adrian 4b2962c0bd Implement BAR TX.
A BAR frame must be transmitted when an frame in an A-MPDU session fails
to transmit - it's retried too often, or it can't be cloned for
re-transmission.  The BAR frame tells the remote side to advance the
left edge of the block-ack window (BAW) to a new value.

In order to do this:

* TX for that particular node/TID must be paused;
* The existing frames in the hardware queue needs to be completed, whether
  they're TXed successfully or otherwise;
* The new left edge of the BAW is then communicated to the remote side
  via a BAR frame;
* Once the BAR frame has been sucessfully TXed, aggregation can resume;
* If the BAR frame can't be successfully TXed, the aggregation session
  is torn down.

This is a first pass that implements the above.  What needs to be done/
tested:

* What happens during say, a channel reset / stuck beacon _and_ BAR
  TX.  It _should_ be correctly buffered and retried once the
  reset has completed.  But if a bgscan occurs (and they shouldn't,
  grr) the BAR frame will be forcibly failed and the aggregation session
  will be torn down.

  Yes, another reason to disable bgscan until I've figured this out.

* There's way too much locking going on here.  I'm going to do a couple
  of further passes of sanitising and refactoring so the (re) locking
  isn't so heavy.  Right now I'm going for correctness, not speed.

* The BAR TX can fail if the hardware TX queue is full.  Since there's
  no "free" space kept for management frames, a full TX queue (from eg
  an iperf test) can race with your ability to allocate ath_buf/mbufs
  and cause issues.  I'll knock this on the head with a subsequent
  commit.

* I need to do some _much_ more thorough testing in hostap mode to ensure
  that many concurrent traffic streams to different end nodes are correctly
  handled.  I'll find and squish whichever bugs show up here.

But, this is an important step to being able to flip on 802.11n by default.
The last issue (besides bug fixes, of course) is HT frame protection and
I'll address that in a subsequent commit.
2012-04-04 23:45:15 +00:00
2012-04-02 17:16:24 +00:00
2012-03-26 11:48:47 +00:00
2012-03-31 07:10:16 +00:00
2012-04-04 23:45:15 +00:00
2012-04-04 23:14:01 +00:00
2010-11-14 11:32:56 +00:00

This is the top level of the FreeBSD source directory.  This file
was last revised on:
$FreeBSD$

For copyright information, please see the file COPYRIGHT in this
directory (additional copyright information also exists for some
sources in this tree - please see the specific source directories for
more information).

The Makefile in this directory supports a number of targets for
building components (or all) of the FreeBSD source tree, the most
commonly used one being ``world'', which rebuilds and installs
everything in the FreeBSD system from the source tree except the
kernel, the kernel-modules and the contents of /etc.  The ``world''
target should only be used in cases where the source tree has not
changed from the currently running version.  See:
http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/makeworld.html
for more information, including setting make(1) variables.

The ``buildkernel'' and ``installkernel'' targets build and install
the kernel and the modules (see below).  Please see the top of
the Makefile in this directory for more information on the
standard build targets and compile-time flags.

Building a kernel is a somewhat more involved process, documentation
for which can be found at:
   http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/kernelconfig.html
And in the config(8) man page.
Note: If you want to build and install the kernel with the
``buildkernel'' and ``installkernel'' targets, you might need to build
world before.  More information is available in the handbook.

The sample kernel configuration files reside in the sys/<arch>/conf
sub-directory (assuming that you've installed the kernel sources), the
file named GENERIC being the one used to build your initial installation
kernel.  The file NOTES contains entries and documentation for all possible
devices, not just those commonly used.  It is the successor of the ancient
LINT file, but in contrast to LINT, it is not buildable as a kernel but a
pure reference and documentation file.


Source Roadmap:
---------------
bin		System/user commands.

cddl		Various commands and libraries under the Common Development
		and Distribution License.

contrib		Packages contributed by 3rd parties.

crypto		Cryptography stuff (see crypto/README).

etc		Template files for /etc.

games		Amusements.

gnu		Various commands and libraries under the GNU Public License.
		Please see gnu/COPYING* for more information.

include		System include files.

kerberos5	Kerberos5 (Heimdal) package.

lib		System libraries.

libexec		System daemons.

release		Release building Makefile & associated tools.

rescue		Build system for statically linked /rescue utilities.

sbin		System commands.

secure		Cryptographic libraries and commands.

share		Shared resources.

sys		Kernel sources.

tools		Utilities for regression testing and miscellaneous tasks.

usr.bin		User commands.

usr.sbin	System administration commands.


For information on synchronizing your source tree with one or more of
the FreeBSD Project's development branches, please see:

  http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/synching.html
Description
freebsd kernel with SKQ
Readme 2 GiB
Languages
C 63.3%
C++ 23.3%
Roff 5.1%
Shell 2.9%
Makefile 1.5%
Other 3.4%