23 Commits

Author SHA1 Message Date
kargl
e323b9460e * Update the comment that explains the choice of values in the
table and the requirement on trailing zero bits.

* Remove the __aligned() compiler directives as these were found
  to have a negative effect on the produced code.

Submitted by:	bde
Approved by:	das (mentor)
2012-10-13 19:53:11 +00:00
kargl
3772749075 * src/math_private.h:
. Change the API for the LD80C by removing the explicit passing
    of the sign bit.  The sign can be determined from the last
    parameter of the macro.
  . On i386, load long double by bit manipulations to work around
    at least a gcc compiler issue.  On non-i386 ld80 architectures,
    use a simple assignment.

* ld80/s_expl.c:
  . Update the only consumer of LD80C.

Submitted by:	bde
Approved by:	das (mentor)
2012-09-29 16:40:12 +00:00
kargl
3d431ee149 * ld80/s_expl.c:
. Fix the threshold for expl(x) where |x| is small.
  . Also update the previously incorrect comment to match the
    new threshold.

* ld128/s_expl.c:
  . Re-order logic in exceptional cases to match the logic used in
    other long double functions.
  . Fix the threshold for expl(x) where is |x| is small.
  . Also update the previously incorrect comment to match the
    new threshold.

Submitted by:	bde
Approved by:	das (mentor)
2012-09-23 18:32:03 +00:00
kargl
1865dfeba6 Fix whitespace issue.
Approved by:	das (mentor, implicit)
2012-09-23 18:13:46 +00:00
kargl
60992acc92 * ld80/s_expl.c:
. Guard a comment from reformatting by indent(1).
  . Re-order variables in declarations to alphabetical order.
  . Remove a banal comment.

* ld128/s_expl.c:
  . Add a comment to point to ld80/s_expl.c for implementation details.
  . Move the #define of INTERVAL to reduce the diff with ld80/s_expl.c.
  . twom10000 does not need to be volatile, so move its declaration.
  . Re-order variables in declarations to alphabetical order.
  . Add a comment that describes the argument reduction.
  . Remove the same banal comment found in ld80/s_expl.c.

Reviewed by:	bde
Approved by:	das (mentor)
2012-09-23 18:06:27 +00:00
kargl
586a4f9ede * Update the lookup table to use 53-bit high and low values.
Also, update the comment to describe the choice of using
  a high and low decomposition of 2^(i/INTERNVAL) for
  0 <= i <= INTERVAL in preparation for an implementation of
  expm1l.

* Move the #define of INTERVAL above the comment, because the
  comment refers to INTERVAL.

Reviewed by:	bde
Approved by:	das (mentor)
2012-09-23 17:36:01 +00:00
kargl
0aadb27b41 Whitespace.
Submitted by:	bde
Approved by:	das (pre-approved)
2012-07-30 21:55:49 +00:00
kargl
0fee65786a Replace the macro name NUM with INTERVALS. This change provides
compatibility with the INTERVALS macro used in the soon-to-be-commmitted
expm1l() and someday-to-be-committed log*l() functions.

Add a comment into ld128/s_expl.c noting at gcc issue that was
deleted when rewriting ld80/e_expl.c as ld128/s_expl.c.

Requested by:	bde
Approved by:	das (mentor)
2012-07-26 04:05:08 +00:00
kargl
da1349053f * ld80/expl.c:
. Remove a few #ifdefs that should have been removed in the initial
    commit.
  . Sort fpmath.h to its rightful place.

* ld128/s_expl.c:
  . Replace EXPMASK with its actual value.
  . Sort fpmath.h to its rightful place.

Requested by:	bde
Approved by:	das (mentor)
2012-07-26 03:59:33 +00:00
kargl
b4194dfd55 Compute the exponential of x for Intel 80-bit format and IEEE 128-bit
format.  These implementations are based on

PTP Tang, "Table-driven implementation of the exponential function
in IEEE floating-point arithmetic," ACM Trans. Math. Soft., 15,
144-157 (1989).

PR: standards/152415
Submitted by: kargl
Reviewed by: bde, das
Approved by: das (mentor)
2012-07-23 19:13:55 +00:00
benl
2071e3510a Fix clang warnings.
Approved by:	philip (mentor)
2011-06-18 13:56:33 +00:00
kargl
621bb117eb Clean up the unneeded cpp macro INLINE_REM_PIO2L.
Reviewed by:	das
Approved by:	das (mentor)
2011-05-30 19:41:28 +00:00
kargl
4a0df21b1c Improve the accuracy from a max ULP of ~2000 to max ULP < 0.79
on i386-class hardware for sinl and cosl.  The hand-rolled argument
reduction have been replaced by e_rem_pio2l() implementations.  To
preserve history the following commands have been executed:

svn cp src/e_rem_pio2.c ld80/e_rem_pio2l.h
mv ${HOME}/bde/ld80/e_rem_pio2l.c ld80/e_rem_pio2l.h

svn cp src/e_rem_pio2.c ld128/e_rem_pio2l.h
mv ${HOME}/bde/ld128/e_rem_pio2l.c ld128/e_rem_pio2l.h

The ld80 version has been tested by bde, das, and kargl over the
last few years (bde, das) and few months (kargl).  An older ld128
version was tested by das.  The committed version has only been
compiled tested via 'make universe'.

Approved by: das (mentor)
Obtained from: bde
2011-04-29 23:13:43 +00:00
das
affd78d50b On i386, gcc truncates long double constants to double precision
at compile time regardless of the dynamic precision, and there's
no way to disable this misfeature at compile time. Hence, it's
impossible to generate the appropriate tables of constants for the
long double inverse trig functions in a straightforward way on i386;
this change hacks around the problem by encoding the underlying bits
in the table.

Note that these functions won't pass the regression test on i386,
even with the FPU set to extended precision, because the regression
test is similarly damaged by gcc. However, the tests all pass when
compiled with a modified version of gcc.

Reported by:  	bde
2008-08-02 03:56:22 +00:00
das
fea2240d10 Add implementations of acosl(), asinl(), atanl(), atan2l(),
and cargl().

Reviewed by:			bde
sparc64 testing resources from:	remko
2008-07-31 22:41:26 +00:00
bde
3a3915219d 2 long double constants were missing L suffixes. This helped break tanl()
on !(amd64 || i386).  It gave slightly worse than double precision in some
cases.  tanl() now passes tests of 2^24 values on ia64.
2008-02-18 15:39:52 +00:00
bde
3fc58437c4 Fix a typo which broke k_tanl.c on !(amd64 || i386). 2008-02-18 14:09:41 +00:00
das
91ec53b876 Add kernel functions for 80-bit long doubles. Many thanks to Steve and
Bruce for putting lots of effort into these; getting them right isn't
easy, and they went through many iterations.

Submitted by:	Steve Kargl <sgk@apl.washington.edu> with revisions from bde
2008-02-17 07:32:14 +00:00
bde
517ddcfb70 Fix exp2*(x) on signaling NaNs by returning x+x as usual.
This has the side effect of confusing gcc-4.2.1's optimizer into more
often doing the right thing.  When it does the wrong thing here, it
seems to be mainly making too many copies of x with dependency chains.
This effect is tiny on amd64, but in some cases on i386 it is enormous.
E.g., on i386 (A64) with -O1, the current version of exp2() should
take about 50 cycles, but took 83 cycles before this change and 66
cycles after this change.  exp2f() with -O1 only speeded up from 51
to 47 cycles.  (exp2f() should take about 40 cycles, on an Athlon in
either i386 or amd64 mode, and now takes 42 on amd64).  exp2l() with
-O1 slowed down from 155 cycles to 123 for some args; this is unimportant
since the i386 exp2l() is a fake; the wrong thing for it seems to
involve branch misprediction.
2008-02-13 10:44:44 +00:00
bde
22e608f1ce Use a better method of scaling by 2**k. Instead of adding to the
exponent bits of the reduced result, construct 2**k (hopefully in
parallel with the construction of the reduced result) and multiply by
it.  This tends to be much faster if the construction of 2**k is
actually in parallel, and might be faster even with no parallelism
since adjustment of the exponent requires a read-modify-wrtite at an
unfortunate time for pipelines.

In some cases involving exp2* on amd64 (A64), this change saves about
40 cycles or 30%.  I think it is inherently only about 12 cycles faster
in these cases and the rest of the speedup is from partly-accidentally
avoiding compiler pessimizations (the construction of 2**k is now
manually scheduled for good results, and -O2 doesn't always mess this
up).  In most cases on amd64 (A64) and i386 (A64) the speedup is about
20 cycles.  The worst case that I found is expf on ia64 where this
change is a pessimization of about 10 cycles or 5%.  The manual
scheduling for plain exp[f] is harder and not as tuned.

This change ld128/s_exp2l.c has not been tested.
2008-02-07 03:17:05 +00:00
das
0bde705160 Implement exp2l(). There is one version for machines with 80-bit
long doubles (i386, amd64, ia64) and one for machines with 128-bit
long doubles (sparc64). Other platforms use the double version.
I've only done runtime testing on i386.

Thanks to bde@ for helpful discussions and bugfixes.
2008-01-18 21:42:46 +00:00
das
ac3245defa Since nan() is supposed to work the same as strtod("nan(...)", NULL),
my original implementation made both use the same code. Unfortunately,
this meant libm depended on a vendor header at compile time and previously-
unexposed vendor bits in libc at runtime.

Hence, I just wrote my own version of the relevant vendor routine. As it
turns out, mine has a factor of 8 fewer of lines of code, and is a bit more
readable anyway. The strtod() and *scanf() routines still use vendor code.

Reviewed by:	bde
2007-12-18 23:46:32 +00:00
das
bb384eba43 Implement and document nan(), nanf(), and nanl(). This commit
adds two new directories in msun: ld80 and ld128. These are for
long double functions specific to the 80-bit long double format
used on x86-derived architectures, and the 128-bit format used on
sparc64, respectively.
2007-12-16 21:19:28 +00:00