numbers as chars or use bogus casts in an attempt to unmisrepresnt
them. In top, don't assume that 0xff is the only negative cpu
number when cpu numbers are (mis)represented.
is the preparation step for moving pmap storage out of vmspace proper.
Reviewed by: Alan Cox <alc@cs.rice.edu>
Matthew Dillion <dillon@apollo.backplane.com>
and use this when masking/unmasking interrupts.
Maintain a mapping from (iopaic number, int pin) tuple to irq number,
and use this when configuring devices and programming the ioapics.
Previous code assumed that irq number was equal to int pin number, and
that the ioapic number was 0.
Don't let an AP enter _cpu_switch before all local apics are initialized.
in a SMP system. Unexpected things could happen if each cpu
has a different ldt setting and one cpu tries to use value
of currentldt set by another cpu.
The fix is to move currentldt to the per-cpu area. It includes
patches I filed in PR i386/6219 which are also user ldt related.
PR: i386/7591, i386/6219
Submitted by: Luoqi Chen <luoqi@watermarkgroup.com>
Cast pointers to (vm_offset_t) instead of to (u_long) (as before) or to
(uintptr_t)(void *) (as would be more correct). Don't cast vm_offset_t's
to (u_long) just to do arithmetic on them.
mp_machdep.c:
Cast pointers to (uintptr_t) instead of to (u_long). Don't forget
to cast pointers to (void *) first or to recover from integral
possible integral promotions, although this is too much work for
machine-dependent code.
vm code generally avoids warnings for pointer vs long size mismatches
by using vm_offset_t to represent pointers; pmap.c often uses plain
`unsigned int' instead of vm_offset_t and didn't use u_long elsewhere,
but this style was messed up by code apparently imported from mp_machdep.c.
update of cpu usage as shown by top when one process is cpu bound
(no system calls) while the system is otherwise idle (except for top).
Don't attempt to switch to the BSP in boot(). If the system was idle when
an interrupt caused a panic, this won't work. Instead, switch to the BSP
in cpu_reset.
Remove some spurious forward_statclock/forward_hardclock warnings.
ints. Remove some no longer needed casts. Initialize the per-cpu
global data area using the structs rather than knowing too much about
layout, alignment, etc.
- Attempt to handle PCI devices where the interrupt is
an ISA/EISA interrupt according to the mp table.
- Attempt to handle multiple IO APIC pins connected to
the same PCI or ISA/EISA interrupt source. Print a
warning if this happens, since performance is suboptimal.
This workaround is only used for PCI devices.
With these two workarounds, the -SMP kernel is capable of running on
my Asus P/I-P65UP5 motherboard when version 1.4 of the MP table is disabled.
f00f_hack has run.
Use the global r_idt descriptor in f00f_hack when in SMP mode,
so the APs find the relocated interrupt descriptor table.
Submitted by: Partially from David A Adkins <adkin003@tc.umn.edu>
interrupts are masked, and EOI is sent iff the corresponding ISR bit
is set in the local apic. If the CPU cannot obtain the interrupt
service lock (currently the global kernel lock) the interrupt is
forwarded to the CPU holding that lock.
Clock interrupts now have higher priority than other slow interrupts.
the signal handling latency for cpu-bound processes that performs very
few system calls.
The IPI for forcing an additional software trap is no longer dependent upon
BETTER_CLOCK being defined.
2) Do not unnecessarily force page blocking when paging
pages out.
3) Further improve swap pager performance and correctness,
including fixing the paging in progress deadlock (except
in severe I/O error conditions.)
4) Enable vfs_ioopt=1 as a default.
5) Fix and enable the page prezeroing in SMP mode.
All in all, SMP systems especially should show a significant
improvement in "snappyness."
- A nonprofiling version of s_lock (called s_lock_np) is used
by mcount.
- When profiling is active, more registers are clobbered in
seemingly simple assembly routines. This means that some
callers needed to save/restore extra registers.
- The stack pointer must have space for a 'fake' return address
in idle, to avoid stack underflow.
in a P6 SMP system. Some MB bios'es don't set the registers up correctly
for the AP's. Additionally, set the memory between 0xa0000 and 0xbffff
as write combining.
holding CPU along with the lock. When a CPU fails to get the lock
it compares its own id to the holder id. If they are the same it
panic()s, as simple locks are binary, and this would cause a deadlock.
Controlled by smptests.h: SL_DEBUG, ON by default.
Some minor cleanup.
Add a simplelock to deal with disable_intr()/enable_intr() as used in UP kernel.
UP kernel expects that this is enough to guarantee exclusive access to
regions of code bracketed by these 2 functions.
Add a simplelock to bracket clock accesses in clock.c: clock_lock.
Help from: Bruce Evans <bde@zeta.org.au>
smp_active = 1 used to indicate that the system had frozen previously
started AP's, while smp_active = 0 was "AP's not yet started". I have split
this into smp_started (which is set when the AP's come online), and
smp_active is left for turning on/off AP scheduling.
- We now have enough per-cpu idle context, the real idle loop has been
revived (cpu's halt now with nothing to do).
- Some preliminary support for running some operations outside the
global lock (eg: zeroing "free but not yet zeroed pages") is present
but appears to cause problems. Off by default.
- the smp_active sysctl now behaves differently. It's merely a 'true/false'
option. Setting smp_active to zero causes the AP's to halt in the idle
loop and stop scheduling processes.
- bootstrap is a lot safer. Instead of sharing a statically compiled in
stack a number of times (which has caused lots of problems) and then
abandoning it, we use the idle context to boot the AP's directly. This
should help >2 cpu support since the bootlock stuff was in doubt.
- print physical apic id in traps.. helps identify private pages getting
out of sync. (You don't want to know how much hair I tore out with this!)
More cleanup to follow, this is more of a checkpoint than a
'finished' thing.
Added a new variable, 'bsp_apic_ready', which is set as soon as the bootstrap
CPU has initialized its local APIC. Conditionalize the GENSPLR functions
to call ss_lock ONLY after bsp_apic_ready is TRUE; This should prevent
any problems with races between the time the 1st AP becomes ready and the
time smp_active is set.