structure. This makes it possible to pre-allocate PTEs for the kernel,
which is necessary for a reliable implementation of pmap_kenter(). This
also avoids wasting space (about 48 bytes per page) for kernel mappings
and user mappings of memory-mapped devices.
This also fixes a bug with the previous version where the implementation
required the pv_entry structure to be physically contiguous but did not
enforce this (the structure size was not a power of two). This meant
that the pv_entry free list was quickly corrupted as soon as the system
was even mildly loaded.
the existence of the __gnuc_va_list type[*] because our compiler is GCC.
[*] __gnuc_va_list is defined in the GCC ginclude/stdarg.h replacement
headerwhich we don't use.
- Only release Giant in trap() if we locked it, otherwise we could release
Giant in a kernel trap if we didn't get it for a page fault and the
previous frame had grabbed the lock.
- Only get Giant for !MP safe syscalls.
be set. We need to check isr.w before isr.r so that we can correctly
handle a cmpxchg to a copy-on-write page.
This fixes the hang-after-fork problem for dynamically linked programs.
C calling conventions. This allows crt1.c to be written nearly without
any inline assembler.
* Initialise cpu_model[] so that the hw.model sysctl works properly.
Until now, the ptrace syscall was implemented as a wrapper that called
various functions in procfs depending on which ptrace operation was
requested. Most of these functions were themselves wrappers around
procfs_{read,write}_{,db,fp}regs(), with only some extra error checks,
which weren't necessary in the ptrace case anyway.
This commit moves procfs_rwmem() from procfs_mem.c into sys_process.c
(renaming it to proc_rwmem() in the process), and implements ptrace()
directly in terms of procfs_{read,write}_{,db,fp}regs() instead of
having it fake up a struct uio and then call procfs_do{,db,fp}regs().
It also moves the prototypes for procfs_{read,write}_{,db,fp}regs()
and proc_rwmem() from proc.h to ptrace.h, and marks all procfs files
except procfs_machdep.c as "optional procfs" instead of "standard".
* Don't get confused when memory regions don't lie on page boundaries -
remember our page size is typically larger than the firmware's page size.
* Add a function ia64_running_in_simulator() which is intended to detect
whether the kernel is running in SKI or on real hardware.
will be private to each CPU.
- Re-style(9) the globaldata structures. There really needs to be a MI
struct pcpu that has a MD struct mdpcpu member at some point.
* Use the bootinfo's memory map if present instead of hard-coding SKI's
memory map.
* Record the location of the I/O Port Space if present in the memory map.
to locore to process the @fptr relocations in the dynamic executable.
* Don't initialise the timer until *after* we install the timecounter to
avoid a race between timecounter initialisation and hardclock.
* Tidy up bootinfo somewhat including adding sanity checks for when the
kernel is loaded without a recognisable bootinfo.
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
* Switch to proc0's stack and backing store before calling ia64_init
so that we don't rely on the loader's stack at all.
* Change kernel entry point name from locorestart to __start.
it to the MI area. KSE touched cpu_wait() which had the same change
replicated five ways for each platform. Now it can just do it once.
The only MD parts seemed to be dealing with fpu state cleanup and things
like vm86 cleanup on x86. The rest was identical.
XXX: ia64 and powerpc did not have cpu_throw(), so I've put a functional
stub in place.
Reviewed by: jake, tmm, dillon
o Unify <machine/endian.h>'s across all architectures.
o Make bswapXX() functions use a different spelling of u_int16_t and
friends to reduce namespace pollution. The bswapXX() functions
don't actually exist, but we'll probably import these at some
point. Atleast one driver (if_de) depends on bswapXX() for big
endian cases.
o Deprecate byteorder(3) prototypes from <sys/types.h>, these are
now prototyped indirectly in <arpa/inet.h>.
o Deprecate in_addr_t and in_port_t typedefs in <sys/types.h>, these
are now typedef'd in <arpa/inet.h>.
o Change byteorder(3) prototypes to use standards compliant uint32_t
(spelled __uint32_t to reduce namespace pollution).
o Document new preferred headers and standards compliance.
Discussed with: bde
PR: 29946
Reviewed by: bmilekic
the process of exiting the kernel. The ast() function now loops as long
as the PS_ASTPENDING or PS_NEEDRESCHED flags are set. It returns with
preemption disabled so that any further AST's that arrive via an
interrupt will be delayed until the low-level MD code returns to user
mode.
- Use u_int's to store the tick counts for profiling purposes so that we
do not need sched_lock just to read p_sticks. This also closes a
problem where the call to addupc_task() could screw up the arithmetic
due to non-atomic reads of p_sticks.
- Axe need_proftick(), aston(), astoff(), astpending(), need_resched(),
clear_resched(), and resched_wanted() in favor of direct bit operations
on p_sflag.
- Fix up locking with sched_lock some. In addupc_intr(), use sched_lock
to ensure pr_addr and pr_ticks are updated atomically with setting
PS_OWEUPC. In ast() we clear pr_ticks atomically with clearing
PS_OWEUPC. We also do not grab the lock just to test a flag.
- Simplify the handling of Giant in ast() slightly.
Reviewed by: bde (mostly)
are a really nasty interface that should have been killed long ago
when 'ptrace(PT_[SG]ETREGS' etc came along. The entity that they
operate on (struct user) will not be around much longer since it
is part-per-process and part-per-thread in a post-KSE world.
gdb does not actually use this except for the obscure 'info udot'
command which does a hexdump of as much of the child's 'struct user'
as it can get. It carries its own #defines so it doesn't break
compiles.
dynamic symbol table buckets and chains. The sparc64 toolchain uses 32
bit .hash entries, unlike other 64 bits architectures (alpha), which use
64 bit entries.
Discussed with: dfr, jdp
were indices in a dense array. The cpuids are a sparse set and treat
them as such, setting up containers only for CPUs activated during
mb_init().
- Fix netstat(1) and systat(1) to treat the per-CPU stats area as a sparse
map, in accordance with the above.
This allows us to properly boot with certain CPUs disactivated. However, if
we later decide to re-activate said CPUs, we will barf until we decide to
implement CPU spinon/spinoff callback hooks to allow for said CPUs' per-CPU
containers to get configured on their activation.
Reported by: mjacob
Partially (sys/ diffs) Submitted by: mjacob
'dwatch'. The new commands install hardware watchpoints if supported
by the architecture and if there are enough registers to cover the
desired memory area.
No objection by: audit@, hackers@
MFC after: 2 weeks
Also removed some spl's and added some VM mutexes, but they are not actually
used yet, so this commit does not really make any operational changes
to the system.
vm_page.c relates to vm_page_t manipulation, including high level deactivation,
activation, etc... vm_pageq.c relates to finding free pages and aquiring
exclusive access to a page queue (exclusivity part not yet implemented).
And the world still builds... :-)
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.