Commit Graph

11543 Commits

Author SHA1 Message Date
bde
f0e3007ba6 Merge cosmetic changes from e_rem_pio2.c 1.10 (convert to __FBSDID();
fix indentation and return type of __ieee754_rem_pio2()).

Remove unused variables.
2008-02-19 15:42:46 +00:00
bde
30565c600e Optimize for 3pi/4 <= |x| <= 9pi/4 in much the same way as for
pi/4 <= |x| <= 3pi/4.  Use the same branch ladder as for float precision.
Remove the optimization for |x| near pi/2 and don't do it near the
multiples of pi/2 in the newly optimized range, since it requires
fairly large code to handle only relativley few cases.  Ifdef out
optimization for |x| <= pi/4 since this case can't occur because it
is done in callers.

On amd64 (A64), for cos() and sin() with uniformly distributed args,
no cache misses, some parallelism in the caller, and good but not great
CC and CFLAGS, etc., this saves about 40 cycles or 38% in the newly
optimized range, or about 27% on average across the range |x| <= 2pi
(~65 cycles for most args, while the A64 hardware fcos and fsin take
~75 cycles for half the args and 125 cycles for the other half).  The
speedup for tan() is much smaller, especially relatively.  The speedup
on i386 (A64) is slightly smaller, especially relatively.  i386 is
still much slower than amd64 here (unlike in the float case where it
is slightly faster).
2008-02-19 15:30:58 +00:00
bde
e508bf1279 Rearrange the polynomial evaluation for better parallelism. This
saves an average of about 8 cycles or 5% on A64 (amd64 and i386 --
more in cycles but about the same percentage on i386, and more with
old versions of gcc) with good CFLAGS and some parallelism in the
caller.  As usual, it takes a couple more multiplications so it will
be slower on old machines.

Convert to __FBSDID().
2008-02-19 12:54:14 +00:00
kientzle
fa2b3c3128 Include O_BINARY in open() calls on platforms that support it. 2008-02-19 06:10:48 +00:00
kientzle
efdcbf021b Another tiny, tiny step towards Windows support. No, I don't plan to
ever commit the Windows support files to FreeBSD CVS.  That would just
be wrong.
2008-02-19 06:06:13 +00:00
kientzle
c47c10e462 Someday I might forgive the standards bodies for omitting timegm().
Maybe.  In the meantime, my workarounds for trying to coax UTC without
timegm() are getting uglier and uglier.  Apparently, some systems
don't support setenv()/unsetenv(), so you can't set the TZ env var and
hope thereby to coax mktime() into generating UTC.  Without that, I
don't see a really good alternative to just giving up and converting to
localtime with mktime().  (I suppose I should research the Perl library
approach for computing an inverse function to gmtime(); that might
actually be simpler than this growing list of hacks.)
2008-02-19 06:02:01 +00:00
kientzle
5b631adaa6 Simplify file type setting. 2008-02-19 05:54:24 +00:00
kientzle
c300e636ea The test_assert() function that backs my custom assert() macro
now returns a value, which supports such convenient
constructs as:
   if (assert(NULL != foo())) {
   }

Also be careful to setlocale("C") for each new test to
avoid locale pollution.

Also a couple of minor portability enhancements.
2008-02-19 05:52:30 +00:00
kientzle
88b1623cab Portability: Since the values are fixed and the symbolic names
are only present on some platforms, just use the values directly.
2008-02-19 05:49:02 +00:00
kientzle
1a2f1a0d3a Portability: Include O_BINARY if the local platform defines it. 2008-02-19 05:46:58 +00:00
kientzle
677b5b664a Correct a compile error when libbz2/zlib are unavailable. 2008-02-19 05:44:59 +00:00
kientzle
5a220e02da Mark a few additional functions that are/are not available on FreeBSD. 2008-02-19 05:40:28 +00:00
kientzle
ae947994a7 Portability improvements:
* If the platform can't restore char nodes, block nodes, or fifos,
don't try and just return error.
  * Include O_BINARY in most open() calls (define O_BINARY to 0 if the
platform doesn't provide a definition already)
  * Refactor the ownership restore to more cleanly support platforms
that don't have any form of {l,f,}chown() call.
  * Comment a lingering issue with older Unix-like systems that allow
root to hose the filesystem.  I don't (yet) have a good solution for
this, but I expect it will require adding more redundant stat()
calls. <sigh>

MFC after: 14 days
2008-02-19 05:39:35 +00:00
das
0a944b08e4 Document return values better. 2008-02-18 19:02:49 +00:00
das
11fca9d5f5 Add tgammaf() as a simple wrapper around tgamma(). 2008-02-18 17:27:11 +00:00
bde
3a3915219d 2 long double constants were missing L suffixes. This helped break tanl()
on !(amd64 || i386).  It gave slightly worse than double precision in some
cases.  tanl() now passes tests of 2^24 values on ia64.
2008-02-18 15:39:52 +00:00
bde
3fc58437c4 Fix a typo which broke k_tanl.c on !(amd64 || i386). 2008-02-18 14:09:41 +00:00
bde
ad78d66621 Inline __ieee754__rem_pio2(). With gcc4-2, this gives an average
optimization of about 10% for cos(x), sin(x) and tan(x) on
|x| < 2**19*pi/2.  We didn't do this before because __ieee754__rem_pio2()
is too large and complicated for gcc-3.3 to inline very well.  We don't
do this for float precision because it interferes with optimization
of the usual (?) case (|x| < 9pi/4) which is manually inlined for float
precision only.

This has some rough edges:
- some static data is duplicated unnecessarily.  There isn't much after
  the recent move of large tables to k_rem_pio2.c, and some static data
  is duplicated to good affect (all the data static const, so that the
  compiler can evaluate expressions like 2*pio2 at compile time and
  generate even more static data for the constant for this).
- extern inline is used (for the same reason as in previous inlining of
  k_cosf.c etc.), but C99 apparently doesn't allow extern inline
  functions with static data, and gcc will eventually warn about this.

Convert to __FBSDID().

Indent __ieee754_rem_pio2()'s declaration consistently (its style was
made inconsistent with fdlibm a while ago, so complete this).

Fix __ieee754_rem_pio2()'s return type to match its prototype.  Someone
changed too many ints to int32_t's when fixing the assumption that all
ints are int32_t's.
2008-02-18 14:02:12 +00:00
kevlo
c74ac9adc1 getopt(3) returns -1, not EOF. 2008-02-18 03:19:25 +00:00
das
2acea74331 Use volatile hacks to make sure exp() generates an underflow
exception when it's supposed to. Previously, gcc -O2 was optimizing
away the statement that generated it.
2008-02-17 21:53:19 +00:00
jasone
2bc29a1530 Fix a race condition in arena_ralloc() for shrinking in-place large
reallocation, when junk filling is enabled.  Junk filling must occur
prior to shrinking, since any deallocated trailing pages are immediately
available for use by other threads.

Reported by:	Mats Palmgren <mats.palmgren@bredband.net>
2008-02-17 18:34:17 +00:00
jasone
b08b976e68 Remove support for lazy deallocation. Benchmarks across a wide range of
allocation patterns, number of CPUs, and MALLOC_OPTIONS settings indicate
that lazy deallocation has the potential to worsen throughput dramatically.
Performance degradation occurs when multiple threads try to clear the lazy
free cache simultaneously.  Various experiments to avoid this bottleneck
failed to completely solve this problem, while adding yet more complexity.
2008-02-17 17:09:24 +00:00
das
10502fe2a1 Hook up sinl(), cosl(), and tanl() to the build. 2008-02-17 07:33:51 +00:00
das
42e85f679f Add implementations of sinl(), cosl(), and tanl().
Submitted by:	Steve Kargl <sgk@apl.washington.edu>
2008-02-17 07:33:12 +00:00
das
61222ca5ae Documentation for sinl(), cosl(), and tanl(). 2008-02-17 07:32:44 +00:00
das
11a058bb6d Add kernel functions for 128-bit long doubles. These could be improved
a bit, but access to a freebsd/sparc64 machine is needed.

Submitted by:	bde and Steve Kargl <sgk@apl.washington.edu> (earlier version)
2008-02-17 07:32:31 +00:00
das
91ec53b876 Add kernel functions for 80-bit long doubles. Many thanks to Steve and
Bruce for putting lots of effort into these; getting them right isn't
easy, and they went through many iterations.

Submitted by:	Steve Kargl <sgk@apl.washington.edu> with revisions from bde
2008-02-17 07:32:14 +00:00
das
832e12bedd Add more pi for long doubles. Also, avoid storing multiple copies
of the pi/2 array, as it is unlikely to vary, except in Indiana.
2008-02-17 07:31:59 +00:00
gshapiro
cc52c82378 Switch libmilter from select(2) to poll(2) so milters are not limited
by the size of FD_SETSIZE.

PR:		118824
Submitted by:	vsevolod
MFC after:	3 weeks
2008-02-17 05:14:47 +00:00
delphij
653069d327 Allow underscore in domain names while resolving. While having underscore
is a violation of RFC 1034 [STD 13], it is accepted by certain name servers
as well as other popular operating systems' resolver library.

Bugs are mine.

Obtained from:	ume
MFC after:	2 weeks
2008-02-16 00:16:49 +00:00
antoine
719cf15a1b - Make Disk_Names() behave as documented in libdisk(3): return an array
of disk names, where you must free each pointer, as well as the array
by hand. [1]
- Destaticize "disks" in Disk_Names, it has no reasons to be static.

PR:		kern/96077 [1]
PR:		kern/114110 [1]
MFC after:	1 month
Approved by:	rwatson (mentor)
2008-02-15 21:19:15 +00:00
bde
febd0ab45e Sigh, the weak reference for ceill(), floorl() and truncl() was in
unreachable code due to a missing include.  This kept arm and powerpc
broken.

Reported by:	sam, grehan
2008-02-15 07:01:40 +00:00
bde
d3836a4dd2 Oops, the weak reference for ceill(), floorl() and truncl() was in the
wrong file.  This broke arm and powerpc.

Reported by:	grehan
2008-02-14 15:10:34 +00:00
bde
fda3d327bb Use the expression fabs(x+0.0)+fabs(y+0.0) instad of a+b (where a is
|x| or |y| and b is |y| or |x|) when mixing NaN arg(s).

hypot*() had its own foot shooting for mixing NaNs -- it swaps the
args so that |x| in bits is largest, but does this before quieting
signaling NaNs, so on amd64 (where the result of adding NaNs depends
on the order) it gets inconsistent results if setting the quiet bit
makes a difference, just like a similar ia64 and i387 hardware comparison.
The usual fix (see e_powf.c 1.13 for more details) of mixing using
(a+0.0)+-(b+0.0) doesn't work on amd64 if the args are swapped (since
the rder makes a difference with SSE). Fortunately, the original args
are unchanged and don't need to be swapped when we let the hardware
decide the mixing after quieting them, but we need to take their
absolute value.

hypotf() doesn't seem to have any real bugs masked by this non-bug.
On amd64, its maximum error in 2^32 trials on amd64 is now 0.8422 ulps,
and on i386 the maximum error is unchanged and about the same, except
with certain CFLAGS it magically drops to 0.5 (perfect rounding).

Convert to __FBSDID().
2008-02-14 13:44:03 +00:00
des
c5334cac08 _pthread_mutex_isowned_np(): use a more reliable method; the current code
will work in simple cases, but may fail in more complicated ones.

Reviewed by:	davidxu
2008-02-14 12:37:58 +00:00
bde
30aa45f24b Fix the hi+lo decomposition for 2/(3ln2). The decomposition needs to
be into 12+24 bits of precision for extra-precision multiplication,
but was into 13+24 bits.  On i386 with -O1 the bug was hidden by
accidental extra precision, but on amd64, in 2^32 trials the bug
caused about 200000 errors of more than 1 ulp, with a maximum error
of about 80 ulps.  Now the maximum error in 2^32 trials on amd64
is 0.8573 ulps.  It is still 0.8316 ulps on i386 with -O1.

The nearby decomposition of 1/ln2 and the decomposition of 2/(3ln2) in
the double precision version seem to be sub-optimal but not broken.
2008-02-14 10:23:51 +00:00
bde
dba8069abd Use the expression (x+0.0)-(y+0.0) instead of x+y when mixing NaN arg(s).
This uses 2 tricks to improve consistency so that more serious problems
aren't hidden in simple regression tests by noise for the NaNs:

- for a signaling NaN, adding 0.0 generates the invalid exception and
  converts to a quiet NaN, and doesn't have too many effects for other
  types of args (it converts -0 to +0 in some rounding modes, but that
  hopefully doesn't change the result after adding the NaN arg).  This
  avoids some inconsistencies on i386 and ia64.  On these arches, the
  result of an operation on 2 NaNs is apparently the largest or the
  smallest of the NaNs as bits (consistently largest or smallest for
  each arch, but the opposite).  I forget which way the comparison
  goes and if the sign bit affects it.  The quiet bit is is handled
  poorly by not always setting it before the comparision or ignoring
  it.  Thus if one of the args was originally a signaling NaN and the
  other was originally a quiet NaN, then the result depends too much
  on whether the signaling NaN has been quieted at this point, which
  in turn depends on optimizations and promotions.  E.g., passing float
  signaling NaNs to double functions must quiet them on conversion;
  on i387, loading a signaling NaN of type float or double (but not
  long double) into a register involves a conversion, so it quiets
  signaling NaNs, so if the addition has 2 register operands than it
  only sees quiet NaNs, but if the addition has a memory operand then
  it sees a signaling NaN iff it is in the memory operand.

- subtraction instead of addition is used to avoid a dubious optimization
  in old versions of gcc.  For SSE operations, mixing of NaNs apparently
  always gives the target operand.  This is not as good as the i387
  and ia64 behaviour.  It doesn't mix NaNs at all, and makes addition
  not quite commutative.  Old versions of gcc sometimes rewrite x+y
  to y+x and thus give different results (in bits) for NaNs.  gcc-3.3.3
  rewrites x+y to y+x for one of pow() and powf() but not the other,
  so starting from float NaN args x and y, powf(x, y) was almost always
  different from pow(x, y).

These tricks won't give consistency of 2-arg float and double functions
with long double ones on amd64, since long double ones use the i387
which has different semantics from SSE.

Convert to __FBSDID().
2008-02-14 09:42:24 +00:00
bde
5f2db8f916 s_ceill.c
s_floorl.c
s_truncl.c
2008-02-13 17:38:16 +00:00
bde
234b4ba1f7 On arches where long double is the same as double, alias ceil(), floor()
and trunc() to the corresponding long double functions.  This is not
just an optimization for these arches.  The full long double functions
have a wrong value for `huge', and the arches without full long doubles
depended on it being wrong.
2008-02-13 16:56:52 +00:00
bde
403416b247 Fix the C version of ceill(x) for -1 < x <= -0 in all rounding modes.
The result should be -0, but was +0.
2008-02-13 15:22:53 +00:00
rafan
47937dee2d - Remove duplicate tputs.3 from MLINK. As we use termcap in the bsae, remove
the one links to curs_terminfo.

Submitted by:	David Naylor <blackdragon at highveldmail.co.za>
MFC after:	3 days
2008-02-13 14:34:39 +00:00
bde
517ddcfb70 Fix exp2*(x) on signaling NaNs by returning x+x as usual.
This has the side effect of confusing gcc-4.2.1's optimizer into more
often doing the right thing.  When it does the wrong thing here, it
seems to be mainly making too many copies of x with dependency chains.
This effect is tiny on amd64, but in some cases on i386 it is enormous.
E.g., on i386 (A64) with -O1, the current version of exp2() should
take about 50 cycles, but took 83 cycles before this change and 66
cycles after this change.  exp2f() with -O1 only speeded up from 51
to 47 cycles.  (exp2f() should take about 40 cycles, on an Athlon in
either i386 or amd64 mode, and now takes 42 on amd64).  exp2l() with
-O1 slowed down from 155 cycles to 123 for some args; this is unimportant
since the i386 exp2l() is a fake; the wrong thing for it seems to
involve branch misprediction.
2008-02-13 10:44:44 +00:00
bde
d2c1b707cd Rearrange the polynomial evaluation for better parallelism. This is
faster on all machines tested (old Celeron (P2), A64 (amd64 and i386)
and ia64) except on ia64 when compiled with -O1.  It takes 2 more
multiplications, so it will be slower on old machines.  The speedup
is about 8 cycles = 17% on A64 (amd64 and i386) with best CFLAGS
and some parallelism in the caller.

Move the evaluation of 2**k up a bit so that it doesn't compete too
much with the new polynomial evaluation.  Unlike the previous
optimization, this rearrangement cannot change the result, so compilers
and CPU schedulers can do it, but they don't do it quite right yet.
This saves a whole 1 or 2 cycles on A64.
2008-02-13 08:36:13 +00:00
bde
85c145264c Use hardware remainder on amd64 since it is 5 to 10 times faster than
software remainder and is already used for remquo().
2008-02-13 06:01:48 +00:00
obrien
d3499a87ee style.Makefile(5) 2008-02-13 05:25:43 +00:00
obrien
d8f894d961 style(9) 2008-02-13 05:12:05 +00:00
ru
56aa644e2a Change readlink(2)'s return type and type of the last argument
to match POSIX.

Prodded by:	Alexey Lyashkov
2008-02-12 20:09:04 +00:00
bde
d22d4d7357 Fix remainder() and remainderf() in round-towards-minus-infinity mode
when the result is +-0.  IEEE754 requires (in all rounding modes) that
if the result is +-0 then its sign is the same as that of the first
arg, but in round-towards-minus-infinity mode an uncorrected implementation
detail always reversed the sign.  (The detail is that x-x with x's
sign positive gives -0 in this mode only, but the algorithm assumed
that x-x always has positive sign for such x.)

remquo() and remquof() seem to need the same fix, but I cannot test them
yet.

Use long doubles when mixing NaN args.  This trick improves consistency
of results on at least amd64, so that more serious problems like the
above aren't hidden in simple regression tests by noise for the NaNs.
On amd64, hardware remainder should be used since it is about 10 times
faster than software remainder and is already used for remquo(), but
it involves using the i387 even for floats and doubles, and the i387
does NaN mixing which is better than but inconsistent with SSE NaN mixing.
Software remainder() would probably have been inconsistent with
software remainderl() for the same reason if the latter existed.

Signaling NaNs cause further inconsistencies on at least ia64 and i386.

Use __FBSDID().
2008-02-12 17:11:36 +00:00
rafan
c60ef1d655 - Update build glues for ncurses 5.6 snapshot 20080209
- While I'm here, sort macro defines in ncurses_cfg.h
2008-02-11 13:39:36 +00:00
remko
1f85c46223 After issueing a ntpdate [1] I noticed it's already 2008, reflect that
in the last modified date.

Noticed by:	brueffer [1]
2008-02-11 07:43:23 +00:00