length packets, which was actually harmless.
Note that peers with different version of head/ may grow this
counter, but it is harmless - all pfsync data is processed.
Reported & tested by: Anton Yuzhaninov <citrin citrin.ru>
Sponsored by: Nginx, Inc
* The following bit flags where incroccetly defined:
o Mesh Control Present
o Mesh Power Save Level
o RSPI
This is now corrected according to Table 8.4 as per IEEE 802.11 2012;
Approved by: adrian (mentor)
to meaningful value:
- When nfsdcnt is set, it dictates all values;
- Otherwise, nfsdargs.minthreads is set to user specified value, or the
automatically detected value if there is no one specified;
nfsdargs.maxthreads is set to the user specified value, or the value
of nfsdargs.minthreads if there is no one specified; when it is smaller
than nfsdargs.minthreads, the latter's value is always used.
MFC after: 2 weeks
now disables read-ahead. It used to effectively restore the system default
readahead hueristic if it had been changed; a negative value now restores
the default.
Reviewed by: kib
enumeration lock. Make sure all callers of usbd_enum_lock() check the return
value. Remove the control transfer specific lock. Bump the FreeBSD version
number, hence external USB modules may need to be recompiled due to a USB
device structure change.
MFC after: 1 week
My changed had some rather significant behavioural changes to throughput.
The two issues I noticed:
* With if_start and the ifnet mbuf queue, any temporary latency
would get eaten up by some mbufs being queued. With ath_transmit()
queuing things to ath_buf's, I'd only get 512 TX buffers before I
couldn't queue any further frames.
* There's also some non-zero latency involved with TX being pushed
into a taskqueue via direct dispatch. Any time the scheduler didn't
immediately schedule the ath TX task would cause extra latency.
Various 1ge/10ge drivers implement both direct dispatch (if the TX
lock can be acquired) and deferred task transmission (if the TX lock
can't be acquired), with frames being pushed into a drbd queue.
I'll have to do this at some point, but until I figure out how to
deal with 802.11 fragments, I'll have to wait a while longer.
So what I saw:
* lots of extra latency, specially under load - if the taskqueue
wasn't immediately scheduled, things went pear shaped;
* any extra latency would result in TX ath_buf's taking their sweet time
being replenished, so any further calls to ath_transmit() would drop
mbufs.
* .. yes, there's no explicit backpressure here - things are just dropped.
Eek.
With this, the general performance has gone up, but those subtle if_start()
related race conditions are back. For some reason, this is doubly-obvious
with the AR5416 NIC and I don't quite understand why yet.
There's an unrelated issue with AR5416 performance in STA mode (it's
fine in AP mode when bridging frames, weirdly..) that requires a little
further investigation. Specifically - it works fine on a Lenovo T40
(single core CPU) running a March 2012 9-STABLE kernel, but a Lenovo T60
(dual core) running an early November 2012 kernel behaves very poorly.
The same hardware with an AR9160 or AR9280 behaves perfectly.
thread structure pointer atomically from r13 (the pcpu pointer)
for the current CPU/core.
Add a CTASSERT in machdep.c to make sure that pc_curthread is in
fact the first field in struct pcpu.
The only non-atomic operations left were those related to process-
space operations, such as casuword, subyte, suword16, fubyte,
fuword16, copyin, copyout and their variations.
The casuword function has been re-structured more complete than
the others. This way we have an example of a better bundling
without introducing a lot of risk when we get it wrong. The
other functions can be rebundled in separate commits and with
the appropriate testing.
every architecture's busdma_machdep.c. It is done by unifying the
bus_dmamap_load_buffer() routines so that they may be called from MI
code. The MD busdma is then given a chance to do any final processing
in the complete() callback.
The cam changes unify the bus_dmamap_load* handling in cam drivers.
The arm and mips implementations are updated to track virtual
addresses for sync(). Previously this was done in a type specific
way. Now it is done in a generic way by recording the list of
virtuals in the map.
Submitted by: jeff (sponsored by EMC/Isilon)
Reviewed by: kan (previous version), scottl,
mjacob (isp(4), no objections for target mode changes)
Discussed with: ian (arm changes)
Tested by: marius (sparc64), mips (jmallet), isci(4) on x86 (jharris),
amd64 (Fabian Keil <freebsd-listen@fabiankeil.de>)