100 cycles per us seems accurate enough, at least it's better than the 200 value
that was used before.
Reviewed by: andrew, imp
Differential Revision: https://reviews.freebsd.org/D8062
Technically touchscreen chip is FT5406 but all hardware
communication is performed by VideCore and only final results
are presented to ARM part through memory region shared between
VC and ARM.
evdev is used as userland interface. FT5406 supports up to
10 touchpoints, but for now driver emulates single touch device
because I do not have GUI bits to test this functionality.
Driver is not enabled in default config for RPI and RPI2
Tested with: evdev-dump, tslib
The hardware can be set to limit the number of interrupts from 2 to 63
interrupts per ms.
To keep the compatibility with the TI documentation the sysctl take the
interval between the interrupts pulses: 16~500 us.
Sponsored by: Rubicon Communications, LLC (Netgate)
SMP SoCs and qemu virt. Further SoCs can be supported if they support the
PLATFORM, PLATFORM_SMP, and MULTIDELAY options.
Tested by: manu
Sponsored by: ABT Systems Ltd
On amd64, arm64 and i386, we have the possibility to switch between TLS
areas in userspace. The nice thing about this is that it makes it easier
to do light-weight threading, if we ever feel like doing that. On armv6,
let's go into the same direction by making it possible to safely use the
TPIDRURW register, which is intended for this purpose.
Clean up the ARMv6 code to remove md_tp entirely. Simply add a dedicated
field to the PCB to hold the value of TPIDRURW across context switches,
like we do for any other register. As userspace currently uses the
read-only TPIDRURO register, simply ensure that we keep both values in
sync where possible. The system calls for modifying the read-only
register will simply write the intended value into both registers, so
that it lazily ends up in the PCB during the next context switch.
Reviewed by: https://reviews.freebsd.org/D7951
Approved by: andrew
Reviewed by: imp
Differential Revision: https://reviews.freebsd.org/D7951
SPI-mapped MSI interrupts coming from a controller other
than GICv2m need to have their trigger and polarity
properly configured. This patch fixes MSI/MSI-X
on Annapurna Alpine platform with GICv2.
Obtained from: Semihalf
Submitted by: Michal Stanek <mst@semihalf.com>
Sponsored by: Annapurna Labs
Reviewed by: skra, wma
Differential Revision: https://reviews.freebsd.org/D7698
keep the beaglebone defaults: USB0 -> peripheral/gadget, USB1 -> host.
This is only a workaround as in fact fact this hardware is capable of detect
the USB port mode based on type of cable and act according with the detected
mode. Unfortunately the driver does not handle that at moment.
MFC after: 3 days
Sponsored by: Rubicon Communications, LLC (Netgate)
In order to make CloudABI work on ARMv6, start off by copying over the
sysvec for ARM64 and adjust it to use 32-bit registers. Also add code
for fetching arguments from the stack if needed, as there are fewer
register than on ARM64.
Also import the vDSO that is needed to invoke system calls. This vDSO
uses the intra procedure call register (ip) to store the system call
number. This is a bit simpler than what native FreeBSD does, as FreeBSD
uses r7, while preserving the original r7 into ip.
This sysvec seems to be complete enough to start CloudABI processes.
These processes are capable of linking in the vDSO and are therefore
capable of executing (most?) system calls successfully. Unfortunately,
the biggest show stopper is still that TLS is completely broken:
- The linker used by CloudABI, LLD, still has troubles with some of the
relocations needed for TLS. See LLVM bug 30218 for more details.
- Whereas FreeBSD uses the tpidruro register for TLS, for CloudABI I
want to make use of tpidrurw, so that userspace can modify the base
address directly. This is needed for efficient emulation.
Unfortunately, this register doesn't seem to be preserved across
context switches yet.
Obtained from: https://github.com/NuxiNL/cloudabi (the vDSO)
- evdev_set_methods call is not required if actual methods are no-ops
- evdev_set_serial is also optional if there is no meaningful input device
identifier
- evdev_set_id on the other hand is mandatory, so set virtual bus with
dummy vendor/product/version
Suggested by: Vladimir Kondratiev
Add generic evdev support to touchscreen part of ti_adc: two absolute
coordinates + button touch to indicate pen position. Pressure value
reporting is not implemented yet.
Tested on: Beaglebone Black + 4DCAPE-43T + tslib
Rename registers as in the manual.
Do a hard reset of the controller before a soft one.
Since DMA is always used remove dependancy on allwinner_soc_family, it was used
to differentiate SoC as the fdt compatible string were the same.
Tested on A10, A20, H3 and A64.
Reviewed by: jmcneill
Differential Revision: https://reviews.freebsd.org/D6868
Move PMAP_TS_REFERENCED_MAX out of the various pmap implementations and
into vm/pmap.h, and describe what its purpose is. Eliminate the archaic
"XXX" comment about its value. I don't believe that its exact value, e.g.,
5 versus 6, matters.
Update the arm64 and riscv pmap implementations of pmap_ts_referenced()
to opportunistically update the page's dirty field.
On amd64, use the PDE value already cached in a local variable rather than
dereferencing a pointer again and again.
Reviewed by: kib, markj
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D7836
The cxgbev/cxlv driver supports Virtual Function devices for Chelsio
T4 and T4 adapters. The VF devices share most of their code with the
existing PF4 driver (cxgbe/cxl) and as such the VF device driver
currently depends on the PF4 driver.
Similar to the cxgbe/cxl drivers, the VF driver includes a t4vf/t5vf
PCI device driver that attaches to the VF device. It then creates
child cxgbev/cxlv devices representing ports assigned to the VF.
By default, the PF driver assigns a single port to each VF.
t4vf_hw.c contains VF-specific routines from the shared code used to
fetch VF-specific parameters from the firmware.
t4_vf.c contains the VF-specific PCI device driver and includes its
own attach routine.
VF devices are required to use a different firmware request when
transmitting packets (which in turn requires a different CPL message
to encapsulate messages). This alternate firmware request does not
permit chaining multiple packets in a single message, so each packet
results in a firmware request. In addition, the different CPL message
requires more detailed information when enabling hardware checksums,
so parse_pkt() on VF devices must examine L2 and L3 headers for all
packets (not just TSO packets) for VF devices. Finally, L2 checksums
on non-UDP/non-TCP packets do not work reliably (the firmware trashes
the IPv4 fragment field), so IPv4 checksums for such packets are
calculated in software.
Most of the other changes in the non-VF-specific code are to expose
various variables and functions private to the PF driver so that they
can be used by the VF driver.
Note that a limited subset of cxgbetool functions are supported on VF
devices including register dumps, scheduler classes, and clearing of
statistics. In addition, TOE is not supported on VF devices, only for
the PF interfaces.
Reviewed by: np
MFC after: 2 months
Sponsored by: Chelsio Communications
Differential Revision: https://reviews.freebsd.org/D7599
Let drivers for Alpine CCU, NB and Serdes take care of internal SoC configuration.
Obtained from: Semihalf
Submitted by: Michal Stanek <mst@semihalf.com>
Sponsored by: Annapurna Labs
Reviewed by: imp,wma
Differential Revision: https://reviews.freebsd.org/D7566
This commit adds drivers for Alpine Cache Coherency Unit
and North Bridge Service whose task is to configure
the system fabric and enable cache coherency.
Obtained from: Semihalf
Submitted by: Michal Stanek <mst@semihalf.com>
Sponsored by: Annapurna Labs
Reviewed by: wma
Differential Revision: https://reviews.freebsd.org/D7565
Idle page zeroing has been disabled by default on all architectures since
r170816 and has some bugs that make it seemingly unusable. Specifically,
the idle-priority pagezero thread exacerbates contention for the free page
lock, and yields the CPU without releasing it in non-preemptive kernels. The
pagezero thread also does not behave correctly when superpage reservations
are enabled: its target is a function of v_free_count, which includes
reserved-but-free pages, but it is only able to zero pages belonging to the
physical memory allocator.
Reviewed by: alc, imp, kib
Differential Revision: https://reviews.freebsd.org/D7714