freebsd-skq/sys/dev/ath/ath_hal/ar5212/ar5413.c
sam dce1c351b5 Add PCIE power control api:
o add ah_configPCIE and ah_disablePCIE for drivers to configure PCIE
  power save operation (modeled after ath9k, may need changes)
o add private state flag to indicate if device is PCIE (replaces private
  hack in 5212 code)
o add serdes programming ini bits for 5416 and later parts and setup
  for each part (5416 and 9160 logic hand-crafted from existing routines);
  5212 remains open-coded but is now hooked in via ah_configPCIE
o add PCIE workaround gunk
o add ar5416AttachPCIE for iodomatic code used by 5416 and later parts
2009-02-24 01:07:06 +00:00

803 lines
24 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ah_eeprom_v3.h"
#include "ar5212/ar5212.h"
#include "ar5212/ar5212reg.h"
#include "ar5212/ar5212phy.h"
#define AH_5212_5413
#include "ar5212/ar5212.ini"
#define N(a) (sizeof(a)/sizeof(a[0]))
struct ar5413State {
RF_HAL_FUNCS base; /* public state, must be first */
uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
uint32_t Bank1Data[N(ar5212Bank1_5413)];
uint32_t Bank2Data[N(ar5212Bank2_5413)];
uint32_t Bank3Data[N(ar5212Bank3_5413)];
uint32_t Bank6Data[N(ar5212Bank6_5413)];
uint32_t Bank7Data[N(ar5212Bank7_5413)];
/*
* Private state for reduced stack usage.
*/
/* filled out Vpd table for all pdGains (chanL) */
uint16_t vpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL]
[MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (chanR) */
uint16_t vpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL]
[MAX_PWR_RANGE_IN_HALF_DB];
/* filled out Vpd table for all pdGains (interpolated) */
uint16_t vpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL]
[MAX_PWR_RANGE_IN_HALF_DB];
};
#define AR5413(ah) ((struct ar5413State *) AH5212(ah)->ah_rfHal)
extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
uint32_t numBits, uint32_t firstBit, uint32_t column);
static void
ar5413WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
int writes)
{
HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5413, modesIndex, writes);
HAL_INI_WRITE_ARRAY(ah, ar5212Common_5413, 1, writes);
HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5413, freqIndex, writes);
}
/*
* Take the MHz channel value and set the Channel value
*
* ASSUMES: Writes enabled to analog bus
*/
static HAL_BOOL
ar5413SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
uint16_t freq = ath_hal_gethwchannel(ah, chan);
uint32_t channelSel = 0;
uint32_t bModeSynth = 0;
uint32_t aModeRefSel = 0;
uint32_t reg32 = 0;
OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
if (freq < 4800) {
uint32_t txctl;
if (((freq - 2192) % 5) == 0) {
channelSel = ((freq - 672) * 2 - 3040)/10;
bModeSynth = 0;
} else if (((freq - 2224) % 5) == 0) {
channelSel = ((freq - 704) * 2 - 3040) / 10;
bModeSynth = 1;
} else {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid channel %u MHz\n",
__func__, freq);
return AH_FALSE;
}
channelSel = (channelSel << 2) & 0xff;
channelSel = ath_hal_reverseBits(channelSel, 8);
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
if (freq == 2484) {
/* Enable channel spreading for channel 14 */
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
} else {
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
}
} else if (((freq % 5) == 2) && (freq <= 5435)) {
freq = freq - 2; /* Align to even 5MHz raster */
channelSel = ath_hal_reverseBits(
(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
aModeRefSel = ath_hal_reverseBits(0, 2);
} else if ((freq % 20) == 0 && freq >= 5120) {
channelSel = ath_hal_reverseBits(
((freq - 4800) / 20 << 2), 8);
aModeRefSel = ath_hal_reverseBits(1, 2);
} else if ((freq % 10) == 0) {
channelSel = ath_hal_reverseBits(
((freq - 4800) / 10 << 1), 8);
aModeRefSel = ath_hal_reverseBits(1, 2);
} else if ((freq % 5) == 0) {
channelSel = ath_hal_reverseBits(
(freq - 4800) / 5, 8);
aModeRefSel = ath_hal_reverseBits(1, 2);
} else {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
__func__, freq);
return AH_FALSE;
}
reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
(1 << 12) | 0x1;
OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
reg32 >>= 8;
OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
AH_PRIVATE(ah)->ah_curchan = chan;
return AH_TRUE;
}
/*
* Reads EEPROM header info from device structure and programs
* all rf registers
*
* REQUIRES: Access to the analog rf device
*/
static HAL_BOOL
ar5413SetRfRegs(struct ath_hal *ah,
const struct ieee80211_channel *chan,
uint16_t modesIndex, uint16_t *rfXpdGain)
{
#define RF_BANK_SETUP(_priv, _ix, _col) do { \
int i; \
for (i = 0; i < N(ar5212Bank##_ix##_5413); i++) \
(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5413[i][_col];\
} while (0)
struct ath_hal_5212 *ahp = AH5212(ah);
uint16_t freq = ath_hal_gethwchannel(ah, chan);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
uint16_t ob5GHz = 0, db5GHz = 0;
uint16_t ob2GHz = 0, db2GHz = 0;
struct ar5413State *priv = AR5413(ah);
int regWrites = 0;
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
__func__, chan->ic_freq, chan->ic_flags, modesIndex);
HALASSERT(priv != AH_NULL);
/* Setup rf parameters */
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
case IEEE80211_CHAN_A:
if (freq > 4000 && freq < 5260) {
ob5GHz = ee->ee_ob1;
db5GHz = ee->ee_db1;
} else if (freq >= 5260 && freq < 5500) {
ob5GHz = ee->ee_ob2;
db5GHz = ee->ee_db2;
} else if (freq >= 5500 && freq < 5725) {
ob5GHz = ee->ee_ob3;
db5GHz = ee->ee_db3;
} else if (freq >= 5725) {
ob5GHz = ee->ee_ob4;
db5GHz = ee->ee_db4;
} else {
/* XXX else */
}
break;
case IEEE80211_CHAN_B:
ob2GHz = ee->ee_obFor24;
db2GHz = ee->ee_dbFor24;
break;
case IEEE80211_CHAN_G:
case IEEE80211_CHAN_PUREG: /* NB: really 108G */
ob2GHz = ee->ee_obFor24g;
db2GHz = ee->ee_dbFor24g;
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
__func__, chan->ic_flags);
return AH_FALSE;
}
/* Bank 1 Write */
RF_BANK_SETUP(priv, 1, 1);
/* Bank 2 Write */
RF_BANK_SETUP(priv, 2, modesIndex);
/* Bank 3 Write */
RF_BANK_SETUP(priv, 3, modesIndex);
/* Bank 6 Write */
RF_BANK_SETUP(priv, 6, modesIndex);
/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 241, 0);
ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 238, 0);
/* TODO - only for Eagle 1.0 2GHz - remove for production */
/* XXX: but without this bit G doesn't work. */
ar5212ModifyRfBuffer(priv->Bank6Data, 1 , 1, 291, 2);
/* Optimum value for rf_pwd_iclobuf2G for PCIe chips only */
if (AH_PRIVATE(ah)->ah_ispcie) {
ar5212ModifyRfBuffer(priv->Bank6Data, ath_hal_reverseBits(6, 3),
3, 131, 3);
}
} else {
ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 247, 0);
ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 244, 0);
}
/* Bank 7 Setup */
RF_BANK_SETUP(priv, 7, modesIndex);
/* Write Analog registers */
HAL_INI_WRITE_BANK(ah, ar5212Bank1_5413, priv->Bank1Data, regWrites);
HAL_INI_WRITE_BANK(ah, ar5212Bank2_5413, priv->Bank2Data, regWrites);
HAL_INI_WRITE_BANK(ah, ar5212Bank3_5413, priv->Bank3Data, regWrites);
HAL_INI_WRITE_BANK(ah, ar5212Bank6_5413, priv->Bank6Data, regWrites);
HAL_INI_WRITE_BANK(ah, ar5212Bank7_5413, priv->Bank7Data, regWrites);
/* Now that we have reprogrammed rfgain value, clear the flag. */
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
return AH_TRUE;
#undef RF_BANK_SETUP
}
/*
* Return a reference to the requested RF Bank.
*/
static uint32_t *
ar5413GetRfBank(struct ath_hal *ah, int bank)
{
struct ar5413State *priv = AR5413(ah);
HALASSERT(priv != AH_NULL);
switch (bank) {
case 1: return priv->Bank1Data;
case 2: return priv->Bank2Data;
case 3: return priv->Bank3Data;
case 6: return priv->Bank6Data;
case 7: return priv->Bank7Data;
}
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
__func__, bank);
return AH_NULL;
}
/*
* Return indices surrounding the value in sorted integer lists.
*
* NB: the input list is assumed to be sorted in ascending order
*/
static void
GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
uint32_t *vlo, uint32_t *vhi)
{
int16_t target = v;
const uint16_t *ep = lp+listSize;
const uint16_t *tp;
/*
* Check first and last elements for out-of-bounds conditions.
*/
if (target < lp[0]) {
*vlo = *vhi = 0;
return;
}
if (target >= ep[-1]) {
*vlo = *vhi = listSize - 1;
return;
}
/* look for value being near or between 2 values in list */
for (tp = lp; tp < ep; tp++) {
/*
* If value is close to the current value of the list
* then target is not between values, it is one of the values
*/
if (*tp == target) {
*vlo = *vhi = tp - (const uint16_t *) lp;
return;
}
/*
* Look for value being between current value and next value
* if so return these 2 values
*/
if (target < tp[1]) {
*vlo = tp - (const uint16_t *) lp;
*vhi = *vlo + 1;
return;
}
}
}
/*
* Fill the Vpdlist for indices Pmax-Pmin
*/
static HAL_BOOL
ar5413FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
const int16_t *pwrList, const uint16_t *VpdList,
uint16_t numIntercepts,
uint16_t retVpdList[][64])
{
uint16_t ii, jj, kk;
int16_t currPwr = (int16_t)(2*Pmin);
/* since Pmin is pwr*2 and pwrList is 4*pwr */
uint32_t idxL, idxR;
ii = 0;
jj = 0;
if (numIntercepts < 2)
return AH_FALSE;
while (ii <= (uint16_t)(Pmax - Pmin)) {
GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
numIntercepts, &(idxL), &(idxR));
if (idxR < 1)
idxR = 1; /* extrapolate below */
if (idxL == (uint32_t)(numIntercepts - 1))
idxL = numIntercepts - 2; /* extrapolate above */
if (pwrList[idxL] == pwrList[idxR])
kk = VpdList[idxL];
else
kk = (uint16_t)
(((currPwr - pwrList[idxL])*VpdList[idxR]+
(pwrList[idxR] - currPwr)*VpdList[idxL])/
(pwrList[idxR] - pwrList[idxL]));
retVpdList[pdGainIdx][ii] = kk;
ii++;
currPwr += 2; /* half dB steps */
}
return AH_TRUE;
}
/*
* Returns interpolated or the scaled up interpolated value
*/
static int16_t
interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
int16_t targetLeft, int16_t targetRight)
{
int16_t rv;
if (srcRight != srcLeft) {
rv = ((target - srcLeft)*targetRight +
(srcRight - target)*targetLeft) / (srcRight - srcLeft);
} else {
rv = targetLeft;
}
return rv;
}
/*
* Uses the data points read from EEPROM to reconstruct the pdadc power table
* Called by ar5413SetPowerTable()
*/
static int
ar5413getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
const RAW_DATA_STRUCT_2413 *pRawDataset,
uint16_t pdGainOverlap_t2,
int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
uint16_t pPdGainValues[], uint16_t pPDADCValues[])
{
struct ar5413State *priv = AR5413(ah);
#define VpdTable_L priv->vpdTable_L
#define VpdTable_R priv->vpdTable_R
#define VpdTable_I priv->vpdTable_I
uint32_t ii, jj, kk;
int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
uint32_t idxL, idxR;
uint32_t numPdGainsUsed = 0;
/*
* If desired to support -ve power levels in future, just
* change pwr_I_0 to signed 5-bits.
*/
int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
/* to accomodate -ve power levels later on. */
int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
/* to accomodate -ve power levels later on */
uint16_t numVpd = 0;
uint16_t Vpd_step;
int16_t tmpVal ;
uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
/* Get upper lower index */
GetLowerUpperIndex(channel, pRawDataset->pChannels,
pRawDataset->numChannels, &(idxL), &(idxR));
for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
/* work backwards 'cause highest pdGain for lowest power */
numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
if (numVpd > 0) {
pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
}
Pmin_t2[numPdGainsUsed] = (int16_t)
(Pmin_t2[numPdGainsUsed] / 2);
Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
Pmax_t2[numPdGainsUsed] =
pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
ar5413FillVpdTable(
numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
&(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
&(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
);
ar5413FillVpdTable(
numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
&(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
&(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
);
for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
VpdTable_I[numPdGainsUsed][kk] =
interpolate_signed(
channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
(int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
}
/* fill VpdTable_I for this pdGain */
numPdGainsUsed++;
}
/* if this pdGain is used */
}
*pMinCalPower = Pmin_t2[0];
kk = 0; /* index for the final table */
for (ii = 0; ii < numPdGainsUsed; ii++) {
if (ii == (numPdGainsUsed - 1))
pPdGainBoundaries[ii] = Pmax_t2[ii] +
PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
else
pPdGainBoundaries[ii] = (uint16_t)
((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
if (pPdGainBoundaries[ii] > 63) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: clamp pPdGainBoundaries[%d] %d\n",
__func__, ii, pPdGainBoundaries[ii]);/*XXX*/
pPdGainBoundaries[ii] = 63;
}
/* Find starting index for this pdGain */
if (ii == 0)
ss = 0; /* for the first pdGain, start from index 0 */
else
ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
pdGainOverlap_t2;
Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
/*
*-ve ss indicates need to extrapolate data below for this pdGain
*/
while (ss < 0) {
tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
ss++;
}
sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
while (ss < (int16_t)maxIndex)
pPDADCValues[kk++] = VpdTable_I[ii][ss++];
Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
VpdTable_I[ii][sizeCurrVpdTable-2]);
Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
/*
* for last gain, pdGainBoundary == Pmax_t2, so will
* have to extrapolate
*/
if (tgtIndex > maxIndex) { /* need to extrapolate above */
while(ss < (int16_t)tgtIndex) {
tmpVal = (uint16_t)
(VpdTable_I[ii][sizeCurrVpdTable-1] +
(ss-maxIndex)*Vpd_step);
pPDADCValues[kk++] = (tmpVal > 127) ?
127 : tmpVal;
ss++;
}
} /* extrapolated above */
} /* for all pdGainUsed */
while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
ii++;
}
while (kk < 128) {
pPDADCValues[kk] = pPDADCValues[kk-1];
kk++;
}
return numPdGainsUsed;
#undef VpdTable_L
#undef VpdTable_R
#undef VpdTable_I
}
static HAL_BOOL
ar5413SetPowerTable(struct ath_hal *ah,
int16_t *minPower, int16_t *maxPower,
const struct ieee80211_channel *chan,
uint16_t *rfXpdGain)
{
struct ath_hal_5212 *ahp = AH5212(ah);
uint16_t freq = ath_hal_gethwchannel(ah, chan);
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
uint16_t pdGainOverlap_t2;
int16_t minCalPower5413_t2;
uint16_t *pdadcValues = ahp->ah_pcdacTable;
uint16_t gainBoundaries[4];
uint32_t reg32, regoffset;
int i, numPdGainsUsed;
#ifndef AH_USE_INIPDGAIN
uint32_t tpcrg1;
#endif
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan 0x%x flag 0x%x\n",
__func__, chan->ic_freq, chan->ic_flags);
if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
else if (IEEE80211_IS_CHAN_B(chan))
pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
else {
HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
}
pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
numPdGainsUsed = ar5413getGainBoundariesAndPdadcsForPowers(ah,
freq, pRawDataset, pdGainOverlap_t2,
&minCalPower5413_t2,gainBoundaries, rfXpdGain, pdadcValues);
HALASSERT(1 <= numPdGainsUsed && numPdGainsUsed <= 3);
#ifdef AH_USE_INIPDGAIN
/*
* Use pd_gains curve from eeprom; Atheros always uses
* the default curve from the ini file but some vendors
* (e.g. Zcomax) want to override this curve and not
* honoring their settings results in tx power 5dBm low.
*/
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
(pRawDataset->pDataPerChannel[0].numPdGains - 1));
#else
tpcrg1 = OS_REG_READ(ah, AR_PHY_TPCRG1);
tpcrg1 = (tpcrg1 &~ AR_PHY_TPCRG1_NUM_PD_GAIN)
| SM(numPdGainsUsed-1, AR_PHY_TPCRG1_NUM_PD_GAIN);
switch (numPdGainsUsed) {
case 3:
tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING3;
tpcrg1 |= SM(rfXpdGain[2], AR_PHY_TPCRG1_PDGAIN_SETTING3);
/* fall thru... */
case 2:
tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING2;
tpcrg1 |= SM(rfXpdGain[1], AR_PHY_TPCRG1_PDGAIN_SETTING2);
/* fall thru... */
case 1:
tpcrg1 &= ~AR_PHY_TPCRG1_PDGAIN_SETTING1;
tpcrg1 |= SM(rfXpdGain[0], AR_PHY_TPCRG1_PDGAIN_SETTING1);
break;
}
#ifdef AH_DEBUG
if (tpcrg1 != OS_REG_READ(ah, AR_PHY_TPCRG1))
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: using non-default "
"pd_gains (default 0x%x, calculated 0x%x)\n",
__func__, OS_REG_READ(ah, AR_PHY_TPCRG1), tpcrg1);
#endif
OS_REG_WRITE(ah, AR_PHY_TPCRG1, tpcrg1);
#endif
/*
* Note the pdadc table may not start at 0 dBm power, could be
* negative or greater than 0. Need to offset the power
* values by the amount of minPower for griffin
*/
if (minCalPower5413_t2 != 0)
ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower5413_t2);
else
ahp->ah_txPowerIndexOffset = 0;
/* Finally, write the power values into the baseband power table */
regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
for (i = 0; i < 32; i++) {
reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
((pdadcValues[4*i + 1] & 0xFF) << 8) |
((pdadcValues[4*i + 2] & 0xFF) << 16) |
((pdadcValues[4*i + 3] & 0xFF) << 24) ;
OS_REG_WRITE(ah, regoffset, reg32);
regoffset += 4;
}
OS_REG_WRITE(ah, AR_PHY_TPCRG5,
SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
return AH_TRUE;
}
static int16_t
ar5413GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
{
uint32_t ii,jj;
uint16_t Pmin=0,numVpd;
for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
/* work backwards 'cause highest pdGain for lowest power */
numVpd = data->pDataPerPDGain[jj].numVpd;
if (numVpd > 0) {
Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
return(Pmin);
}
}
return(Pmin);
}
static int16_t
ar5413GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
{
uint32_t ii;
uint16_t Pmax=0,numVpd;
for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
/* work forwards cuase lowest pdGain for highest power */
numVpd = data->pDataPerPDGain[ii].numVpd;
if (numVpd > 0) {
Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
return(Pmax);
}
}
return(Pmax);
}
static HAL_BOOL
ar5413GetChannelMaxMinPower(struct ath_hal *ah,
const struct ieee80211_channel *chan,
int16_t *maxPow, int16_t *minPow)
{
uint16_t freq = chan->ic_freq; /* NB: never mapped */
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
const RAW_DATA_PER_CHANNEL_2413 *data=AH_NULL;
uint16_t numChannels;
int totalD,totalF, totalMin,last, i;
*maxPow = 0;
if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
else if (IEEE80211_IS_CHAN_B(chan))
pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
else {
HALASSERT(IEEE80211_IS_CHAN_5GHZ(chan));
pRawDataset = &ee->ee_rawDataset2413[headerInfo11A];
}
numChannels = pRawDataset->numChannels;
data = pRawDataset->pDataPerChannel;
/* Make sure the channel is in the range of the TP values
* (freq piers)
*/
if (numChannels < 1)
return(AH_FALSE);
if ((freq < data[0].channelValue) ||
(freq > data[numChannels-1].channelValue)) {
if (freq < data[0].channelValue) {
*maxPow = ar5413GetMaxPower(ah, &data[0]);
*minPow = ar5413GetMinPower(ah, &data[0]);
return(AH_TRUE);
} else {
*maxPow = ar5413GetMaxPower(ah, &data[numChannels - 1]);
*minPow = ar5413GetMinPower(ah, &data[numChannels - 1]);
return(AH_TRUE);
}
}
/* Linearly interpolate the power value now */
for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
last = i++);
totalD = data[i].channelValue - data[last].channelValue;
if (totalD > 0) {
totalF = ar5413GetMaxPower(ah, &data[i]) - ar5413GetMaxPower(ah, &data[last]);
*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
ar5413GetMaxPower(ah, &data[last])*totalD)/totalD);
totalMin = ar5413GetMinPower(ah, &data[i]) - ar5413GetMinPower(ah, &data[last]);
*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
ar5413GetMinPower(ah, &data[last])*totalD)/totalD);
return(AH_TRUE);
} else {
if (freq == data[i].channelValue) {
*maxPow = ar5413GetMaxPower(ah, &data[i]);
*minPow = ar5413GetMinPower(ah, &data[i]);
return(AH_TRUE);
} else
return(AH_FALSE);
}
}
/*
* Free memory for analog bank scratch buffers
*/
static void
ar5413RfDetach(struct ath_hal *ah)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HALASSERT(ahp->ah_rfHal != AH_NULL);
ath_hal_free(ahp->ah_rfHal);
ahp->ah_rfHal = AH_NULL;
}
/*
* Allocate memory for analog bank scratch buffers
* Scratch Buffer will be reinitialized every reset so no need to zero now
*/
static HAL_BOOL
ar5413RfAttach(struct ath_hal *ah, HAL_STATUS *status)
{
struct ath_hal_5212 *ahp = AH5212(ah);
struct ar5413State *priv;
HALASSERT(ah->ah_magic == AR5212_MAGIC);
HALASSERT(ahp->ah_rfHal == AH_NULL);
priv = ath_hal_malloc(sizeof(struct ar5413State));
if (priv == AH_NULL) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: cannot allocate private state\n", __func__);
*status = HAL_ENOMEM; /* XXX */
return AH_FALSE;
}
priv->base.rfDetach = ar5413RfDetach;
priv->base.writeRegs = ar5413WriteRegs;
priv->base.getRfBank = ar5413GetRfBank;
priv->base.setChannel = ar5413SetChannel;
priv->base.setRfRegs = ar5413SetRfRegs;
priv->base.setPowerTable = ar5413SetPowerTable;
priv->base.getChannelMaxMinPower = ar5413GetChannelMaxMinPower;
priv->base.getNfAdjust = ar5212GetNfAdjust;
ahp->ah_pcdacTable = priv->pcdacTable;
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
ahp->ah_rfHal = &priv->base;
return AH_TRUE;
}
static HAL_BOOL
ar5413Probe(struct ath_hal *ah)
{
return IS_5413(ah);
}
AH_RF(RF5413, ar5413Probe, ar5413RfAttach);