freebsd-skq/sys/dev/ath/if_ath_rx.c
Adrian Chadd 68545bc433 [ath] Don't use hard-coded values in the sanity check.
Don't use hard-coded values in the phy error and receive antenna
checks.
2020-12-08 17:27:24 +00:00

1556 lines
44 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Driver for the Atheros Wireless LAN controller.
*
* This software is derived from work of Atsushi Onoe; his contribution
* is greatly appreciated.
*/
#include "opt_inet.h"
#include "opt_ath.h"
/*
* This is needed for register operations which are performed
* by the driver - eg, calls to ath_hal_gettsf32().
*
* It's also required for any AH_DEBUG checks in here, eg the
* module dependencies.
*/
#include "opt_ah.h"
#include "opt_wlan.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/errno.h>
#include <sys/callout.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/kthread.h>
#include <sys/taskqueue.h>
#include <sys/priv.h>
#include <sys/module.h>
#include <sys/ktr.h>
#include <sys/smp.h> /* for mp_ncpus */
#include <machine/bus.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_llc.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_regdomain.h>
#ifdef IEEE80211_SUPPORT_SUPERG
#include <net80211/ieee80211_superg.h>
#endif
#ifdef IEEE80211_SUPPORT_TDMA
#include <net80211/ieee80211_tdma.h>
#endif
#include <net/bpf.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_ether.h>
#endif
#include <dev/ath/if_athvar.h>
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
#include <dev/ath/ath_hal/ah_diagcodes.h>
#include <dev/ath/if_ath_debug.h>
#include <dev/ath/if_ath_misc.h>
#include <dev/ath/if_ath_tsf.h>
#include <dev/ath/if_ath_tx.h>
#include <dev/ath/if_ath_sysctl.h>
#include <dev/ath/if_ath_led.h>
#include <dev/ath/if_ath_keycache.h>
#include <dev/ath/if_ath_rx.h>
#include <dev/ath/if_ath_beacon.h>
#include <dev/ath/if_athdfs.h>
#include <dev/ath/if_ath_descdma.h>
#ifdef ATH_TX99_DIAG
#include <dev/ath/ath_tx99/ath_tx99.h>
#endif
#ifdef ATH_DEBUG_ALQ
#include <dev/ath/if_ath_alq.h>
#endif
#include <dev/ath/if_ath_lna_div.h>
/*
* Calculate the receive filter according to the
* operating mode and state:
*
* o always accept unicast, broadcast, and multicast traffic
* o accept PHY error frames when hardware doesn't have MIB support
* to count and we need them for ANI (sta mode only until recently)
* and we are not scanning (ANI is disabled)
* NB: older hal's add rx filter bits out of sight and we need to
* blindly preserve them
* o probe request frames are accepted only when operating in
* hostap, adhoc, mesh, or monitor modes
* o enable promiscuous mode
* - when in monitor mode
* - if interface marked PROMISC (assumes bridge setting is filtered)
* o accept beacons:
* - when operating in station mode for collecting rssi data when
* the station is otherwise quiet, or
* - when operating in adhoc mode so the 802.11 layer creates
* node table entries for peers,
* - when scanning
* - when doing s/w beacon miss (e.g. for ap+sta)
* - when operating in ap mode in 11g to detect overlapping bss that
* require protection
* - when operating in mesh mode to detect neighbors
* o accept control frames:
* - when in monitor mode
* XXX HT protection for 11n
*/
u_int32_t
ath_calcrxfilter(struct ath_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int32_t rfilt;
rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
if (!sc->sc_needmib && !sc->sc_scanning)
rfilt |= HAL_RX_FILTER_PHYERR;
if (ic->ic_opmode != IEEE80211_M_STA)
rfilt |= HAL_RX_FILTER_PROBEREQ;
/* XXX ic->ic_monvaps != 0? */
if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_promisc > 0)
rfilt |= HAL_RX_FILTER_PROM;
/*
* Only listen to all beacons if we're scanning.
*
* Otherwise we only really need to hear beacons from
* our own BSSID.
*
* IBSS? software beacon miss? Just receive all beacons.
* We need to hear beacons/probe requests from everyone so
* we can merge ibss.
*/
if (ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) {
rfilt |= HAL_RX_FILTER_BEACON;
} else if (ic->ic_opmode == IEEE80211_M_STA) {
if (sc->sc_do_mybeacon && ! sc->sc_scanning) {
rfilt |= HAL_RX_FILTER_MYBEACON;
} else { /* scanning, non-mybeacon chips */
rfilt |= HAL_RX_FILTER_BEACON;
}
}
/*
* NB: We don't recalculate the rx filter when
* ic_protmode changes; otherwise we could do
* this only when ic_protmode != NONE.
*/
if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
rfilt |= HAL_RX_FILTER_BEACON;
/*
* Enable hardware PS-POLL RX only for hostap mode;
* STA mode sends PS-POLL frames but never
* receives them.
*/
if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
0, NULL) == HAL_OK &&
ic->ic_opmode == IEEE80211_M_HOSTAP)
rfilt |= HAL_RX_FILTER_PSPOLL;
if (sc->sc_nmeshvaps) {
rfilt |= HAL_RX_FILTER_BEACON;
if (sc->sc_hasbmatch)
rfilt |= HAL_RX_FILTER_BSSID;
else
rfilt |= HAL_RX_FILTER_PROM;
}
if (ic->ic_opmode == IEEE80211_M_MONITOR)
rfilt |= HAL_RX_FILTER_CONTROL;
/*
* Enable RX of compressed BAR frames only when doing
* 802.11n. Required for A-MPDU.
*/
if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
rfilt |= HAL_RX_FILTER_COMPBAR;
/*
* Enable radar PHY errors if requested by the
* DFS module.
*/
if (sc->sc_dodfs)
rfilt |= HAL_RX_FILTER_PHYRADAR;
/*
* Enable spectral PHY errors if requested by the
* spectral module.
*/
if (sc->sc_dospectral)
rfilt |= HAL_RX_FILTER_PHYRADAR;
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s\n",
__func__, rfilt, ieee80211_opmode_name[ic->ic_opmode]);
return rfilt;
}
static int
ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_hal *ah = sc->sc_ah;
int error;
struct mbuf *m;
struct ath_desc *ds;
/* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */
m = bf->bf_m;
if (m == NULL) {
/*
* NB: by assigning a page to the rx dma buffer we
* implicitly satisfy the Atheros requirement that
* this buffer be cache-line-aligned and sized to be
* multiple of the cache line size. Not doing this
* causes weird stuff to happen (for the 5210 at least).
*/
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: no mbuf/cluster\n", __func__);
sc->sc_stats.ast_rx_nombuf++;
return ENOMEM;
}
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
bf->bf_dmamap, m,
bf->bf_segs, &bf->bf_nseg,
BUS_DMA_NOWAIT);
if (error != 0) {
DPRINTF(sc, ATH_DEBUG_ANY,
"%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
__func__, error);
sc->sc_stats.ast_rx_busdma++;
m_freem(m);
return error;
}
KASSERT(bf->bf_nseg == 1,
("multi-segment packet; nseg %u", bf->bf_nseg));
bf->bf_m = m;
}
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
/*
* Setup descriptors. For receive we always terminate
* the descriptor list with a self-linked entry so we'll
* not get overrun under high load (as can happen with a
* 5212 when ANI processing enables PHY error frames).
*
* To insure the last descriptor is self-linked we create
* each descriptor as self-linked and add it to the end. As
* each additional descriptor is added the previous self-linked
* entry is ``fixed'' naturally. This should be safe even
* if DMA is happening. When processing RX interrupts we
* never remove/process the last, self-linked, entry on the
* descriptor list. This insures the hardware always has
* someplace to write a new frame.
*/
/*
* 11N: we can no longer afford to self link the last descriptor.
* MAC acknowledges BA status as long as it copies frames to host
* buffer (or rx fifo). This can incorrectly acknowledge packets
* to a sender if last desc is self-linked.
*/
ds = bf->bf_desc;
if (sc->sc_rxslink)
ds->ds_link = bf->bf_daddr; /* link to self */
else
ds->ds_link = 0; /* terminate the list */
ds->ds_data = bf->bf_segs[0].ds_addr;
ath_hal_setuprxdesc(ah, ds
, m->m_len /* buffer size */
, 0
);
if (sc->sc_rxlink != NULL)
*sc->sc_rxlink = bf->bf_daddr;
sc->sc_rxlink = &ds->ds_link;
return 0;
}
/*
* Intercept management frames to collect beacon rssi data
* and to do ibss merges.
*/
void
ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf)
{
struct ieee80211vap *vap = ni->ni_vap;
struct ath_softc *sc = vap->iv_ic->ic_softc;
uint64_t tsf_beacon_old, tsf_beacon;
uint64_t nexttbtt;
int64_t tsf_delta;
int32_t tsf_delta_bmiss;
int32_t tsf_remainder;
uint64_t tsf_beacon_target;
int tsf_intval;
tsf_beacon_old = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
tsf_beacon_old |= le32dec(ni->ni_tstamp.data);
#define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10)
tsf_intval = 1;
if (ni->ni_intval > 0) {
tsf_intval = TU_TO_TSF(ni->ni_intval);
}
#undef TU_TO_TSF
/*
* Call up first so subsequent work can use information
* potentially stored in the node (e.g. for ibss merge).
*/
ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
switch (subtype) {
case IEEE80211_FC0_SUBTYPE_BEACON:
/*
* Always update the per-node beacon RSSI if we're hearing
* beacons from that node.
*/
ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgbrssi, rssi);
/*
* Only do the following processing if it's for
* the current BSS.
*
* In scan and IBSS mode we receive all beacons,
* which means we need to filter out stuff
* that isn't for us or we'll end up constantly
* trying to sync / merge to BSSes that aren't
* actually us.
*/
if ((vap->iv_opmode != IEEE80211_M_HOSTAP) &&
IEEE80211_ADDR_EQ(ni->ni_bssid, vap->iv_bss->ni_bssid)) {
/* update rssi statistics for use by the hal */
/* XXX unlocked check against vap->iv_bss? */
ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
tsf_beacon = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
tsf_beacon |= le32dec(ni->ni_tstamp.data);
nexttbtt = ath_hal_getnexttbtt(sc->sc_ah);
/*
* Let's calculate the delta and remainder, so we can see
* if the beacon timer from the AP is varying by more than
* a few TU. (Which would be a huge, huge problem.)
*/
tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old;
tsf_delta_bmiss = tsf_delta / tsf_intval;
/*
* If our delta is greater than half the beacon interval,
* let's round the bmiss value up to the next beacon
* interval. Ie, we're running really, really early
* on the next beacon.
*/
if (tsf_delta % tsf_intval > (tsf_intval / 2))
tsf_delta_bmiss ++;
tsf_beacon_target = tsf_beacon_old +
(((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval);
/*
* The remainder using '%' is between 0 .. intval-1.
* If we're actually running too fast, then the remainder
* will be some large number just under intval-1.
* So we need to look at whether we're running
* before or after the target beacon interval
* and if we are, modify how we do the remainder
* calculation.
*/
if (tsf_beacon < tsf_beacon_target) {
tsf_remainder =
-(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval));
} else {
tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval;
}
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: %s: old_tsf=%llu (%u), new_tsf=%llu (%u), target_tsf=%llu (%u), delta=%lld, bmiss=%d, remainder=%d\n",
__func__,
ieee80211_get_vap_ifname(vap),
(unsigned long long) tsf_beacon_old,
(unsigned int) (tsf_beacon_old >> 10),
(unsigned long long) tsf_beacon,
(unsigned int ) (tsf_beacon >> 10),
(unsigned long long) tsf_beacon_target,
(unsigned int) (tsf_beacon_target >> 10),
(long long) tsf_delta,
tsf_delta_bmiss,
tsf_remainder);
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: %s: ni=%6D bssid=%6D tsf=%llu (%u), nexttbtt=%llu (%u), delta=%d\n",
__func__,
ieee80211_get_vap_ifname(vap),
ni->ni_bssid, ":",
vap->iv_bss->ni_bssid, ":",
(unsigned long long) tsf_beacon,
(unsigned int) (tsf_beacon >> 10),
(unsigned long long) nexttbtt,
(unsigned int) (nexttbtt >> 10),
(int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval);
/*
* We only do syncbeacon on STA VAPs; not on IBSS;
* but don't do it with swbmiss enabled or we
* may end up overwriting AP mode beacon config.
*
* The driver (and net80211) should be smarter about
* this..
*/
if (vap->iv_opmode == IEEE80211_M_STA &&
sc->sc_syncbeacon &&
(!sc->sc_swbmiss) &&
ni == vap->iv_bss &&
(vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) {
DPRINTF(sc, ATH_DEBUG_BEACON,
"%s: syncbeacon=1; syncing\n",
__func__);
/*
* Resync beacon timers using the tsf of the beacon
* frame we just received.
*/
ath_beacon_config(sc, vap);
sc->sc_syncbeacon = 0;
}
}
/* fall thru... */
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
if (vap->iv_opmode == IEEE80211_M_IBSS &&
vap->iv_state == IEEE80211_S_RUN &&
ieee80211_ibss_merge_check(ni)) {
uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
uint64_t tsf = ath_extend_tsf(sc, rstamp,
ath_hal_gettsf64(sc->sc_ah));
/*
* Handle ibss merge as needed; check the tsf on the
* frame before attempting the merge. The 802.11 spec
* says the station should change it's bssid to match
* the oldest station with the same ssid, where oldest
* is determined by the tsf. Note that hardware
* reconfiguration happens through callback to
* ath_newstate as the state machine will go from
* RUN -> RUN when this happens.
*/
if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
DPRINTF(sc, ATH_DEBUG_STATE,
"ibss merge, rstamp %u tsf %ju "
"tstamp %ju\n", rstamp, (uintmax_t)tsf,
(uintmax_t)ni->ni_tstamp.tsf);
(void) ieee80211_ibss_merge(ni);
}
}
break;
}
}
#ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
static void
ath_rx_tap_vendor(struct ath_softc *sc, struct mbuf *m,
const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
{
/* Fill in the extension bitmap */
sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER);
/* Fill in the vendor header */
sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f;
sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03;
sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00;
/* XXX what should this be? */
sc->sc_rx_th.wr_vh.vh_sub_ns = 0;
sc->sc_rx_th.wr_vh.vh_skip_len =
htole16(sizeof(struct ath_radiotap_vendor_hdr));
/* General version info */
sc->sc_rx_th.wr_v.vh_version = 1;
sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask;
/* rssi */
sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0];
sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1];
sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2];
sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0];
sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1];
sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2];
/* evm */
sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0;
sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1;
sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2;
/* These are only populated from the AR9300 or later */
sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3;
sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4;
/* direction */
sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX;
/* RX rate */
sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate;
/* RX flags */
sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags;
if (rs->rs_isaggr)
sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR;
if (rs->rs_moreaggr)
sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR;
/* phyerr info */
if (rs->rs_status & HAL_RXERR_PHY) {
sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr;
sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR;
} else {
sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff;
}
sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status;
sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi;
}
#endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
static void
ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
{
#define CHAN_HT20 htole32(IEEE80211_CHAN_HT20)
#define CHAN_HT40U htole32(IEEE80211_CHAN_HT40U)
#define CHAN_HT40D htole32(IEEE80211_CHAN_HT40D)
#define CHAN_HT (CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
const HAL_RATE_TABLE *rt;
uint8_t rix;
rt = sc->sc_currates;
KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
rix = rt->rateCodeToIndex[rs->rs_rate];
sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
/* 802.11 specific flags */
sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
if (rs->rs_status & HAL_RXERR_PHY) {
/*
* PHY error - make sure the channel flags
* reflect the actual channel configuration,
* not the received frame.
*/
if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan))
sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan))
sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan))
sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
} else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) { /* HT rate */
struct ieee80211com *ic = &sc->sc_ic;
if ((rs->rs_flags & HAL_RX_2040) == 0)
sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
else
sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
if (rs->rs_flags & HAL_RX_GI)
sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
}
sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
if (rs->rs_status & HAL_RXERR_CRC)
sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
/* XXX propagate other error flags from descriptor */
sc->sc_rx_th.wr_antnoise = nf;
sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
sc->sc_rx_th.wr_antenna = rs->rs_antenna;
#undef CHAN_HT
#undef CHAN_HT20
#undef CHAN_HT40U
#undef CHAN_HT40D
}
static void
ath_handle_micerror(struct ieee80211com *ic,
struct ieee80211_frame *wh, int keyix)
{
struct ieee80211_node *ni;
/* XXX recheck MIC to deal w/ chips that lie */
/* XXX discard MIC errors on !data frames */
ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
if (ni != NULL) {
ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
ieee80211_free_node(ni);
}
}
/*
* Process a single packet.
*
* The mbuf must already be synced, unmapped and removed from bf->bf_m
* by this stage.
*
* The mbuf must be consumed by this routine - either passed up the
* net80211 stack, put on the holding queue, or freed.
*/
int
ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status,
uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf,
struct mbuf *m)
{
uint64_t rstamp;
/* XXX TODO: make this an mbuf tag? */
struct ieee80211_rx_stats rxs;
int len, type, i;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
int is_good = 0;
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
NET_EPOCH_ASSERT();
/*
* Calculate the correct 64 bit TSF given
* the TSF64 register value and rs_tstamp.
*/
rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
/* 802.11 return codes - These aren't specifically errors */
if (rs->rs_flags & HAL_RX_GI)
sc->sc_stats.ast_rx_halfgi++;
if (rs->rs_flags & HAL_RX_2040)
sc->sc_stats.ast_rx_2040++;
if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
sc->sc_stats.ast_rx_pre_crc_err++;
if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
sc->sc_stats.ast_rx_post_crc_err++;
if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
sc->sc_stats.ast_rx_decrypt_busy_err++;
if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
sc->sc_stats.ast_rx_hi_rx_chain++;
if (rs->rs_flags & HAL_RX_STBC)
sc->sc_stats.ast_rx_stbc++;
if (rs->rs_status != 0) {
if (rs->rs_status & HAL_RXERR_CRC)
sc->sc_stats.ast_rx_crcerr++;
if (rs->rs_status & HAL_RXERR_FIFO)
sc->sc_stats.ast_rx_fifoerr++;
if (rs->rs_status & HAL_RXERR_PHY) {
sc->sc_stats.ast_rx_phyerr++;
/* Process DFS radar events */
if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
(rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
/* Now pass it to the radar processing code */
ath_dfs_process_phy_err(sc, m, rstamp, rs);
}
/*
* Be suitably paranoid about receiving phy errors
* out of the stats array bounds
*/
if (rs->rs_phyerr < ATH_IOCTL_STATS_NUM_RX_PHYERR)
sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
goto rx_error; /* NB: don't count in ierrors */
}
if (rs->rs_status & HAL_RXERR_DECRYPT) {
/*
* Decrypt error. If the error occurred
* because there was no hardware key, then
* let the frame through so the upper layers
* can process it. This is necessary for 5210
* parts which have no way to setup a ``clear''
* key cache entry.
*
* XXX do key cache faulting
*/
if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
goto rx_accept;
sc->sc_stats.ast_rx_badcrypt++;
}
/*
* Similar as above - if the failure was a keymiss
* just punt it up to the upper layers for now.
*/
if (rs->rs_status & HAL_RXERR_KEYMISS) {
sc->sc_stats.ast_rx_keymiss++;
goto rx_accept;
}
if (rs->rs_status & HAL_RXERR_MIC) {
sc->sc_stats.ast_rx_badmic++;
/*
* Do minimal work required to hand off
* the 802.11 header for notification.
*/
/* XXX frag's and qos frames */
len = rs->rs_datalen;
if (len >= sizeof (struct ieee80211_frame)) {
ath_handle_micerror(ic,
mtod(m, struct ieee80211_frame *),
sc->sc_splitmic ?
rs->rs_keyix-32 : rs->rs_keyix);
}
}
counter_u64_add(ic->ic_ierrors, 1);
rx_error:
/*
* Cleanup any pending partial frame.
*/
if (re->m_rxpending != NULL) {
m_freem(re->m_rxpending);
re->m_rxpending = NULL;
}
/*
* When a tap is present pass error frames
* that have been requested. By default we
* pass decrypt+mic errors but others may be
* interesting (e.g. crc).
*/
if (ieee80211_radiotap_active(ic) &&
(rs->rs_status & sc->sc_monpass)) {
/* NB: bpf needs the mbuf length setup */
len = rs->rs_datalen;
m->m_pkthdr.len = m->m_len = len;
ath_rx_tap(sc, m, rs, rstamp, nf);
#ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
#endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
ieee80211_radiotap_rx_all(ic, m);
}
/* XXX pass MIC errors up for s/w reclaculation */
m_freem(m); m = NULL;
goto rx_next;
}
rx_accept:
len = rs->rs_datalen;
m->m_len = len;
if (rs->rs_more) {
/*
* Frame spans multiple descriptors; save
* it for the next completed descriptor, it
* will be used to construct a jumbogram.
*/
if (re->m_rxpending != NULL) {
/* NB: max frame size is currently 2 clusters */
sc->sc_stats.ast_rx_toobig++;
m_freem(re->m_rxpending);
}
m->m_pkthdr.len = len;
re->m_rxpending = m;
m = NULL;
goto rx_next;
} else if (re->m_rxpending != NULL) {
/*
* This is the second part of a jumbogram,
* chain it to the first mbuf, adjust the
* frame length, and clear the rxpending state.
*/
re->m_rxpending->m_next = m;
re->m_rxpending->m_pkthdr.len += len;
m = re->m_rxpending;
re->m_rxpending = NULL;
} else {
/*
* Normal single-descriptor receive; setup packet length.
*/
m->m_pkthdr.len = len;
}
/*
* Validate rs->rs_antenna.
*
* Some users w/ AR9285 NICs have reported crashes
* here because rs_antenna field is bogusly large.
* Let's enforce the maximum antenna limit of 8
* (and it shouldn't be hard coded, but that's a
* separate problem) and if there's an issue, print
* out an error and adjust rs_antenna to something
* sensible.
*
* This code should be removed once the actual
* root cause of the issue has been identified.
* For example, it may be that the rs_antenna
* field is only valid for the last frame of
* an aggregate and it just happens that it is
* "mostly" right. (This is a general statement -
* the majority of the statistics are only valid
* for the last frame in an aggregate.
*/
if (rs->rs_antenna >= ATH_IOCTL_STATS_NUM_RX_ANTENNA) {
device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
__func__, rs->rs_antenna);
#ifdef ATH_DEBUG
ath_printrxbuf(sc, bf, 0, status == HAL_OK);
#endif /* ATH_DEBUG */
rs->rs_antenna = 0; /* XXX better than nothing */
}
/*
* If this is an AR9285/AR9485, then the receive and LNA
* configuration is stored in RSSI[2] / EXTRSSI[2].
* We can extract this out to build a much better
* receive antenna profile.
*
* Yes, this just blurts over the above RX antenna field
* for now. It's fine, the AR9285 doesn't really use
* that.
*
* Later on we should store away the fine grained LNA
* information and keep separate counters just for
* that. It'll help when debugging the AR9285/AR9485
* combined diversity code.
*/
if (sc->sc_rx_lnamixer) {
rs->rs_antenna = 0;
/* Bits 0:1 - the LNA configuration used */
rs->rs_antenna |=
((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED)
>> HAL_RX_LNA_CFG_USED_S);
/* Bit 2 - the external RX antenna switch */
if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG)
rs->rs_antenna |= 0x4;
}
sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
/*
* Populate the rx status block. When there are bpf
* listeners we do the additional work to provide
* complete status. Otherwise we fill in only the
* material required by ieee80211_input. Note that
* noise setting is filled in above.
*/
if (ieee80211_radiotap_active(ic)) {
ath_rx_tap(sc, m, rs, rstamp, nf);
#ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
#endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
}
/*
* From this point on we assume the frame is at least
* as large as ieee80211_frame_min; verify that.
*/
if (len < IEEE80211_MIN_LEN) {
if (!ieee80211_radiotap_active(ic)) {
DPRINTF(sc, ATH_DEBUG_RECV,
"%s: short packet %d\n", __func__, len);
sc->sc_stats.ast_rx_tooshort++;
} else {
/* NB: in particular this captures ack's */
ieee80211_radiotap_rx_all(ic, m);
}
m_freem(m); m = NULL;
goto rx_next;
}
if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
const HAL_RATE_TABLE *rt = sc->sc_currates;
uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
}
m_adj(m, -IEEE80211_CRC_LEN);
/*
* Locate the node for sender, track state, and then
* pass the (referenced) node up to the 802.11 layer
* for its use.
*/
ni = ieee80211_find_rxnode_withkey(ic,
mtod(m, const struct ieee80211_frame_min *),
rs->rs_keyix == HAL_RXKEYIX_INVALID ?
IEEE80211_KEYIX_NONE : rs->rs_keyix);
sc->sc_lastrs = rs;
if (rs->rs_isaggr)
sc->sc_stats.ast_rx_agg++;
/*
* Populate the per-chain RSSI values where appropriate.
*/
bzero(&rxs, sizeof(rxs));
rxs.r_flags |= IEEE80211_R_NF | IEEE80211_R_RSSI |
IEEE80211_R_C_CHAIN |
IEEE80211_R_C_NF |
IEEE80211_R_C_RSSI |
IEEE80211_R_TSF64 |
IEEE80211_R_TSF_START; /* XXX TODO: validate */
rxs.c_rssi = rs->rs_rssi;
rxs.c_nf = nf;
rxs.c_chain = 3; /* XXX TODO: check */
rxs.c_rx_tsf = rstamp;
for (i = 0; i < 3; i++) {
rxs.c_rssi_ctl[i] = rs->rs_rssi_ctl[i];
rxs.c_rssi_ext[i] = rs->rs_rssi_ext[i];
/*
* XXX note: we currently don't track
* per-chain noisefloor.
*/
rxs.c_nf_ctl[i] = nf;
rxs.c_nf_ext[i] = nf;
}
if (ni != NULL) {
/*
* Only punt packets for ampdu reorder processing for
* 11n nodes; net80211 enforces that M_AMPDU is only
* set for 11n nodes.
*/
if (ni->ni_flags & IEEE80211_NODE_HT)
m->m_flags |= M_AMPDU;
/*
* Inform rate control about the received RSSI.
* It can then use this information to potentially drastically
* alter the available rate based on the RSSI estimate.
*
* This is super important when associating to a far away station;
* you don't want to waste time trying higher rates at some low
* packet exchange rate (like during DHCP) just to establish
* that higher MCS rates aren't available.
*/
ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgrssi,
rs->rs_rssi);
ath_rate_update_rx_rssi(sc, ATH_NODE(ni),
ATH_RSSI(ATH_NODE(ni)->an_node_stats.ns_avgrssi));
/*
* Sending station is known, dispatch directly.
*/
(void) ieee80211_add_rx_params(m, &rxs);
type = ieee80211_input_mimo(ni, m);
ieee80211_free_node(ni);
m = NULL;
/*
* Arrange to update the last rx timestamp only for
* frames from our ap when operating in station mode.
* This assumes the rx key is always setup when
* associated.
*/
if (ic->ic_opmode == IEEE80211_M_STA &&
rs->rs_keyix != HAL_RXKEYIX_INVALID)
is_good = 1;
} else {
(void) ieee80211_add_rx_params(m, &rxs);
type = ieee80211_input_mimo_all(ic, m);
m = NULL;
}
/*
* At this point we have passed the frame up the stack; thus
* the mbuf is no longer ours.
*/
/*
* Track legacy station RX rssi and do any rx antenna management.
*/
ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
if (sc->sc_diversity) {
/*
* When using fast diversity, change the default rx
* antenna if diversity chooses the other antenna 3
* times in a row.
*/
if (sc->sc_defant != rs->rs_antenna) {
if (++sc->sc_rxotherant >= 3)
ath_setdefantenna(sc, rs->rs_antenna);
} else
sc->sc_rxotherant = 0;
}
/* Handle slow diversity if enabled */
if (sc->sc_dolnadiv) {
ath_lna_rx_comb_scan(sc, rs, ticks, hz);
}
if (sc->sc_softled) {
/*
* Blink for any data frame. Otherwise do a
* heartbeat-style blink when idle. The latter
* is mainly for station mode where we depend on
* periodic beacon frames to trigger the poll event.
*/
if (type == IEEE80211_FC0_TYPE_DATA) {
const HAL_RATE_TABLE *rt = sc->sc_currates;
ath_led_event(sc,
rt->rateCodeToIndex[rs->rs_rate]);
} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
ath_led_event(sc, 0);
}
rx_next:
/*
* Debugging - complain if we didn't NULL the mbuf pointer
* here.
*/
if (m != NULL) {
device_printf(sc->sc_dev,
"%s: mbuf %p should've been freed!\n",
__func__,
m);
}
return (is_good);
}
#define ATH_RX_MAX 128
/*
* XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like
* the EDMA code does.
*
* XXX TODO: then, do all of the RX list management stuff inside
* ATH_RX_LOCK() so we don't end up potentially racing. The EDMA
* code is doing it right.
*/
static void
ath_rx_proc(struct ath_softc *sc, int resched)
{
#define PA2DESC(_sc, _pa) \
((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
struct ath_buf *bf;
struct ath_hal *ah = sc->sc_ah;
#ifdef IEEE80211_SUPPORT_SUPERG
struct ieee80211com *ic = &sc->sc_ic;
#endif
struct ath_desc *ds;
struct ath_rx_status *rs;
struct mbuf *m;
int ngood;
HAL_STATUS status;
int16_t nf;
u_int64_t tsf;
int npkts = 0;
int kickpcu = 0;
int ret;
NET_EPOCH_ASSERT();
/* XXX we must not hold the ATH_LOCK here */
ATH_UNLOCK_ASSERT(sc);
ATH_PCU_UNLOCK_ASSERT(sc);
ATH_PCU_LOCK(sc);
sc->sc_rxproc_cnt++;
kickpcu = sc->sc_kickpcu;
ATH_PCU_UNLOCK(sc);
ATH_LOCK(sc);
ath_power_set_power_state(sc, HAL_PM_AWAKE);
ATH_UNLOCK(sc);
DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
ngood = 0;
nf = ath_hal_getchannoise(ah, sc->sc_curchan);
sc->sc_stats.ast_rx_noise = nf;
tsf = ath_hal_gettsf64(ah);
do {
/*
* Don't process too many packets at a time; give the
* TX thread time to also run - otherwise the TX
* latency can jump by quite a bit, causing throughput
* degredation.
*/
if (!kickpcu && npkts >= ATH_RX_MAX)
break;
bf = TAILQ_FIRST(&sc->sc_rxbuf);
if (sc->sc_rxslink && bf == NULL) { /* NB: shouldn't happen */
device_printf(sc->sc_dev, "%s: no buffer!\n", __func__);
break;
} else if (bf == NULL) {
/*
* End of List:
* this can happen for non-self-linked RX chains
*/
sc->sc_stats.ast_rx_hitqueueend++;
break;
}
m = bf->bf_m;
if (m == NULL) { /* NB: shouldn't happen */
/*
* If mbuf allocation failed previously there
* will be no mbuf; try again to re-populate it.
*/
/* XXX make debug msg */
device_printf(sc->sc_dev, "%s: no mbuf!\n", __func__);
TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
goto rx_proc_next;
}
ds = bf->bf_desc;
if (ds->ds_link == bf->bf_daddr) {
/* NB: never process the self-linked entry at the end */
sc->sc_stats.ast_rx_hitqueueend++;
break;
}
/* XXX sync descriptor memory */
/*
* Must provide the virtual address of the current
* descriptor, the physical address, and the virtual
* address of the next descriptor in the h/w chain.
* This allows the HAL to look ahead to see if the
* hardware is done with a descriptor by checking the
* done bit in the following descriptor and the address
* of the current descriptor the DMA engine is working
* on. All this is necessary because of our use of
* a self-linked list to avoid rx overruns.
*/
rs = &bf->bf_status.ds_rxstat;
status = ath_hal_rxprocdesc(ah, ds,
bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
#ifdef ATH_DEBUG
if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
ath_printrxbuf(sc, bf, 0, status == HAL_OK);
#endif
#ifdef ATH_DEBUG_ALQ
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
sc->sc_rx_statuslen, (char *) ds);
#endif /* ATH_DEBUG_ALQ */
if (status == HAL_EINPROGRESS)
break;
TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
npkts++;
/*
* Process a single frame.
*/
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
bf->bf_m = NULL;
if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m))
ngood++;
rx_proc_next:
/*
* If there's a holding buffer, insert that onto
* the RX list; the hardware is now definitely not pointing
* to it now.
*/
ret = 0;
if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) {
TAILQ_INSERT_TAIL(&sc->sc_rxbuf,
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf,
bf_list);
ret = ath_rxbuf_init(sc,
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf);
}
/*
* Next, throw our buffer into the holding entry. The hardware
* may use the descriptor to read the link pointer before
* DMAing the next descriptor in to write out a packet.
*/
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf;
} while (ret == 0);
/* rx signal state monitoring */
ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
if (ngood)
sc->sc_lastrx = tsf;
ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
/* Queue DFS tasklet if needed */
if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
/*
* Now that all the RX frames were handled that
* need to be handled, kick the PCU if there's
* been an RXEOL condition.
*/
if (resched && kickpcu) {
ATH_PCU_LOCK(sc);
ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu");
device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
__func__, npkts);
/*
* Go through the process of fully tearing down
* the RX buffers and reinitialising them.
*
* There's a hardware bug that causes the RX FIFO
* to get confused under certain conditions and
* constantly write over the same frame, leading
* the RX driver code here to get heavily confused.
*/
/*
* XXX Has RX DMA stopped enough here to just call
* ath_startrecv()?
* XXX Do we need to use the holding buffer to restart
* RX DMA by appending entries to the final
* descriptor? Quite likely.
*/
#if 1
ath_startrecv(sc);
#else
/*
* Disabled for now - it'd be nice to be able to do
* this in order to limit the amount of CPU time spent
* reinitialising the RX side (and thus minimise RX
* drops) however there's a hardware issue that
* causes things to get too far out of whack.
*/
/*
* XXX can we hold the PCU lock here?
* Are there any net80211 buffer calls involved?
*/
bf = TAILQ_FIRST(&sc->sc_rxbuf);
ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
ath_hal_rxena(ah); /* enable recv descriptors */
ath_mode_init(sc); /* set filters, etc. */
ath_hal_startpcurecv(ah, (!! sc->sc_scanning)); /* re-enable PCU/DMA engine */
#endif
ath_hal_intrset(ah, sc->sc_imask);
sc->sc_kickpcu = 0;
ATH_PCU_UNLOCK(sc);
}
#ifdef IEEE80211_SUPPORT_SUPERG
if (resched)
ieee80211_ff_age_all(ic, 100);
#endif
/*
* Put the hardware to sleep again if we're done with it.
*/
ATH_LOCK(sc);
ath_power_restore_power_state(sc);
ATH_UNLOCK(sc);
/*
* If we hit the maximum number of frames in this round,
* reschedule for another immediate pass. This gives
* the TX and TX completion routines time to run, which
* will reduce latency.
*/
if (npkts >= ATH_RX_MAX)
sc->sc_rx.recv_sched(sc, resched);
ATH_PCU_LOCK(sc);
sc->sc_rxproc_cnt--;
ATH_PCU_UNLOCK(sc);
}
#undef PA2DESC
#undef ATH_RX_MAX
/*
* Only run the RX proc if it's not already running.
* Since this may get run as part of the reset/flush path,
* the task can't clash with an existing, running tasklet.
*/
static void
ath_legacy_rx_tasklet(void *arg, int npending)
{
struct ath_softc *sc = arg;
struct epoch_tracker et;
ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending);
DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
ATH_PCU_LOCK(sc);
if (sc->sc_inreset_cnt > 0) {
device_printf(sc->sc_dev,
"%s: sc_inreset_cnt > 0; skipping\n", __func__);
ATH_PCU_UNLOCK(sc);
return;
}
ATH_PCU_UNLOCK(sc);
NET_EPOCH_ENTER(et);
ath_rx_proc(sc, 1);
NET_EPOCH_EXIT(et);
}
static void
ath_legacy_flushrecv(struct ath_softc *sc)
{
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
ath_rx_proc(sc, 0);
NET_EPOCH_EXIT(et);
}
static void
ath_legacy_flush_rxpending(struct ath_softc *sc)
{
/* XXX ATH_RX_LOCK_ASSERT(sc); */
if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) {
m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
}
if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) {
m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
}
}
static int
ath_legacy_flush_rxholdbf(struct ath_softc *sc)
{
struct ath_buf *bf;
/* XXX ATH_RX_LOCK_ASSERT(sc); */
/*
* If there are RX holding buffers, free them here and return
* them to the list.
*
* XXX should just verify that bf->bf_m is NULL, as it must
* be at this point!
*/
bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf;
if (bf != NULL) {
if (bf->bf_m != NULL)
m_freem(bf->bf_m);
bf->bf_m = NULL;
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
(void) ath_rxbuf_init(sc, bf);
}
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL;
bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf;
if (bf != NULL) {
if (bf->bf_m != NULL)
m_freem(bf->bf_m);
bf->bf_m = NULL;
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
(void) ath_rxbuf_init(sc, bf);
}
sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL;
return (0);
}
/*
* Disable the receive h/w in preparation for a reset.
*/
static void
ath_legacy_stoprecv(struct ath_softc *sc, int dodelay)
{
#define PA2DESC(_sc, _pa) \
((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
struct ath_hal *ah = sc->sc_ah;
ATH_RX_LOCK(sc);
ath_hal_stoppcurecv(ah); /* disable PCU */
ath_hal_setrxfilter(ah, 0); /* clear recv filter */
ath_hal_stopdmarecv(ah); /* disable DMA engine */
/*
* TODO: see if this particular DELAY() is required; it may be
* masking some missing FIFO flush or DMA sync.
*/
#if 0
if (dodelay)
#endif
DELAY(3000); /* 3ms is long enough for 1 frame */
#ifdef ATH_DEBUG
if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
struct ath_buf *bf;
u_int ix;
device_printf(sc->sc_dev,
"%s: rx queue %p, link %p\n",
__func__,
(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP),
sc->sc_rxlink);
ix = 0;
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
struct ath_desc *ds = bf->bf_desc;
struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
ath_printrxbuf(sc, bf, ix, status == HAL_OK);
ix++;
}
}
#endif
(void) ath_legacy_flush_rxpending(sc);
(void) ath_legacy_flush_rxholdbf(sc);
sc->sc_rxlink = NULL; /* just in case */
ATH_RX_UNLOCK(sc);
#undef PA2DESC
}
/*
* XXX TODO: something was calling startrecv without calling
* stoprecv. Let's figure out what/why. It was showing up
* as a mbuf leak (rxpending) and ath_buf leak (holdbf.)
*/
/*
* Enable the receive h/w following a reset.
*/
static int
ath_legacy_startrecv(struct ath_softc *sc)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
ATH_RX_LOCK(sc);
/*
* XXX should verify these are already all NULL!
*/
sc->sc_rxlink = NULL;
(void) ath_legacy_flush_rxpending(sc);
(void) ath_legacy_flush_rxholdbf(sc);
/*
* Re-chain all of the buffers in the RX buffer list.
*/
TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
int error = ath_rxbuf_init(sc, bf);
if (error != 0) {
DPRINTF(sc, ATH_DEBUG_RECV,
"%s: ath_rxbuf_init failed %d\n",
__func__, error);
return error;
}
}
bf = TAILQ_FIRST(&sc->sc_rxbuf);
ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
ath_hal_rxena(ah); /* enable recv descriptors */
ath_mode_init(sc); /* set filters, etc. */
ath_hal_startpcurecv(ah, (!! sc->sc_scanning)); /* re-enable PCU/DMA engine */
ATH_RX_UNLOCK(sc);
return 0;
}
static int
ath_legacy_dma_rxsetup(struct ath_softc *sc)
{
int error;
error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
"rx", sizeof(struct ath_desc), ath_rxbuf, 1);
if (error != 0)
return (error);
return (0);
}
static int
ath_legacy_dma_rxteardown(struct ath_softc *sc)
{
if (sc->sc_rxdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
return (0);
}
static void
ath_legacy_recv_sched(struct ath_softc *sc, int dosched)
{
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
}
static void
ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q,
int dosched)
{
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
}
void
ath_recv_setup_legacy(struct ath_softc *sc)
{
/* Sensible legacy defaults */
/*
* XXX this should be changed to properly support the
* exact RX descriptor size for each HAL.
*/
sc->sc_rx_statuslen = sizeof(struct ath_desc);
sc->sc_rx.recv_start = ath_legacy_startrecv;
sc->sc_rx.recv_stop = ath_legacy_stoprecv;
sc->sc_rx.recv_flush = ath_legacy_flushrecv;
sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet;
sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init;
sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup;
sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown;
sc->sc_rx.recv_sched = ath_legacy_recv_sched;
sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue;
}