoperational, system will try to
replace it. If no more timers available or "NONE" specified for second,
system will operate using only one timer, multiplying it's frequency by few
times and uing respective dividers to honor hz, stathz and profhz values,
set during initial setup.
This information can be very valuable for CPU sleep-time (and respectively
idle power consumption) optimization.
Add counters for timer-related IPIs.
Reviewed by: jhb@ (previous version)