- Add low-level support for SATA Enclosure Management Bridge (SEMB)
devices -- SATA equivalents of the SCSI SES/SAF-TE devices.
- Add some utility functions for SCSI SAF-TE devices access.
Sponsored by: iXsystems, Inc.
data changes.
cam_ccb.h: Add a new advanced information type, CDAI_TYPE_RCAPLONG,
for long read capacity data.
cam_xpt_internal.h:
Add a read capacity data pointer and length to struct cam_ed.
cam_xpt.c: Free the read capacity buffer when a device goes away.
While we're here, make sure we don't leak memory for other
malloced fields in struct cam_ed.
scsi_all.c: Update the scsi_read_capacity_16() to take a uint8_t * and
a length instead of just a pointer to the parameter data
structure. This will hopefully make this function somewhat
immune to future changes in the parameter data.
scsi_all.h: Add some extra bit definitions to struct
scsi_read_capacity_data_long, and bump up the structure
size to the full size specified by SBC-3.
Change the prototype for scsi_read_capacity_16().
scsi_da.c: Register changes in read capacity data with the transport
layer. This allows the transport layer to send out an
async notification to interested parties. Update the
dasetgeom() API.
Use scsi_extract_sense_len() instead of
scsi_extract_sense().
scsi_xpt.c: Add support for the new CDAI_TYPE_RCAPLONG advanced
information type.
Make sure we set the physpath pointer to NULL after freeing
it. This allows blindly freeing it in the struct cam_ed
destructor.
sys/param.h: Bump __FreeBSD_version from 1000005 to 1000006 to make it
easier for third party drivers to determine that the read
capacity data async notification is available.
camcontrol.c,
mptutil/mpt_cam.c:
Update these for the new scsi_read_capacity_16() argument
structure.
Sponsored by: Spectra Logic
Firmware can be reprogrammed on devices from Hitachi, HP, IBM, Plextor,
Quantum, and Seagate. At least one device from each manufacturer has
been tested with some version of this code, and it has been used to
update thousands of drives so far.
The man page suggests having a backup of the drive's data, and the
operation must be confirmed, either interactively or on the command
line. (This is the same as the confirmation on the format command.)
This work is largely derived from fwprog.c by Andre Albsmeier.
Submitted by: Nima Misaghian
Sponsored by: Sandvine Incorporated
MFC after: 3 months
These tools declare global variables without using the static keyword,
even though their use is limited to a single C-file, or without placing
an extern declaration of them in the proper header file.
CAM.
Desriptor sense is a new sense data format that originated in SPC-3. Among
other things, it allows for an 8-byte info field, which is necessary to
pass back block numbers larger than 4 bytes.
This change adds a number of new functions to scsi_all.c (and therefore
libcam) that abstract out most access to sense data.
This includes a bump of CAM_VERSION, because the CCB ABI has changed.
Userland programs that use the CAM pass(4) driver will need to be
recompiled.
camcontrol.c: Change uses of scsi_extract_sense() to use
scsi_extract_sense_len().
Use scsi_get_sks() instead of accessing sense key specific
data directly.
scsi_modes: Update the control mode page to the latest version (SPC-4).
scsi_cmds.c,
scsi_target.c: Change references to struct scsi_sense_data to struct
scsi_sense_data_fixed. This should be changed to allow the
user to specify fixed or descriptor sense, and then use
scsi_set_sense_data() to build the sense data.
ps3cdrom.c: Use scsi_set_sense_data() instead of setting sense data
manually.
cam_periph.c: Use scsi_extract_sense_len() instead of using
scsi_extract_sense() or accessing sense data directly.
cam_ccb.h: Bump the CAM_VERSION from 0x15 to 0x16. The change of
struct scsi_sense_data from 32 to 252 bytes changes the
size of struct ccb_scsiio, but not the size of union ccb.
So the version must be bumped to prevent structure
mis-matches.
scsi_all.h: Lots of updated SCSI sense data and other structures.
Add function prototypes for the new sense data functions.
Take out the inline implementation of scsi_extract_sense().
It is now too large to put in a header file.
Add macros to calculate whether fields are present and
filled in fixed and descriptor sense data
scsi_all.c: In scsi_op_desc(), allow the user to pass in NULL inquiry
data, and we'll assume a direct access device in that case.
Changed the SCSI RESERVED sense key name and description
to COMPLETED, as it is now defined in the spec.
Change the error recovery action for a number of read errors
to prevent lots of retries when the drive has said that the
block isn't accessible. This speeds up reconstruction of
the block by any RAID software running on top of the drive
(e.g. ZFS).
In scsi_sense_desc(), allow for invalid sense key numbers.
This allows calling this routine without checking the input
values first.
Change scsi_error_action() to use scsi_extract_sense_len(),
and handle things when invalid asc/ascq values are
encountered.
Add a new routine, scsi_desc_iterate(), that will call the
supplied function for every descriptor in descriptor format
sense data.
Add scsi_set_sense_data(), and scsi_set_sense_data_va(),
which build descriptor and fixed format sense data. They
currently default to fixed format sense data.
Add a number of scsi_get_*() functions, which get different
types of sense data fields from either fixed or descriptor
format sense data, if the data is present.
Add a number of scsi_*_sbuf() functions, which print
formatted versions of various sense data fields. These
functions work for either fixed or descriptor sense.
Add a number of scsi_sense_*_sbuf() functions, which have a
standard calling interface and print the indicated field.
These functions take descriptors only.
Add scsi_sense_desc_sbuf(), which will print a formatted
version of the given sense descriptor.
Pull out a majority of the scsi_sense_sbuf() function and
put it into scsi_sense_only_sbuf(). This allows callers
that don't use struct ccb_scsiio to easily utilize the
printing routines. Revamp that function to handle
descriptor sense and use the new sense fetching and
printing routines.
Move scsi_extract_sense() into scsi_all.c, and implement it
in terms of the new function, scsi_extract_sense_len().
The _len() version takes a length (which should be the
sense length - residual) and can indicate which fields are
present and valid in the sense data.
Add a couple of new scsi_get_*() routines to get the sense
key, asc, and ascq only.
mly.c: Rename struct scsi_sense_data to struct
scsi_sense_data_fixed.
sbp_targ.c: Use the new sense fetching routines to get sense data
instead of accessing it directly.
sbp.c: Change the firewire/SCSI sense data transformation code to
use struct scsi_sense_data_fixed instead of struct
scsi_sense_data. This should be changed later to use
scsi_set_sense_data().
ciss.c: Calculate the sense residual properly. Use
scsi_get_sense_key() to fetch the sense key.
mps_sas.c,
mpt_cam.c: Set the sense residual properly.
iir.c: Use scsi_set_sense_data() instead of building sense data by
hand.
iscsi_subr.c: Use scsi_extract_sense_len() instead of grabbing sense data
directly.
umass.c: Use scsi_set_sense_data() to build sense data.
Grab the sense key using scsi_get_sense_key().
Calculate the sense residual properly.
isp_freebsd.h: Use scsi_get_*() routines to grab asc, ascq, and sense key
values.
Calculate and set the sense residual.
MFC after: 3 days
Sponsored by: Spectra Logic Corporation
other device attributes stored in the CAM Existing Device Table (EDT).
This includes some infrastructure requried by the enclosure services
driver to export physical path information.
Make the CAM device advanced info interface accept store requests.
sys/cam/scsi/scsi_all.c:
sys/cam/scsi/scsi_all.h:
- Replace scsi_get_sas_addr() with a scsi_get_devid() which takes
a callback that decides whether to accept a particular descriptor.
Provide callbacks for NAA IEEE Registered addresses and for SAS
addresses, replacing the old function. This is needed because
the old function doesn't work for an enclosure address for a SAS
device, which is not flagged as a SAS address, but is NAA IEEE
Registered. It may be worthwhile merging this interface with the
devid match interface.
- Add a few more defines for some device ID fields.
sbin/camcontrol/camcontrol.c:
- Update for the CCB_DEV_ADVINFO interface change.
cam/cam_xpt_internal.h:
- Add the new fields for the physical path string to the CAM EDT.
cam/cam_ccb.h:
- Rename CCB_GDEV_ADVINFO to simply CCB_DEV_ADVINFO, and the ccb
structure to ccb_dev_advinfo.
- Add a flag that changes this CCB's action to store, rather than
the default, retrieve.
- Add a new buffer type, CDAI_TYPE_PHYS_PATH, for the new CAM EDT
physpath field.
- Remove the never-implemented transport & proto flags.
cam/cam_xpt.c:
cam/cam_xpt.h:
- Add xpt_getattr(), which provides a wrapper for fetching a device's
attribute using the GEOM strings as key. This method currently
supports "GEOM::ident" and "GEOM::physpath".
Submitted by: will
Reviewed by : gibbs
Extend the XPT_DEV_MATCH api to allow a device search by device ID.
As far as the API is concerned, device ID is a binary blob to be
interpreted by the transport layer. The SCSI implementation assumes
it is an array of VPD device ID descriptors.
sys/cam/cam_ccb.h:
Create a new structure, device_id_match_pattern, and
update the XPT_DEV_MATCH datastructures and flags so
that this pattern type can be used.
sys/cam/cam_xpt.c:
- A single pattern matching on both inquiry data and device
ID is invalid. Report any violators.
- Pass device ID match requests through to the new routine
scsi_devid_match(). The direct call of a SCSI routine is
a layering violation, but no worse than the one a few
lines up that checks inquiry data. Defer cleaning this
up until our future, larger, rototilling of CAM.
- Zero out cam_ed and cam_et nodes on allocation. Prior to
this change, device_id_len and device_id were not inialized,
preventing proper detection of the presence of this
information.
sys/cam/scsi/scsi_all.c:
sys/cam/scsi/scsi_all.h:
Add the scsi_match_devid() routine.
Add a helper function for extracting peripherial driver names
sys/cam/cam_periph.c:
sys/cam/cam_periph.h:
Add the cam_periph_list() method which fills an sbuf
with a comma delimited list of the peripheral instances
associated with a given CAM path.
Add a helper functions for SCSI commands used by the SES driver.
sys/cam/scsi/scsi_all.c:
sys/cam/scsi/scsi_all.h:
Add structure definitions and csio filling functions for
the receive diagnostic results and send diagnostic commands.
Misc CAM XPT cleanups.
sys/cam/cam_xpt.c:
Broadcast AC_FOUND_DEVICE and AC_PATH_REGISTERED
events at the time async event handlers are attached
even when registering just for events on a partitular
SIM. Previously, you had to register for these
events on all SIMs in the system in order to get
the initial broadcast even though subsequent device
and path arrivals would be delivered.
sys/cam/cam_xpt.c:
Remove SIM mutex held asserts from path accessors.
CAM paths are reference counted and it is this
reference count, not the sim mutex, that garantees
they are stable.
Sponsored by: Spectra Logic Corporation
camcontrol.c: In buildbusdevlist(), don't attempt to get call
getdevid() for an unconfigured device, even when the
verbose flag is set. The cam_open_btl() call will almost
certainly fail.
Probe for the buffer size when issuing the XPT_GDEV_ADVINFO
CCB. Probing for the buffer size first helps us avoid
allocating the maximum buffer size when it really may not
be necessary. This also helps avoid errors from
cam_periph_mapmem() if we attempt to map more than MAXPHYS.
cam_periph.c: In cam_periph_mapmem(), if the XPT_GDEV_ADVINFO CCB
shows a bufsiz of 0, we don't have anything to map,
so just return.
Also, set the maximum mapping size to MAXPHYS
instead of DFLTPHYS for XPT_GDEV_ADVINFO CCBs,
since they don't actually go down to the hardware.
scsi_pass.c: Don't bother mapping the buffer in XPT_GDEV_ADVINFO
CCBs if bufsiz is 0.
This includes support in the kernel, camcontrol(8), libcam and the mps(4)
driver for SMP passthrough.
The CAM SCSI probe code has been modified to fetch Inquiry VPD page 0x00
to determine supported pages, and will now fetch page 0x83 in addition to
page 0x80 if supported.
Add two new CAM CCBs, XPT_SMP_IO, and XPT_GDEV_ADVINFO. The SMP CCB is
intended for SMP requests and responses. The ADVINFO is currently used to
fetch cached VPD page 0x83 data from the transport layer, but is intended
to be extensible to fetch other types of device-specific data.
SMP-only devices are not currently represented in the CAM topology, and so
the current semantics are that the SIM will route SMP CCBs to either the
addressed device, if it contains an SMP target, or its parent, if it
contains an SMP target. (This is noted in cam_ccb.h, since it will change
later once we have the ability to have SMP-only devices in CAM's topology.)
smp_all.c,
smp_all.h: New helper routines for SMP. This includes
SMP request building routines, response parsing
routines, error decoding routines, and structure
definitions for a number of SMP commands.
libcam/Makefile: Add smp_all.c to libcam, so that SMP functionality
is available to userland applications.
camcontrol.8,
camcontrol.c: Add smp passthrough support to camcontrol. Several
new subcommands are now available:
'smpcmd' functions much like 'cmd', except that it
allows the user to send generic SMP commands.
'smprg' sends the SMP report general command, and
displays the decoded output. It will automatically
fetch extended output if it is available.
'smppc' sends the SMP phy control command, with any
number of potential options. Among other things,
this allows the user to reset a phy on a SAS
expander, or disable a phy on an expander.
'smpmaninfo' sends the SMP report manufacturer
information and displays the decoded output.
'smpphylist' displays a list of phys on an
expander, and the CAM devices attached to those
phys, if any.
cam.h,
cam.c: Add a status value for SMP errors
(CAM_SMP_STATUS_ERROR).
Add a missing description for CAM_SCSI_IT_NEXUS_LOST.
Add support for SMP commands to cam_error_string().
cam_ccb.h: Rename the CAM_DIR_RESV flag to CAM_DIR_BOTH. SMP
commands are by nature bi-directional, and we may
need to support bi-directional SCSI commands later.
Add the XPT_SMP_IO CCB. Since SMP commands are
bi-directional, there are pointers for both the
request and response.
Add a fill routine for SMP CCBs.
Add the XPT_GDEV_ADVINFO CCB. This is currently
used to fetch cached page 0x83 data from the
transport later, but is extensible to fetch many
other types of data.
cam_periph.c: Add support in cam_periph_mapmem() for XPT_SMP_IO
and XPT_GDEV_ADVINFO CCBs.
cam_xpt.c: Add support for executing XPT_SMP_IO CCBs.
cam_xpt_internal.h: Add fields for VPD pages 0x00 and 0x83 in struct
cam_ed.
scsi_all.c: Add scsi_get_sas_addr(), a function that parses
VPD page 0x83 data and pulls out a SAS address.
scsi_all.h: Add VPD page 0x00 and 0x83 structures, and a
prototype for scsi_get_sas_addr().
scsi_pass.c: Add support for mapping buffers in XPT_SMP_IO and
XPT_GDEV_ADVINFO CCBs.
scsi_xpt.c: In the SCSI probe code, first ask the device for
VPD page 0x00. If any VPD pages are supported,
that page is required to be implemented. Based on
the response, we may probe for the serial number
(page 0x80) or device id (page 0x83).
Add support for the XPT_GDEV_ADVINFO CCB.
sys/conf/files: Add smp_all.c.
mps.c: Add support for passing in a uio in mps_map_command(),
so we can map a S/G list at once.
Add support for SMP passthrough commands in
mps_data_cb(). SMP is a special case, because the
first buffer in the S/G list is outbound and the
second buffer is inbound.
Add support for warning the user if the busdma code
comes back with more buffers than will work for the
command. This will, for example, help the user
determine why an SMP command failed if busdma comes
back with three buffers.
mps_pci.c: Add sys/uio.h.
mps_sas.c: Add the SAS address and the parent handle to the
list of fields we pull from device page 0 and cache
in struct mpssas_target. These are needed for SMP
passthrough.
Add support for the XPT_SMP_IO CCB. For now, this
CCB is routed to the addressed device if it supports
SMP, or to its parent if it does not and the parent
does. This is necessary because CAM does not
currently support SMP-only nodes in the topology.
Make SMP passthrough support conditional on
__FreeBSD_version >= 900026. This will make it
easier to MFC this change to the driver without
MFCing the CAM changes as well.
mps_user.c: Un-staticize mpi_init_sge() so we can use it for
the SMP passthrough code.
mpsvar.h: Add a uio and iovecs into struct mps_command for
SMP passthrough commands.
Add a cm_max_segs field to struct mps_command so
that we can warn the user if busdma comes back with
too many segments.
Clear the cm_reply when a command gets freed. If
it is not cleared, reply frames will eventually get
freed into the pool multiple times and corrupt the
pool. (This fix is from scottl.)
Add a prototype for mpi_init_sge().
sys/param.h: Bump __FreeBSD_version to 900026 for the for the
inclusion of the XPT_GDEV_ADVINFO and XPT_SMP_IO
CAM CCBs.
path id for enumerating the available busses. Previously camcontrol was
implicitly passing 0 as the first path id, which meant that if bus 0 was not
present camcontrol would fail with EINVAL instead of rescanning/resetting any
busses that were present.
Approved by: emaste (mentor)
MFC after: 1 week
- device initiated power management (some devices support only this way);
- Automatic Partial to Slumber Transition (more power saving);
- DMA auto-activation (expected to slightly improve performance).
More features could be added later, when hardware supports.
- Extend XPT-SIM transfer settings control API. Now it allows to report to
SATA SIM number of tags supported by each device, implement ATA mode and
SATA revision negotiation for both SATA and PATA SIMs.
- Make ahci(4) and siis(4) to use submitted maximum tag number, when
scheduling requests. It allows to support NCQ on devices with lower tags
count then controller supports.
- Make PMP driver to report attached devices connection speeds.
- Implement ATA mode negotiation between user settings, device and
controller capabilities.
- Add support for sector size > 512 bytes and physical sector of several
logical sectors, introduced by ATA-7 specification.
- Remove some obsoleted code.
It could be used for broad range of tasks, such as configuring drive
power management modes, caching, security and any other features and tasks,
not supported by existing drivers.