AR8132 FastEthernet controller. The PHY has no ability to
establish a gigabit link. Previously only link parters which
support down-shifting was able to establish link.
This change should fix a long standing link establishment issue of
AR8132.
PR: kern/156935
MFC after: 1 week
(reporting IFM_LOOP based on BMCR_LOOP is left in place though as
it might provide useful for debugging). For most mii(4) drivers it
was unclear whether the PHYs driven by them actually support
loopback or not. Moreover, typically loopback mode also needs to
be activated on the MAC, which none of the Ethernet drivers using
mii(4) implements. Given that loopback media has no real use (and
obviously hardly had a chance to actually work) besides for driver
development (which just loopback mode should be sufficient for
though, i.e one doesn't necessary need support for loopback media)
support for it is just dropped as both NetBSD and OpenBSD already
did quite some time ago.
- Let mii_phy_add_media() also announce the support of IFM_NONE.
- Restructure the PHY entry points to use a structure of entry points
instead of discrete function pointers, and extend this to include
a "reset" entry point. Make sure any PHY-specific reset routine is
always used, and provide one for lxtphy(4) which disables MII
interrupts (as is done for a few other PHYs we have drivers for).
This includes changing NIC drivers which previously just called the
generic mii_phy_reset() to now actually call the PHY-specific reset
routine, which might be crucial in some cases. While at it, the
redundant checks in these NIC drivers for mii->mii_instance not being
zero before calling the reset routines were removed because as soon
as one PHY driver attaches mii->mii_instance is incremented and we
hardly can end up in their media change callbacks etc if no PHY driver
has attached as mii_attach() would have failed in that case and not
attach a miibus(4) instance.
Consequently, NIC drivers now no longer should call mii_phy_reset()
directly, so it was removed from EXPORT_SYMS.
- Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe().
The purpose of that function is to perform the common steps to attach
a PHY driver instance and to hook it up to the miibus(4) instance and to
optionally also handle the probing, addition and initialization of the
supported media. So all a PHY driver without any special requirements
has to do in its bus attach method is to call mii_phy_dev_attach()
along with PHY-specific MIIF_* flags, a pointer to its PHY functions
and the add_media set to one. All PHY drivers were updated to take
advantage of mii_phy_dev_attach() as appropriate. Along with these
changes the capability mask was added to the mii_softc structure so
PHY drivers taking advantage of mii_phy_dev_attach() but still
handling media on their own do not need to fiddle with the MII attach
arguments anyway.
- Keep track of the PHY offset in the mii_softc structure. This is done
for compatibility with NetBSD/OpenBSD.
- Keep track of the PHY's OUI, model and revision in the mii_softc
structure. Several PHY drivers require this information also after
attaching and previously had to wrap their own softc around mii_softc.
NetBSD/OpenBSD also keep track of the model and revision on their
mii_softc structure. All PHY drivers were updated to take advantage
as appropriate.
- Convert the mebers of the MII data structure to unsigned where
appropriate. This is partly inspired by NetBSD/OpenBSD.
- According to IEEE 802.3-2002 the bits actually have to be reversed
when mapping an OUI to the MII ID registers. All PHY drivers and
miidevs where changed as necessary. Actually this now again allows to
largely share miidevs with NetBSD, which fixed this problem already
9 years ago. Consequently miidevs was synced as far as possible.
- Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that
weren't explicitly converted to support flow control before. It's
unclear whether flow control actually works with these but typically
it should and their net behavior should be more correct with these
changes in place than without if the MAC driver sets MIIF_DOPAUSE.
Obtained from: NetBSD (partially)
Reviewed by: yongari (earlier version), silence on arch@ and net@
exact model name is not clear yet. All previous RTL8201 10/100 PHYs
used 0x8201 in MII_PHYIDR2 which in turn makes model number 0x20
but this PHY used new model number 0x08.
configuration, which is used to work around issues with certain setups
(see r161237) by default, should not be triggered as it may in turn
cause harm in some edge cases.
- Even after masking the media with IFM_GMASK the result may have bits
besides the duplex ones set so just comparing it with IFM_FDX may lead
to false negatives.
- Announce PAUSE support also for manually selected 1000BASE-T, but for
all manually selected media types only in full-duplex mode. Announce
asymmetric PAUSE support only for manually selected 1000BASE-T.
- Simplify setting the manual configuration bits to only once after we
have figured them all out. This also means we no longer unnecessarily
update the hardware along the road.
- Remove a stale comment.
Reviewed by: yongari (plus additional testing)
MFC after: 3 days
besides the duplex ones set so just comparing it with IFM_FDX may lead
to false negatives.
- Simplify ciphy_service() to only set the manual configuration bits
once after we have figured them all out. This also means we no longer
unnecessarily update the hardware along the road.
MFC after: 1 week
complicates the code.
- Don't let atphy_setmedia() announce PAUSE support for half-duplex when
MIIF_FORCEPAUSE is set.
- Simplify e1000phy_service() and ip1000phy_service() to only set the
manual configuration bits once after we have figured them all out. For
ip1000phy_service() this also means we no longer unnecessarily update
the hardware along the road.
MFC after: 1 week
manual 1000BASE-T modes of DP83865 only work together with other National
Semiconductor PHYs.
- Spell 10BASE-T correctly
- Remove some redundant braces.
controller with Card Read Host Controller. These controllers are
multi-function devices and have the same ethernet core of
JMC250/JMC260. Starting from REVFM 5(chip full mask revision)
controllers have the following features.
o eFuse support
o PCD(Packet Completion Deferring)
o More advanced PHY power saving
Because these controllers started to use eFuse, station address
modified by driver is permanent as if it was written to EEPROM. If
you have to change station address please save your controller
default address to safe place before reprogramming it. There is no
way to restore factory default station address.
Many thanks to JMicron for continuing to support FreeBSD.
HW donated by: JMicron
- Add some DSP init code for BCM5221. The values derived from Apple's GMAC
driver and the same init code also exists in Linux's sungem_phy driver.
- Only read media status bits when they are valid.
Obtained from: NetBSD, OpenBSD
autonegotiation along with manual media selection and also only report flow
control status when BMCR_AUTOEN is set (at least with gentbi(4) determining
the flow control status results in false-positives when not set), use
MIIF_NOMANPAUSE.
autonegotiation along with manual media selection and ukphy_status() also
only reports flow control status when BMCR_AUTOEN is set (at least with
gentbi(4) determining the flow control status results in false-positives
when not set), use MIIF_NOMANPAUSE.
of the MAC driver in order to attach miibus(4) on the first pass instead of
falling through to also calling it on the device_t of miibus(4). The latter
code flow was intended to attach the PHY drivers the same way regardless of
whether it's the first or a repeated pass, modulo the bus_generic_attach()
call in miibus_attach() which shouldn't be there. However, it turned out
that these variants cause miibus(4) to be attached twice under certain
conditions when using MAC drivers as modules.
Submitted by: yongari
MFC after: 3 days
of certain MAC models from brgphy(4) to bge(4) where it belongs. While at it,
update the list of models having that restriction to what OpenBSD uses, which
in turn seems to have obtained that information from the Linux tg3 driver.
annex 31B full duplex flow control as well as the IFM_1000_T master
support committed in r215297. For atphy(4) and jmphy(4) this includes
changing these PHY drivers to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set).
- Rename {atphy,jmphy}_auto() to {atphy,jmphy}_setmedia() as these handle
other media types as well.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
support in mii(4):
- Merge generic flow control advertisement (which can be enabled by
passing by MIIF_DOPAUSE to mii_attach(9)) and parsing support from
NetBSD into mii_physubr.c and ukphy_subr.c. Unlike as in NetBSD,
IFM_FLOW isn't implemented as a global option via the "don't care
mask" but instead as a media specific option this. This has the
following advantages:
o allows flow control advertisement with autonegotiation to be
turned on and off via ifconfig(8) with the default typically
being off (though MIIF_FORCEPAUSE has been added causing flow
control to be always advertised, allowing to easily MFC this
changes for drivers that previously used home-grown support for
flow control that behaved that way without breaking POLA)
o allows to deal with PHY drivers where flow control advertisement
with manual selection doesn't work or at least isn't implemented,
like it's the case with brgphy(4), e1000phy(4) and ip1000phy(4),
by setting MIIF_NOMANPAUSE
o the available combinations of media options are readily available
from the `ifconfig -m` output
- Add IFM_FLOW to IFM_SHARED_OPTION_DESCRIPTIONS and IFM_ETH_RXPAUSE
and IFM_ETH_TXPAUSE to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so
these are understood by ifconfig(8).
o Make the master/slave support in mii(4) actually usable:
- Change IFM_ETH_MASTER from being implemented as a global option via
the "don't care mask" to a media specific one as it actually is only
applicable to IFM_1000_T to date.
- Let mii_phy_setmedia() set GTCR_MAN_MS in IFM_1000_T slave mode to
actually configure manually selected slave mode (like we also do in
the PHY specific implementations).
- Add IFM_ETH_MASTER to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS so it
is understood by ifconfig(8).
o Switch bge(4), bce(4), msk(4), nfe(4) and stge(4) along with brgphy(4),
e1000phy(4) and ip1000phy(4) to use the generic flow control support
instead of home-grown solutions via IFM_FLAGs. This includes changing
these PHY drivers and smcphy(4) to no longer unconditionally advertise
support for flow control but only if the selected media has IFM_FLOW
set (or MIIF_FORCEPAUSE is set) and implemented for these media variants,
i.e. typically only for copper.
o Switch brgphy(4), ciphy(4), e1000phy(4) and ip1000phy(4) to report and
set IFM_1000_T master mode via IFM_ETH_MASTER instead of via IFF_LINK0
and some IFM_FLAGn.
o Switch brgphy(4) to add at least the the supported copper media based on
the contents of the BMSR via mii_phy_add_media() instead of hardcoding
them. The latter approach seems to have developed historically, besides
causing unnecessary code duplication it was also undesirable because
brgphy_mii_phy_auto() already based the capability advertisement on the
contents of the BMSR though.
o Let brgphy(4) set IFM_1000_T master mode on all supported PHY and not
just BCM5701. Apparently this was a misinterpretation of a workaround
in the Linux tg3 driver; BCM5701 seem to require RGPHY_1000CTL_MSE and
BRGPHY_1000CTL_MSC to be set when configuring autonegotiation but
this doesn't mean we can't set these as well on other PHYs for manual
media selection.
o Let ukphy_status() report IFM_1000_T master mode via IFM_ETH_MASTER so
IFM_1000_T master mode support now is generally available with all PHY
drivers.
o Don't let e1000phy(4) set master/slave bits for IFM_1000_SX as it's
not applicable there.
Reviewed by: yongari (plus additional testing)
Obtained from: NetBSD (partially), OpenBSD (partially)
MFC after: 2 weeks
about but otherwise ignored. When allowing the master to be set manually via
ifconfig(8) by adding the former to IFM_SUBTYPE_ETHERNET_OPTION_DESCRIPTIONS
(as it should be) it seems to be unfavorable that a machine can be made to
panic with a simple ifconfig(8) invocation.
converted to use the mii_phy_add_media()/mii_phy_setmedia() pair instead
of mii_add_media()/mii_anar() remove the latter.
- Declare mii_media mii_media_table static as it shouldn't be used outside
of mii_physubr.c.
MFC after: never
interface also has such connectors.
- In tl_attach() unify three different ways of obtaining the device and
vendor IDs and remove the now obsolete tl_dinfo from tl_softc.
- Given that tlphy(4) only handles the integrated PHYs of NICs driven by
tl(4) make it only probe on the latter.
- Switch mlphy(4) and tlphy(4) to use mii_phy_add_media()/mii_phy_setmedia().
- Simplify looking for the respective companion PHY in mlphy(4) and tlphy(4)
by ignoring the native one by just comparing the device_t's directly rather
than the device name.
- Use mii_phy_add_media() instead of mii_add_media(). I'm not sure how
this driver actually managed to work before as mii_add_media() is
intended to be used to gether with mii_anar() while mii_phy_add_media()
is intended to be used with mii_phy_setmedia(), however this driver
mii_add_media() along with mii_phy_setmedia().
the NIC drivers as well as the PHY drivers to take advantage of the
mii_attach() introduced in r213878 to get rid of certain hacks. For
the most part these were:
- Artificially limiting miibus_{read,write}reg methods to certain PHY
addresses; we now let mii_attach() only probe the PHY at the desired
address(es) instead.
- PHY drivers setting MIIF_* flags based on the NIC driver they hang
off from, partly even based on grabbing and using the softc of the
parent; we now pass these flags down from the NIC to the PHY drivers
via mii_attach(). This got us rid of all such hacks except those of
brgphy() in combination with bce(4) and bge(4), which is way beyond
what can be expressed with simple flags.
While at it, I took the opportunity to change the NIC drivers to pass
up the error returned by mii_attach() (previously by mii_phy_probe())
and unify the error message used in this case where and as appropriate
as mii_attach() actually can fail for a number of reasons, not just
because of no PHY(s) being present at the expected address(es).
Reviewed by: jhb, yongari
replace mii_phy_probe() altogether. Compared to the latter the advantages
of mii_attach() are:
- intended to be called multiple times in order to attach PHYs in multiple
passes (f.e. in order to only use sub-ranges of the 0 to MII_NPHY - 1
range)
- being able to pass along the capability mask from the NIC to the PHY
drivers
- being able to specify at which address (phyloc) to probe for a PHY
(instead of always probing at all addresses from 0 to MII_NPHY - 1)
- being able to specify which PHY instance (offloc) to attach
- being able to pass along MIIF_* flags from the NIC to the PHY drivers
(f.e. as required to indicated to the PHY drivers that flow control is
supported by the NIC driver, which actually is the motivation for this
change).
While at it, I used the opportunity to get rid of some hacks in mii(4)
like miibus_probe() generally doing work besides sheer probing and the
"EVIL HACK" (which will vanish entirely along with mii_phy_probe()) by
passing the struct ifnet pointer via an argument of mii_attach() as well
as to fix some resource leaks in mii(4) in case something fails.
Commits which will update the PHY drivers to honor the MII flags passed
down from the NIC drivers and take advantage of mii_attach() to get rid
of certain types of hacks in NIC and PHY drivers as well as a conversion
of the remaining uses of mii_phy_probe() will follow shortly.
Reviewed by: jhb, yongari
Obtained from: NetBSD (partially)
different PHY instance being selected and isolation out into the wrappers
around the service methods rather than duplicating them over and over
again (besides, a PHY driver shouldn't need to care about which instance
it actually is).
- Centralize the check for the need to isolate a non-zero PHY instance not
supporting isolation in mii_mediachg() and just ignore it rather than
panicing, which should sufficient given that a) things are likely to
just work anyway if one doesn't plug in more than one port at a time and
b) refusing to attach in this case just leaves us in a unknown but most
likely also not exactly correct configuration (besides several drivers
setting MIIF_NOISOLATE didn't care about these anyway, probably due to
setting this flag for no real reason).
- Minor fixes like removing unnecessary setting of sc->mii_anegticks,
using sc->mii_anegticks instead of hardcoded values etc.
chip revision often found in the blades and resulting in interfaces
not sensing carrier signal. Looking at all problem reports it
appears that it only affects some very specific silicon revision
(ASIC (0x57081021); Rev (B2)) and version of the PHY that
supports 1000baseSX-FDX media only. Therefore, narrow the scope of
workaround to combination of that revision and media type. Given
that the first report on this issue is dated back to 2007, there is
not much hope that this issue will ever be properly resolved.
Among affected systems are IBM HS21, Intel SBXD132 and HP BL460c.
PR: 118238, 122551, 140970
MFC after: 1 month
88E1149 PHY. This will fix intermittent watchdog timeouts as well
as very slow network performance on 88E8072 Yukon Extreme.
PR: kern/144148
MFC after: 1 week
copper and fiber interfaces over GMII so an explicit check is
necessary to know whether it was configured for fiber interface.
This change make BCM5715S work.
Tested by: olli
MFC after: 1 week
Unlike most other PHYs there is no easy way to know which media
type the PHY supports on Marvell PHYs. MIIF_HAVEFIBER flags is now
passed via bus-specific instance variable of a device. While I'm
here add 88E1112 specific work around to set SIGDET polarity low.
Many thanks "Eugene Perevyazko <john <> dnepro dot net>" who kindly
gave remote access to system with DGE-560SX.
value instead of blindly resetting it to 0. However, it seems page
select bits of some 88E1116 PHY is initialized to invalid one such
that restoring page select bits after programming broke MII
register access. The correct solution would be reset page select
bits to 0 in PHY attach stage but it would require more testing.
Since we're in BETA stage such a change would be dangerous so just
back it out.
This change should fix nfe(4) breakage on NVIDIA MCP55.
Reported by: Ryan Rogers < webmaster <> doghouserepair dot com >
Sam Fourman Jr. < sfourman <> gmail dot com >
Tested by: Ryan Rogers < webmaster <> doghouserepair dot com >
Sam Fourman Jr. < sfourman <> gmail dot com >
Approved by: re (kib)
of the DP83861 and DP83891.
- Reset the PHY during attach so it's in a known state.
- Add a comment describing why we hardwire 10baseT support in
the BMSR.
- Always explicitly set IFM_HDX for half-duplex. [1]
Obtained from: OpenBSD [1]
MFC after: 2 weeks
FE+ controller. Due to the severe silicon bugs for Yukon FE+,
88E3016 seems to require more workarounds. However I'm not sure
whether the workaround is PHY specific or only applicable to Yukon
FE+. The datasheet for the PHY is publicly available but it lacks
several details for the workaround used in this change. The
workaround information was obtained from Linux. Many thanks to
Yukon FE+ users who helped me add 88E3016 support.
Tested by: bz, Tanguy Bouzeloc ( the.zauron <> gmail dot com )
Bruce Cran ( bruce <> cran dot org dot uk )
Michael Reifenberger ( mike <> reifenberger dot com )
Stephen Montgomery-Smith ( stephen <> missouri dot edu )
advertisement register. Some PHYs such as 88E3016 requires NEXT
Page capability to establish valid link. Also set protocol selector
field which is read only but it makes the intention clearer.
is valid only for auto-negotiation case so check the bit if we know
auto-negotiation is active. While I'm here explicitly checks
current speed with speed mask and set IFM_NONE if resolved speed
is unknown.
checks extended status register to see whether the PHY is fast
ethernet or not. This removes a lot of checks for specific PHY
models and it makes easy to add more PHYs to e1000phy(4).
While I'm here remove setting mii_anegticks as it is set with
mii_phy_add_media().
get default next page configuration. While I'm here explicitly set
IP1000PHY_ANAR_CSMA bit. This bit is read-only and always set
by hardware so setting it has no effect but it would clear the
intention. With this change controllers that couldn't establish
1000baseT link should work.
PR: kern/130846
bank instead of copper/fiber bank which in turn resulted in
wrong registers were accessed during PHY operation. It is
believed that page 0 should be used for copper PHY so reinitialize
E1000_EADR to select default copper PHY.
This fixes link establishment issue of nfe(4) on Sun Fire X4140.
OpenBSD also has similimar patch but they just reset the E1000_EADR
register to page 0. However some Marvell PHYs((88E3082, 88E1000)
don't have the extended address register and the meaning of the
register is quite different for each PHY model. So selecting copper
PHY is limited to 88E1149 PHY which seems to be the only one that
exhibits link establishment problem. If parent device know the type
of PHY(either copper or fiber) that information should be notified
to PHY driver but there is no good way to pass this information yet.
Reported by: thompsa
Reviewed by: thompsa