depend on this. The linux ABI emulator tries to use it for some linux
binaries too. VM86 had a bigger cost than this and it was made default
a while ago.
Reviewed by: jhb, imp
attributes. This is needed for AST's to be properly posted in a preemptive
kernel. They are backed by two new flags in p_sflag: PS_ASTPENDING and
PS_NEEDRESCHED. They are still accesssed by their old macros:
aston(), astoff(), etc. For completeness, an astpending() macro has been
added to check for a pending AST, and clear_resched() has been added to
clear need_resched().
- Rename syscall2() on the x86 back to syscall() to be consistent with
other architectures.
interrupt threads to run with it always >= 1, so that malloc can
detect M_WAITOK from "interrupt" context. This is also necessary
in order to context switch from sched_ithd() directly.
Reviewed By: peter
for SMP; just use the same ones as UP. These weren't used without
holding Giant anyway, and the routines that use them would have to
be protected from pre-emption to avoid migrating cpus.
symbols in globals.s.
PCPU_GET(name) returns the value of the per-cpu variable
PCPU_PTR(name) returns a pointer to the per-cpu variable
PCPU_SET(name, val) sets the value of the per-cpu variable
In general these are not yet used, compatibility macros remain.
Unifdef SMP struct globaldata, this makes variables such as cpuid
available for UP as well.
Rebuilding modules is probably a good idea, but I believe old
modules will still work, as most of the old infrastructure
remains.
as multi-processor kernels. The old way made it difficult for kernel
modules to be portable between uni-processor and multi-processor
kernels. It is no longer necessary to jump through hoops.
- always load %fs with the private segment on entry to the kernel
- change the type of the self referntial pointer from struct privatespace
to struct globaldata
- make the globaldata symbol have value 0 in all cases, so the symbols
in globals.s are always offsets, not aliases for fields in globaldata
- define the globaldata space used for uniprocessor kernels in C, rather
than assembler
- change the assmebly language accessors to use %fs, add a macro
PCPU_ADDR(member, reg), which loads the register reg with the address
of the per-cpu variable member
return through doreti to handle ast's. This is necessary for the
clock interrupts to work properly.
- Change the clock interrupts on the x86 to be fast instead of threaded.
This is needed because both hardclock() and statclock() need to run in
the context of the current process, not in a separate thread context.
- Kill the prevproc hack as it is no longer needed.
- We really need Giant when we call psignal(), but we don't want to block
during the clock interrupt. Instead, use two p_flag's in the proc struct
to mark the current process as having a pending SIGVTALRM or a SIGPROF
and let them be delivered during ast() when hardclock() has finished
running.
- Remove CLKF_BASEPRI, which was #ifdef'd out on the x86 anyways. It was
broken on the x86 if it was turned on since cpl is gone. It's only use
was to bogusly run softclock() directly during hardclock() rather than
scheduling an SWI.
- Remove the COM_LOCK simplelock and replace it with a clock_lock spin
mutex. Since the spin mutex already handles disabling/restoring
interrupts appropriately, this also lets us axe all the *_intr() fu.
- Back out the hacks in the APIC_IO x86 cpu_initclocks() code to use
temporary fast interrupts for the APIC trial.
- Add two new process flags P_ALRMPEND and P_PROFPEND to mark the pending
signals in hardclock() that are to be delivered in ast().
Submitted by: jakeb (making statclock safe in a fast interrupt)
Submitted by: cp (concept of delaying signals until ast())
include:
* Mutual exclusion is used instead of spl*(). See mutex(9). (Note: The
alpha port is still in transition and currently uses both.)
* Per-CPU idle processes.
* Interrupts are run in their own separate kernel threads and can be
preempted (i386 only).
Partially contributed by: BSDi (BSD/OS)
Submissions by (at least): cp, dfr, dillon, grog, jake, jhb, sheldonh
syscall path inward. A system call may select whether it needs the MP
lock or not (the default being that it does need it).
A great deal of conditional SMP code for various deadended experiments
has been removed. 'cil' and 'cml' have been removed entirely, and the
locking around the cpl has been removed. The conditional
separately-locked fast-interrupt code has been removed, meaning that
interrupts must hold the CPL now (but they pretty much had to anyway).
Another reason for doing this is that the original separate-lock for
interrupts just doesn't apply to the interrupt thread mechanism being
contemplated.
Modifications to the cpl may now ONLY occur while holding the MP
lock. For example, if an otherwise MP safe syscall needs to mess with
the cpl, it must hold the MP lock for the duration and must (as usual)
save/restore the cpl in a nested fashion.
This is precursor work for the real meat coming later: avoiding having
to hold the MP lock for common syscalls and I/O's and interrupt threads.
It is expected that the spl mechanisms and new interrupt threading
mechanisms will be able to run in tandem, allowing a slow piecemeal
transition to occur.
This patch should result in a moderate performance improvement due to
the considerable amount of code that has been removed from the critical
path, especially the simplification of the spl*() calls. The real
performance gains will come later.
Approved by: jkh
Reviewed by: current, bde (exception.s)
Some work taken from: luoqi's patch
- %fs register is added to trapframe and saved/restored upon kernel entry/exit.
- Per-cpu pages are no longer mapped at the same virtual address.
- Each cpu now has a separate gdt selector table. A new segment selector
is added to point to per-cpu pages, per-cpu global variables are now
accessed through this new selector (%fs). The selectors in gdt table are
rearranged for cache line optimization.
- fask_vfork is now on as default for both UP and SMP.
- Some aio code cleanup.
Reviewed by: Alan Cox <alc@cs.rice.edu>
John Dyson <dyson@iquest.net>
Julian Elischer <julian@whistel.com>
Bruce Evans <bde@zeta.org.au>
David Greenman <dg@root.com>
in a SMP system. Unexpected things could happen if each cpu
has a different ldt setting and one cpu tries to use value
of currentldt set by another cpu.
The fix is to move currentldt to the per-cpu area. It includes
patches I filed in PR i386/6219 which are also user ldt related.
PR: i386/7591, i386/6219
Submitted by: Luoqi Chen <luoqi@watermarkgroup.com>
Clean up (or if antipodic: down) some of the msgbuf stuff.
Use an inline function rather than a macro for timecounter delta.
Maintain process "on-cpu" time as 64 bits of microseconds to avoid
needless second rollover overhead.
Avoid calling microuptime the second time in mi_switch() if we do
not pass through _idle in cpu_switch()
This should reduce our context-switch overhead a bit, in particular
on pre-P5 and SMP systems.
WARNING: Programs which muck about with struct proc in userland
will have to be fixed.
Reviewed, but found imperfect by: bde
available. The per-cpu variable ss_tpr has been replaced by ss_eflags.
This reduced the number of interrupts sent to the wrong CPU, due to
the cpu having the global lock being inside a critical region.
Remove some unneeded manipulation of tpr register in mplock.s.
Adjust code in mplock.s to be aware of variables on the stack being
destroyed by MPgetlock if GRAB_LOPRIO is defined.