that can be used to check whether receive data is ready, i.e. whether
the subsequent call of uart_poll() should return a char, and unlike
uart_poll() doesn't actually receive data.
- Remove the device-specific implementations of uart_poll() and implement
uart_poll() in terms of uart_getc() and the newly added uart_rxready()
in order to minimize code duplication.
- In sunkbd(4) take advantage of uart_rxready() and use it to implement
the polled mode part of sunkbd_check() so we don't need to buffer a
potentially read char in the softc.
- Fix some mis-indentation in sunkbd_read_char().
Discussed with: marcel
behave as expected.
Also:
- Return an error if WD_PASSIVE is passed in to the ioctl as only
WD_ACTIVE is implemented at the moment. See sys/watchdog.h for an
explanation of the difference between WD_ACTIVE and WD_PASSIVE.
- Remove the I_HAVE_TOTALLY_LOST_MY_SENSE_OF_HUMOR define. If you've
lost your sense of humor, than don't add a define.
Specific changes:
i80321_wdog.c
Don't roll your own passive watchdog tickle as this would defeat the
purpose of an active (userland) watchdog tickle.
ichwd.c / ipmi.c:
WD_ACTIVE means active patting of the watchdog by a userland process,
not whether the watchdog is active. See sys/watchdog.h.
kern_clock.c:
(software watchdog) Remove a check for WD_ACTIVE as this does not make
sense here. This reverts r1.181.
Make part of John Birrell's KSE patch permanent..
Specifically, remove:
Any reference of the ksegrp structure. This feature was
never fully utilised and made things overly complicated.
All code in the scheduler that tried to make threaded programs
fair to unthreaded programs. Libpthread processes will already
do this to some extent and libthr processes already disable it.
Also:
Since this makes such a big change to the scheduler(s), take the opportunity
to rename some structures and elements that had to be moved anyhow.
This makes the code a lot more readable.
The ULE scheduler compiles again but I have no idea if it works.
The 4bsd scheduler still reqires a little cleaning and some functions that now do
ALMOST nothing will go away, but I thought I'd do that as a separate commit.
Tested by David Xu, and Dan Eischen using libthr and libpthread.
Remove a lot of older cruft not needed.
Improve ISR support, but it is still unused since polling is faster
Properly initalize the speed register to get 90kb/s, not 400b/s.
Try to catch NACK
Allow 0 length read transfers to generate start/top pairs.
o Don't delay when checking the done bits. There's no gain other
than a small performance hit.
o calculate the clock divisors better (things are still way slow,
so maybe there's more here?)
o don't always fail reset. Always succeed instead.
o fix inverted logic around at91_twi_wait() return value
o remove debug code
o remove unneeded, unworking junk
o Fix the packet statistics
o Make sure we set the FD bit when in full duplex
o Improve TX side efficency by eliminating a data copy for
unfragmented mbufs (the hardware can't do s/g).
o Minor busdma pedantry
o better comments in some places, more XXX in others
o Minor style nits.
This solves a problem I was seeing where I'd get no ethernet when not
booting with a NFS root. Well, unless I unplugged the cable and
plugged it back in first so I'd get the same up down up messages I get
for NFS root...
Thanks to sam and scottl for suggestions on making this driver more
efficient through better use of approrpiate APIs.
This interface also appears in the AT91SAM9260 and '61 as well as the
AVR32 based micros from Atmel. We don't yet support write protect or
hot-swap in this bridge driver.
whole the physical memory, cached, using 1MB section mappings. This reduces
the address space available for user processes a bit, but given the amount of
memory a typical arm machine has, it is not (yet) a big issue.
It then provides a uma_small_alloc() that works as it does for architectures
which have a direct mapping.
The core uart code expects the receive method to actually puts the
characters read into its buffers. For AT91, it's done in the ipend routine,
so also check if we have the alternate break sequence here.
MFC after: 3 days
Introduce framework to configure the multiplexed pins on boot.
Since the USART supprots RS-485 multidrop mode, it allows the
TX pins to float. However, for RS-232 operations, we don't
want these pins to float. Instead, they should be pulled up
to avoid mismatches. Linux does something similar when it
configures the TX lines. This implies that we also allow the
RX lines to float rather than be in the state they are left in
by the boot loader. Since they are input pins, I think that
this is the right thing to do.
Plus minor for our board.